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Dark spatial soliton break-up in the transverse plane
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We report on numerical simulations investigating the instabilities which arise when dark soliton solutions of the two-dimen-
sional (2D) nonlinear Schrédinger equation are allowed to propagate in a 3D self-defocussing medium. Firstly, propagation of
fully 3D gaussian beams is studied. Then, on plane background, small sinusoidal and random perturbations are considered. We
demonstrate break-up of the dark soliton profile into patterns of dark spots which are identified as phase singularities.

1. Introduction

Nonlinear systems are common in nature and often
require approximations, computational methods or
both to extract information. In a wide class of sys-
tems, solitons have been found to be simple exact
solutions and in an even greater number of related
systems their characteristics are manifest and can
dominate at least part of the nonlinear evolution. The
context of this paper is that of transverse effects in
passive nonlinear optics and the consequences of al-
lowing the second (transverse) dimension in the dif-
fractive laplacian [1,2]. Although considerations are
tailored to current research in that field, results from
this simple model may be relevant to a wide range
of physical problems. More specifically, we study the

and three dimensions.

2. One transverse dimension

Beam propagation in a Kerr medium under wave-
guide geometry (i.e. with restriction to one trans-
verse dimension) is described by the following 2D
NLS equation [3]
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nonlinear Schrodinger equation (NLS) in both two
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where x is the coordinate orthogonal to the propa-
gation direction (z). @ defines the scale of the trans-
verse coordinates and thus parameterises diffrac-
tion. 1 i1s positive for a self-focussing medium and
negative in the self-defocussing case. The electric
field, F, is scaled such that # has unit magnitude and
its sign flags whether the local nonlinear refractive
index increases or decreases with | F|2, the intensity
of light. It is the defocussing nonlinearity we are con-
cerned with here and thus the dark soliton solutions
[4] toeq. (1).

For a=1, the initial value problem with F(x,
z=0)=tanh(x) is a “kink™ in the real part of the
electric field (odd in x) and observable as a dip in
the otherwise flat background of the light intensity.
Most importantly, it initiates the stable propagation
of a dark soliton. To realise this in experiment or
computation one requires a uniform light back-
ground of infinite extent. We either make a numer-
ical approximation and investigate propagation
within spatially periodic lattices or consider the
manifestation of such structures on a modulated
background - a gaussian beam. To ensure spatial pe-
riodicity in the former cases, it is convenient to ex-
amine not the evolution of one structure (with odd
symmetry) but instead to simultaneously simulate
pairs. The separation of each member of the pair can
be chosen so as not to affect the important qualita-
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tive features of the central phenomena, except when
interaction effects are themselves under study.

In fig. 1 we illustrate the stability of such a dark
soliton pair and demonstrate that, by virtue of their
sharp and strongly localised profile, they are in fact
weakly interacting. The initial condition used here is
constructed from two kinks of equal amplitude and
opposite sense and is given by

F(x,z=0)=tanh(x—-4),
= —tanh(x+4),

ifx>0,
if x<0. (2)

The choice of kink amplitudes and their separa-
tion parameter, 4, allows F(x, z=0) to be common
" to both structures and easily and obviously defined.
The general dark soliton solution has a single pa-
rameter which determines both the soliton intensity
and its transverse velocity and corresponds to a real
discrete eigenvalue from the inverse scattering prob-
lem [4,5]. In fig. 1, there is an absolute zero in the
electric field at the centre of each soliton and this
feature is associated with the soliton solution which
has zero transverse velocity. Other eigenvalues im-
ply a non-stationary soliton whose dip in intensity
“does not reach zero. These “grey solitons” maintain
the usual invariance or “soliton area” (dip intensity
times the square of the soliton width) by being wider
than their dark counterparts.
For a focussing nonlinearity (quasi-)bound states
of, individually attracting, bright solitons exist lead-
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Fig. 1. Isometric plot of the evolution of field modulus of two
adjacent dark solitons. X is the transverse dimension while prop-
agation is from z=0 to0 20.
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ing to the so-called higher order solitons [6]. There
is no known equivalent for dark solitons - a fact that
may be attributed to their mutual repulsion [5]. Per-
forming a series of initial value problems in which
the initial kink amplitudes are varied one observes
dark soliton fission and interactions. A particular ex-

ample is shown in fig. 2 where
F(x,z=0)=2tanh(x—4),

= —2tanh(x+4) ,

if x>0,
ifx<0. (3)

In this case each inttial dark profile breaks up into
three solitons, thus preserving the system symmetry
[7]. Clean (non-radiative) propagation and inter-
actions at the periodic boundaries can be clearly seen.

