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A numerical study of self-sustained mode locking due to optically induced nonlinear birefringence is presented. The model
incorporates a polarizer, a gain medium, a half-wave plate and a single-mode passive fibre in a ring cavity configuration. The
mechanism exploits polarization instability in optical fibre with a weak, linear, intrinsic birefringence.

The Kerr effect in optical fibre has attracted con-
siderable study since the theoretical prediction of so-
liton propagation in 1973 [1] and subsequent ex-
perimental verification in 1980 [2]. En a purely scalar
treatment, the nonlinear Schrédinger equation ap-
proximately governs pulse propagation in a polari-
zation preserving “single-mode” fibre when the in-
put is polarized along one of the principal axes of the
fibre. The input polarization state is then repro-
duced at the output.

If the input polarization is not aligned with one of
the principal fibre axes, evolution is governed by a
pair of coupled nonlinéar equations [3-8] for the
principal polarization modes. The output polariza-
tion state is now determined by the interplay be-
tween the intrinsic fibre birefringence and optically
induced nonlinear birefringence arising from an in-
tensity dependent contribution to refractive index.

Induced nonlinear birefringence effects were first
observed in 1964 [9] when intense, elliptically po-
larized light emerged rotated on passing through var-
ious liquids. The phenomenon is used successfully in
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a number of fibre optic applications. These include
intensity discriminators [10], logic gates [11] and
the Kerr shutter or modulator [ 12] which can be used
for optical sampling [13].

A more recent application is mode locking [14,15].
In particular, with rare-earth doped fibre lasers [ 14]
both amplification and nonlinear birefringence are
present within the same length of fibre. Here, we
study a simplified model in which these effects are
treated separately. We present a numerical study of
self-sustained mode locking exploiting polarization
instability [6] in optical fibre with a weak, linear,
intrinsic birefringence. The mechanism relies on
short, intense pulses launched close to the unstable
fast mode transferring energy to the stable, orthog-
onally polarized, slow mode. In contrast, the work
published to date depends predominantly on a non-
linear phase shift occurring between the principal
polarization modes rather than on exchange of en-
ergy between them.

The unidirectional system studied is illustrated in
fig. 1. A single pulse is injected into a length of op-
tical fibre with a weak, linear, intrinsic birefringence.
The input pulse excites both polarization modes and
is of sufficient intensity to induce nonlinear bire-
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Fig. 1. Mode locked laser system exploiting polarization
instability.

fringence. The light emerging from the fibre passes
through a polarizer before being amplified. It is as-
sumed that the gain medium does not alter the state
of polarization. The amplified signal then passes
through a half-wave plate which rotates the linear
polarization transmitted by the polarizer. A fraction
of the light emerging from the half-wave plate is cou-
pled out of the system, the remainder re-entering the
optical fibre to continue the cycle. The only losses
are at the polarizer and output coupler.

Setting u(z,t), v(z¢t) as the slowly varying com-
plex amplitudes of the slow and fast fibre modes, re-
spectively, nonlinear pulse propagation in the anom-
alous dispersion regime is governed by [6]:

10u/dz=13%u/0r>+ (|u}?>+%|v|®)u

+1v%u* exp(dikz) , (la)
10v/0z=43%/01%+ (|v]?+5|u|?)v

+1lutv* exp(—4ikz), (1b)

where the asterisk denotes complex conjugation. In
view of the weak intrinsic birefringence, it is as-
sumed that each mode has identical group velocity,
as well as identical group velocity dispersion. The
first term on the right-hand side of egs. (la) and
(1b) governs pulse dispersion, reflecting the fre-
quency dependence of refractive index. The remain-
ing terms reflect the intensity dependence of refrac-
tive index. The second term governs the effect of self
phase modulation while the third governs the effect
of cross phase modulation. The last term on the right-
hand side of each equation is responsible for the el-
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lipse rotation phenomenon mentioned earlier. They
are rapidly varying when the linear, intrinsic bire-
fringence is large and may then be neglected in keep-
ing with the slowly varying amplitude approxima-
tion adopted in the derivation of egs. (1a) and (1b).
However, differences in group velocity and group
velocity dispersion of each mode must then be taken
into account. The terms are included here since our
interest concerns optical fibre with a weak, linear
birefringence.

