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Abstract--Analytic and numerical investigations of a cavity containing a Kerr medium are reported. 
The mean field equation with plane-wave excitation and diffraction is assumed. Stable hexagons are 
dominant close to threshold for a self-focusing medium. Bistable switching frustrates pattern 
formation for a self-defocusing medium. Under appropriate parametric conditions that we identify, 
there is coexistence of a homogeneous stationary solution, of a hexagonal pattern solution and of a 
large (in principle infinite) number of localized structure solutions which connect the homogeneous 
and hexagonal state. Further above threshold, the hexagons show defects, and then break up with 
apparent turbulence. For Gaussian beam excitation, the different symmetry leads to polygon 
formation for narrow beams, but quasihexagonal structures appear for broader beams. 

1. INTRODUCTION 

The phenomena  of spontaneous pattern formation and transformation are of general 
interest for all sciences [1, 2]. Of  conceptually fundamental  importance are the processes by 
which a spatial pattern arises from a homogeneous  state, as a consequence of the combined 
action of a nonlinearity and of a cross-talk mechanism among the different spatial points, 
as for example diffusion. This mechanism was first elucidated in a pioneering work of 
Turing [3], whence it is customary to call Turing instabilities those instabilities which lead 
to the onset of a stationary structure from a spatially uniform state. 

The last decade has witnessed an increasing interest in the phenomena  which arise in the 
structure of the electromagnetic field in the planes orthogonal to the direction of 
propagation,  when the field travels through a nonlinear medium. These activities have 
created a new discipline which is commonly designated transverse nonlinear optics [4-6]. In 
the case of optical systems, diffraction of radiation provides the cross-talk mechanism 
necessary for spontaneous structure formation. 
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Passive systems withoul population inversion were the first to bc systematically investi- 
gated from the viewpoint of transverse pattern dynamics. Moloney et al. [7] considered a 
ring cavity containing a saturable refractive medium, and showed the formation ~t 
soliton-Iike structures on top of the Gaussian profile of the field intensity. In the case of 
two transverse dimensions, the evolution exhibits the onset of filaments in a ring pattern: 
the filaments show a slow chaotic dance and then, in the course of a very long time 
ew~lution, give rise io the formation of patterns which cxhibil a progressive loss of 
symmetry [8]. 

Two of us formulated a simple model [9] which demonstrates  in a paradigmatic way the 
existence of a Turing instability in a nonlinear optical system, in a way similar to what is 
shown by the so called Brusselator [1, 10] in the case of nonlinear chemical reactions. The 
model is essentially a generalization of the mean-field model for dispersive optical 
bistability [11] to include diffraction. 

Pattern formation in counterpropagat ing waves in a cavityless Kerr or saturable passive 
dispersive medium was the subject of intensive investigations in recent years [12-24]. The 
most prominent  phenomenon which emerges in this case is the formation of regular 
hexagonal patterns,  with properties similar to those of hexagonal cellula in the Rayleigh 
Bernard instability [25]. These structures have been experinaentally observed bv Grynberg  
and collaborators in Na [12] and in Rb [24] and theoretically predicted in refs [13, 17]. 

The purpose of this paper  is to analyse and simulate /he model [9] in two transverse 
dimensions. The advantage of this equation with respect, for example,  to the case ~f 
counterpropagat ing waves, is that it involves only two spatial coordinates,  and therefore 
requires much less numerical power. The linear stability analysis of the homogeneous  
stationary solution was already done in [9]. Here we provide both a detailed bifurcation 
analysis of the stationary patterns which may be produced by the instability, and an 
extensive numerical investigation of the stationary and dynamical structures both close to 
and well beyond the instability threshold. A comparison of analytical and numerical results 
is also provided. A preliminary account of some of these results was given in [26]. 