3. Two transverse dimensions

Allowing two transverse dimensions, 7> 0 may lead
to filamentation (solution ‘“‘blow-up” on propaga-
tion ) but recently much interest [8-10] has centred
around the case 7 <0 and the stability of dark soliton
“stripe” solutions. While the Kerr effect remains lo-
cal, including a further transverse dimension is al-
lowing diffraction to occur in both the x- and y-di-
rections and leads to consideration of the 3D NLS
in which the field evolves according to

F af®F o°F ,
l-a-:+2<az+a) N\ FI2F=0 (4)
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Fig. 2. Dark soliton fission and interactions. Parameters are as in
fig. 1 except that the initial amplitudes are doubled.
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Most recent attempts to experimentally realise dark
patial solitons have involved two transverse dimen-
ions. In particular, the propagation of transverse
vatterns of dark stripes and grids through cells filled
vith a defocussing medium such as sodium vapour
1ave been examined [8] and the persistence of the
nitial patterns attributed to soliton effects. Further
o this, good agreement of the spatial velocities of

heory has been obtained [9]. In those studies dark
spatial stripes were initialised by masking in the
ransverse plane, i.e. amplitude modulation of the
iaser beam before it enters the nonlinear cell. Such
masking produces “‘even” initial conditions which
break up into an even number of solitons [5]. An
alternative method is that of phase modulation where
all one may require is a glass slide to obscure half of
the beam and thus, for example, creating the nec-
essary spatial phase difference for a single dark so-
liton stripe. This method has been adopted for stud-

and may create “odd” initial conditions. In that work
monitoring of the constancy of soliton area gave ad-
| ditional evidence for solitonic phenomena.

We have found that in the full 3D problem both
figs. 1 and 2 can be essentially replicated over the
same propagation distance. At each point in the
propagation, structure in x is that of the 2D simu-
lations and it is reproduced uniformly across the x-
v plane. That the dark soliton solutions are also a so-
lution of the 3D NLS can be seen by trivially setting
the additional laplacian term to zero. We thus here
state further evidence to suggest the relevance of 2D
soliton structures in full 3D propagation. In partic-
ular, the ability to reproduce not only 2D dark so-
liton fission but also 2D interaction sequences uni-
formly (in y) across the transverse plane.

4, Gaussian beam effects

We have performed both 2D and 3D calculations
to determine the evolution of dark soliton stripes on
gaussian beams. In this section, only results for the
3D case will be shown.

Generally, we define initial conditions of the form
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F(x,y,z=0)=Aexp[ — (x2+y2)/r3]
Xtanh{[(y—) /5], (5)

where the initial gaussian beam waist and dark stripe
width are parameterised by r, and y,, respectively.
For the 2D problem it has been shown [7] that here
the dark structures are, strictly, not solitons as one
no longer finds real eigenvalues in the scattering
problem. On the other hand, as the relative size of
the beam (to the soliton width) approaches infinity
then the eigenvalue returns smoothly to the real axis
[7]. Thus, depending on relative length scales, we
expected soliton-like behaviour to influence the evo-
lution to some extent. Numerical work has already
been performed on this problem [11] but, firstly,
only in the 2D case and, secondly, initial off-axis dark
soliton profiles were not considered - only grey so-
litons which were generated at beam centre with an
implicit finite transverse velocity. Two transverse
dimensions have been allowed in related work [12]
but in this case propagation effects were removed and
instead the system was periodically driven.