Equations (la) and (1b) are in dimensionless
form. ¢ is a retarded “time”, z measures “length”
along the fibre and k is the half difference in the mode
“propagation constants”. Denoting the dimensional
equivalent of the variables in egs. (1a) and (1b) with
a subscript R

t=(lg—pizr)/7, z= |ﬂ2|ZR/T2:

k=tkg/| B2l =7 (Bu=B.) /21 B> |

and

1/2 - 172
Wo 1y 072

U=T1 Ug, V=T Vr,

(2C|ﬁ2|) & <2C|ﬁzl> ®

where f, =9 /dw, the reciprocal of the group veloc-
ity, f,=02B/dw?, the group velocity dispersion, both
evaluated at the carrier frequency, wy, ¢ is the speed
of light in vacuum and #, is the Kerr coefficient. For
anomalous dispersion, £, is negative. 7 is an arbi-
trary time scale dependent on physical pulse width
and pulse shape. f8,,, B, are the propagation constants
of the slow and fast modes, respectively, due to the
linear intrinsic birefringence.

With an appropriate transformation [6], egs. (1a)
and (1b) can be reduced to a form suitable for nu-
merical integration by the split-step Fourier method
[16].

The polarizer is assumed to possess two orthogo-

nal axes, one of which is completely transmitting,

light along the other leaving the system or being ab-
sorbed. With 6 the angle between the transmission
axis of the polarizer and slow mode of the fibre, the
amplitude exiting the polarizer is

Wt (1) =u(L, t) exp(iff,L) cos(#)
+v(L, t) exp(if,L) sin(8) , . (2)
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where u(L, t), v(L, t) are the amplitudes emerging
from the length, L, of fibre. Equation (2) includes
the effect of both the intrinsic and optically induced
birefringences.

The linearly polarized light emerging from the po-
larizer is then amplified. The gain medium is mo-
delled simply as a homogeneously broadened sat-
urable amplifier [17]:

@ o (©),  (3)

Wi (0) = 110 /A0 2 T (14 el)

where W, (@) is the Fourier transform of w, (1), «
is the small signal gain, Aw is the effective width of
the gain, € is the saturation parameter and I=
J % Woat(2) 1> dt. The temporal profile emerging
from the gain medium, Wy, (¢), is the inverse Four-
ier transform of Wi, (w).

The output from the gain medium is then incident
on a half-wave plate. With ¢ the angle between the
axes of the polarizer and those of the half-wave plate,
the amplitude components re-entering the slow and
fast modes of the fibre are

U(0, 1) =TWgin (1) cos(6+29) , (4a)
v(0, 1) = Twgn (1) sin(6+2¢) , (4b)

where T is the amplitude transmission factor of the
output coupler.

For optical fibre, it is well known that combina-
tion of intrinsic and optically induced birefringences
can lead to an instability of the fast mode. Numerical
solution [6] of egs. (1a) and (1b) has shown that
the fast mode becomes unstable when the fibre beat
length, 27/ (B, —B,), is longer than the soliton pe-
riod, #72/2|B,|. Depending on input, an intense
pulse launched close to the fast mode may switch to
the slow mode and stay there, or alternatively, con-
tinuously exchange energy with the slow mode. Only
input aligned exactly with the fast mode will remain
there. Transfer of energy between modes typically
occurs over one or maybe several soliton periods.

We consider the case where the transmission axis
of the polarizer is positioned close to the slow mode
of the fibre. Then, with ¢=0.25x, propagation
through the half-wave plate results in light re-enter-
ing the fibre close to the fast mode; the signals ex-
iting the polarizer and half-wave plate being orthog-
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onally polarized. Successful passage through the
polarizer now relies on the fast mode being unstable,
transferring energy to the slow mode.

We present numerical solutions of egs. (1)-(4)
for the initial condition

u(0, t)y=Asech(¢) cos(9+2¢) , (5a)
v(0, t)=Asech(t)sin(6+2¢) , (5b)

representing a single pulse injected into the length of
the optical fibre. This particular choice of input, co-
inciding with the angle at which puises enter the fibre
on successive circuits, is not particularly significant
but helps limit the number of passes necessary for
final behaviour to become evident.

We consider operation at 1.55 pm. For an injected
pulse width of 1 ps fwhm and typical group velocity
dispersion, f,=—2.0x 1026 s m~!, the soliton pe-
riod is approximately 25 m. For polarization insta-
bility, the soliton period must be shorter than the beat
length. We take a refractive index difference between
the slow and fast modes of 10~% due to the intrinsic
birefringence. The beat length is then 155 m at 1.55
pm.