In Section 2 we review the model and the l inear stabil i ty analysis of tile transvcrsall \  
homogeneous stationary sohition. Section 3 illustrates the nonlinear bifurcation anal\si~,. 
the results of which a r c  conlpared IO nunlerical simulations in ihe llCXl section. Section 4. 
in lurn, describes hexagonal patterns, of both stationary and chaotic naturc. In Sccti~lil 4 
wc il lustrate the localized structures and the conditions under which one Call find tl lcin. 

A l l  the results in Sections 2 5 are obtained assuming a plane-wave configuration for the 
input field. In Section (~ we focus, instead, on the case of a Oaussian beam excitation and 
show that one can recover structures closely related to the hexagonal patterns of the 
plane-wave case for broad input beams,  whereas in the case of narrow beams one meets 
polygonal structures. The final Section 7 discusses the main results of this paper. 

2. THE MOI)EL 

We consider a unidirectional ring (Fig. l(a)) or Fab ry -Pe ro t  (Fig. l(b)) cavity with planc 
mirrors, containing a Kerr medium and driven by a coherent plane-wave field. Assuming 
conditions such that only one longitudinal mode of the cavity is relevant,  the dynamics t~f 
the system can be described by the partial differential equation [91 

3 E  = -1,5 + t5~ + i~l(IEl: O)E  + iaV~ l~. (1) 
3r  

where E is the normalized slowly-varying envelope of the electric field. Es is the 
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Fig. 1. (a) Ring cavity; (b) Fabry-Perot cavity. 

normalized input field (assumed real and positive for definiteness) and 0 is the detuning 
parameter. The normalized time r is defined as 

r = t / tph (2) 

where tph is the mean lifetime of photons in the cavity given by L / c T  for a unidirectional 
ring cavity and by 2 L / c T  for a Fabry-Perot  cavity, with L being the cavity length, T the 
transmission coefficient of the cavity mirrors and c the light velocity in vacuum. The 
parameter q equals +1 ( -1 )  for self-focusing (self-defocusing) Kerr media. The transverse 
Laplacian, which describes diffraction in the paraxial approximation, is given by 

72  92 92 
= - -  + - -  x '  = x / b ,  y '  = y / b ,  (3) 

~X '2 3 y , 2 '  

where b is an arbitrary length, introduced to make dimensionless the parameter a, which is 
defined as 

c~.tph 
a - ; (4) 

4rrb 2 

denotes the wavelength. By appropriate choice of b, a can always be set to unity. 
Equation (1) holds also in the case of cavity containing a two-level medium under 

conditions of large atomic detuning, as demonstrated in [28]. 
Both cases of unidirectional ring cavity and Fabry-Perot ,  under conditions of single- 

longitudinal-mode operation, lead to the same equation (1), and the difference remains 
hidden in the normalization constant which links the variable E to the field envelope. An 
alternative derivation of (1) from the full counterpropagation equations with mirror 
boundary conditions for a Fabry-Perot  cavity, based on a pole analysis, is given in [29]. 

In [9] the model (1) was analysed in the case of one transverse dimension which can be 
forced, for example, by introducing a waveguide configuration. In this paper, instead, we 
will consider the full two-dimensional (2D) model. 

Equation (1) admits transversely homogeneous stationary solutions (i.e. solutions inde- 
pendent of time and of the transverse variables x and y) which obey the classic steady-state 
equation [11] 

E~ = IE,12[1 + (0 -1&12)21. (5) 

The steady-state curve of IEs[ 2 as a function of E~ is single-valued for 0 < X / 3  and 
S-shaped (i.e. exhibits optical bistability) for 0 > ~/3 (Fig. 2(a), (b)). By introducing the 
transformation 

E = Es(l + A) (6) 
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f:ig. 2. Transversa l ly  h o m o g e n e o u s  stationar_v solut ion.  The graph  shows the st : l t ionar3 intensi ty  [l:',i ': a s  u tunct ion 
of the input  intcntdtv for (a) t~ = 1. (b) 0 = 5. The  do t ted  par t s  are uns table  in the '~elf-focusing ca',c t/:= 1 
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equation (1) becomes 