This problem is a further departure from the plane
wave background case as, in addition to local back-
ground intensity curvature and diffractive beam
spreading, the gaussian beam shape alone leads to
spatial “chirping” i.e. a variation across the beam
arising from self phase modulation [11].

Our findings here apply to both the 2D and 3D
problems where a full range of (A4, y,, ¥, o) param-
eters have been investigated. In fig. 3 the transverse
field profile is shown after propagation of a centrally
defined dark stripe (yo=0). In this case, and with
the abovce considerations, there is a remarkable
maintenance of the soliton profile. Note that here
there is a background gaussian variation both trav-
ersely and along the stripe. On propagation, the dark
profile simply spreads while retaining the essential
phase character of a truly dark soliton.

In fig. 4 an off-centre dark stripe is seeded, ini-
tially defining a line of exactly zero electric field. The
result is that the off-axis structure rapidly becomes
close to a grey soliton by broadening to a finite in-
tensity dip. That these cases become grey does not
seem to depend on the amplitude of the background
beam but, instead, happens as a consequence of the
local intensity curvature of the host beam. Consid-
cring the potentials that arise from the nonlinear re-
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Fig. 3. Evolution of a dark soliton profile centrally positioned on
the beam (A=1). Both the surface (a) and contour (b) repre-
sentations of field modulus correspond to z=0.2.

fractive index, one expects off-axis structures to ex-
perience unbalanced transverse ‘forces” [13].
Acquisition of a finite transverse velocity would be
a consequence which is consistent with the initially
dark structures becoming grey on propagation. We
have also simulated the evolution of large numbers
of soliton stripes on such beams. Our findings in this
case is that the spreading of the off-centre members
leads to overlap and poor definition and contrast.

5. Transverse perturbations

Asymptotically and/or in real systems dark solu-
tions may be subject to inhomogeneities which arise
in the medium or input beam. To address the prob-
lem of long term stability of dark stripe solutions the
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Fig. 4. Evolution of a dark soliton profile initially positioned off
beam centre (4=1). Both the surface (a) and contour (b) rep-
resentations of field modulus correspond to z=0.2.

first step is to consider a small and simple pertur-
bative contribution arising from the otherwise dor-
mant laplacian term. For this we examine the case
of a sinusoidal variation in the position of the soliton
centre as the initial profile is reproduced across the
transverse plane. The key question is whether any
lateral “disturbances” will be damped and die
whereby the dark solution would be an asymptotic
fixed point of the system or whether this perturba-
tion will grow and eventually destroy the soliton pro-
file. This issue is clearly of both great practical and
fundamental interest since laser beams are normally
allowed to evolve with two transverse dimensions of
freedom.

A numerical stability analysis into the robustness
of the 3D dark solution was carried out by intro-
ducing a small x-dependence in the definition of one



Volume 95, number 4,5,6

of a pair of dark stripes. The component of the initial
condition (y>0) which gives rise to the perturbed
stripe is the following

F(x,y,z=0)=tanh[y—4d+e€sin(k,x)], (6)

where € is a small parameter and k, defines the pe-
riod of the sine perturbation function. Smallness of
€ ensures that any radiation shed will not greatly cor-
rupt the overall simulation while the stability of a
single dark soliton can be tested by keeping the com-
plementary (unperturbed) neighbour at a sufficient
transverse distance.

In fig. 5 we show the evolution of two well-sepa-
rated, and initially weakly interacting, dark solutions
in the x-y transverse plane. A very small perturba-
tion, e=10~3, is amplified on propagation leading to
break-up of the dark solution into spots. Note that
the instability appears to grow quite independently
of the neighbouring stripe. The instability growth rate
tends to increase with k,, but a detailed discussion
is beyond the scope of the present work. :

Also of interest are the long term states of this’sys-
tem. After both soliton profiles have broken down,
the dark spots that are created appear to be more ro-
bust than the initial stripes and persist in an ap-
proximately stationary manner. A clue to their na-
ture can be seen in fig. 6 where later developments
are plotted. Here the dark spots appear to be paired.
There also seems to an underlying component in the
system which is continually changing. At this stage
in the simulation one expects the periodic boundary
conditions to have assumed a nontrivial role. Peri-
odicity traps transverse waves within the computa-
tional box but even against this form of perturbation
the dark spots seem relatively robust.