Figure 2 typically illustrates formation of a self-
sustained mode locked output when a 7 kW peak
power pulse is launched into 40 m of fibre with an
effective core area of 30 um?. Figure 2a, obtained
with 6=0.057, ¢=0.257, a=2.6, Aw=10, €=0.25
and T=./0.8, shows output for the first 100 circuits.
Figure 2b shows the output pulse at steady state; the
crosses fit a sech? profile with the same peak value
and width. The output pulse is close to transform
limited with a time-bandwidth product, AtAv, of
approximately 0.29. In real terms, the output has an
approximate peak power and width of 5.2 kW and
520 fs fwhm, respectively. The final state illustrated
in figure 2 remains invariant as the launched peak
power is increased from 7 kW to 28 kW. However,
a further increase may eventually alter the final out-
put since polarization evolution on the first circuit
becomes more complicated with increased peak
power.

It is not entirely necessary for the signals exiting
the polarizer and half-wave plate to be orthogonally
polarized. With the transmission axis of the polar-
izer near, or even aligned with, the slow mode, ¢
should be such that light re-enters the fibre close to
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Fig. 2. Self-sustained mode locking obtained with =0.05%, ¢=
0.257, @=2.6, Aw=10, ¢=0.25 and T=,/0.8. Behaviour is ini-
tiated by launching a 1ps fwhm, 7kW peak power pulse into 40 m
of fibre with an effective core area of 30 pm? (a) output for the
first 100 circuits; (b) steady state output pulse. The crosses fit a
sech? profile with the same peak value and width as the output.

the fast mode to induce polarization instability.

Figures 3a and b show evolution of the slow and
fast modes, respectively, for the steady state of fig.
2. Transfer of energy from the unstable fast mode to
stable slow mode is clearly seen, with approximately
72% of the energy entering the fast mode switching
to the slow mode.

Figure 2 relates to just above threshold. For a=
2.59 or less, amplification is insufficient to over-
come losses at the polarizer and output coupler and
decay results. Figure 4 illustrates behaviour as « is
increased from 2.6, with remaining parameters as in
fig. 2. The figure displays the dimensionless peak
output intensity (crosses) and pulse width (circles)
at steady state as a function of «. As « is increased,
peak output intensity increases and pulse width de-
creases until a period doubling bifurcation occurs for
a around 3.08; output then alternating between two
values on successive circuits. A more complete bi-
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Fig. 3. Evolution of the two polarization modes for the steady
state of fig. 2: (a) slow mode; (b) fast mode.
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Fig. 4. Final behaviour as a function of small signal gain for the
parameters of fig. 2. The crosses show peak output intensity, the
circles pulse width.
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furcation sequence is not presented since our pri-
mary interest is in the mode locking ability of the
system shown in fig. 1 rather than its possible cha-
otic response. Also, pulse widths are approaching
values for which eqs. (1a) and (1b) require revision
[18].

The polarization properties of optical fibre are
subject to a wide variety of perturbations [19]. Con-
sequently, a low modal birefringence is difficult to
maintain over any extended length, especially if the
fibre is stressed as a result of bending or twisting. The
mode locking mechanism presented here would thus
be most practical for pulse widths of around 200 fs
or less for which the soliton period is shorter than
the fibre length over which low modal birefringence
can be maintained, typically 1.5 m [20].

Erbium doped fibre provides a very attractive
source of gain at 1.55 um. Ideally, if a length of such
fibre could be produced with a very low modal bi-
refringence, amplification may be conveniently
combined with polarization instability in a single
fibre loop with polarization sensitive losses.

The mode locking mechanism presented here is one
which exploits polarization instability in optical fibre
with a weak, linear, intrinsic birefringence. Opera-
tion was initiated by injecting a single pulse into the
length of optical fibre. The system may self-start with
a proper choice of device parameters although, in
general, the constraints imposed on 6 and ¢ for op-
timum use of the instability are not too amenable to
operation being built from noise. A configuration
which would clearly not self-start is one with
$=0.257 and a length of fibre equal to an integer
number of beat lengths. Polarization instability is not
the only manner in which energy may be exchanged
between the principal polarization modes of a bire-
fringent fibre [21,22] and these alternative methods
may better facilitate self-starting.

In summary, we have demonstrated, with a very
simple model, the possible application of polariza-
tion instability as a mode locking mechanism. The
steady state pulses are clean, pedestal free and close
to transform limited. As the gain is increased, the
pulses narrow but eventually show a period doubling
instability.
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