To verify the validity of this instability we have
also tested the stability of the dark soliton profiles
with respect to varying levels of gaussian filtered
noise — included as part of the initial condition in the
y-direction. A particular example is shown in fig. 7a
where the randomness of the initial soliton centres
was of order 10~%. The final result shows a remark-
able similarity with the sinusoidal perturbation
simulations.

Since dark solutions are, evidently, unstable one
generally seeks fully nonlinear stable structures in the
plane. The existence of phase singular (“defect”) so-
lutions in 3D NLS-type equations has been known
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Fig. 5. Contour plots of field modulus showing dark soliton break-
up in the x-y plane. A small sinusoidal perturbation of amplitude
10~ is included, at z=0, to activate the otherwise dormant La-
placian term. x and y vary from — 6 to 6 and the spatial frequency
of the perturbation, k., is 27/3. (a) z=30; (b) z=50; (c) z=80.
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Fig. 6. Contours of the field modulus in the x~y plane indicating
pairing of the dark spots. Further developments of the simula-
tion shown in fig. 5. (a) z=100; (b) z=140.

for some time [14]. The term singularity comes from
the phase being undefined at the defect core since at
this point the lines of zero real part and zero ima-
ginary part of the field cross thus leading to an ab-
solute zero in the field. To verify whether these dark
spots are such singularities one needs to examine the
phase of the field. In part (b) of fig. 7 these zero lines
are plotted and, indeed, the observed dark spots can
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Fig. 7. Break-up of the dark soliton solution at z= 100 — induced
through random perturbations (of order 10~%) included in the
initial profile. (a) Contour plot of field modulus, (b) zeroes in
the real or imaginary part of the field.

be identified as singularities. In fig. 8 the zero lines
for the simulation of fig. 5 are shown. Note here that
the lines are continually changing while, overall, the
singular points are still retained. Such continual in-
ter-changing is to be expected from the background
plane wave solution alone. The topological nature of
these defects renders them robust to perturbations,
but their positions are not. The pairwise nature of
the spots also becomes evident from considerations
of the phase. Defects can be seen to have been both
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Fig. 8. Representation of dark soliton break-up using two iso-
phase contours. Phase singularities in the field occur at the inter-
section of the given isophase lines. Each contour is composed of
points in the transverse plane where either the real or imaginary
part of the field passes through zero. Parameters are the same as
those in fig. 5.
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created and sustained as complementary pairs, which
means that there are no phase discontinuities at the
boundaries.

6. Conclusions

The stability of the dark spatial soliton of the non-
linear Schrodinger equation has been numerically
investigated when three space dimensions are al-
lowed. Where initially no structure in one transverse
dimension is present both fission and interaction of
dark solitary stripes have been observed to happen,
over reasonable propagation distances, as if the other
transverse degree of freedom did not exist. On gaus-
sian beams dark stripes off beam centre become rap-
idly broad and grey while an initial (odd) stripe de-
fined on beam centre may retain its phase character
with an absolute zero in the field and merely broaden
in a solitonic manner. These observations have been
made in both the 2D and 3D propagation problems.
The stability of the dark stripe solutions have been
tested against sinusoidal and filtered noise pertur-
bations. In both cases similar results are obtained in
which the soliton profile breaks down into more ro-
bust phase singularities.

It may be possible to generate laser beams clus-
tered or lined with phase singularities using dark
stripes as an intermediate pattern. Creation of the
transient stripes may be through amplitude or phase
modulation of the input beam. In the latter case the
most essential instrument in their initial seeding is
simply a glass slide through which part of the beam
is passed so that a nonuniform phase profile is at-
tained. There are, in fact, a very wide range of initial
disturbances that are expected to evolve into dark
solitons [7] and thus quite possibly lead to phase
singularities.
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