~ A  = _ [1 + i;~(o - 1&]2)IA + iaV2~4 + i;IIF~I2(A + A*  + 4 2 + 21AI ~ + AJAI 2) (7) 
8r  

and displays quadratically nonlinear terms which typically lead to hexagon formation [31]. 
Note that (7) is fully equivalent to (1), i.e. there are no additional approximations 
involved. As well as the quadratic terms responsible for hexagon formation, we can 
recognize in (7) a phase-conjugate term, and cubically nonlinear terms which saturate the 
hexagon amplitude. 

If we set 

0 = I&.] e (s)  

equation (7) becomes formally identical to a model recently proposed by Courtois and 
Grynberg [22] to provide an approximate description of the system of countcrpropagating 
waves in a cavityless Kerr medium. With respect to the steady-state equation (5), condition 
(8) defines the "bleaching point' where the transmitted intensity equals the input intensity, 
i.e. [Es.] 2 = IE;] 2. As a matter of fact, in the case of counterpropagating waves in a Kerr 
medium the field intensity is constant along the sample. For 0 :/: jEs[ 2, (7) can be viewed 
as a generalization of the model [22] to include the possibility of complex values for the 
damping rate of the field, which is of course a characteristic feature of an optical cavity. 

The stability of the stationary solution (5) can be analysed by assuming that A is small 
and by linearizing (7) with respect to A. The linearized equation must be considered of 
course, together with its complex conjugate equation to which it is coupled by the 
phase-conjugate term A* in (7). Thus, the linearized problem reads 

L A 

where the operator  L is given by 

L = ( - [ 1  + irl(O - 2[Esl 2) + ,aV~ i;lj Es] 2 ) 
- [1 - i~](O - 2]Es,] 2) - i ag~  " (1o) 

By introducing thc ansatz that the perturbation A has the form of a plane-wave modulation 

( A , ) o l e ~ t e i ~ " ; ,  (11) 

where Y =  (x, y) and k = (k , ,  k~), one obtains the characteristic equation for )~ which 
governs the stability. It turns out [9] that the stationary state characterized by the value 
I Esl 2 is unstable with respect to the growth of modulations with modulus of the transverse 
wavevcctor k = (k~ + k~,) I'~ such that 

a¢-I(]Es] 2) < ak 2 < al+t(]Es[2), (12) 

with 

a ~ - + ) ( I E ~ F )  - ~ ( 2 1 E ~ k  2 - 0 )  + (LE~I 4 - 1)  ~,'2. ( 1 3 )  

As shown in [30] this instability is caused b y  t h e j o u r - w a v e  mixing process which 
involves three modes k = 0 (pump mode)4 k = ks and k = - k s  (signal modes), where the 
orientation of the transverse wavevector ks  is arbitrary. This feature is similar to the case 
of counterpropagating waves, in which forward four-wave mixing is a significant factor in 
the instability [14, 16, 17]. 
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Lct us consider nosy the unstable donmin in the phinc of the variables (ak, i / :s i : )  l itr 
fixed vahlcs e l  t / and O. Wc note that a change e l  the value of # produces simply ~l 
t rans la t ion  of  this f igure with respect  to ak 2 bv a quan t i ty  .... t IAO.  where  A 0  deno tes  lhc 
variation (71 O: in performing lhc lranslation, one tnust kccp in mind thai lhc physically 
meaningful values of ak 2 arc non-negative. A significant and hclpful corollary is tlmt c~cl-~; 
plalle-w;.tve (k  -- it) instabi l i ty  is just one  n l c m b e r  of  a family of  f in i le-k  instabi l i t ies  all with 
the same th resho ld  l ev i  ~ but c o r r e s p o n d i n g  to d i f ferent  cavi ty tunings.  One  would  expec t ,  
t he re fo re ,  that  for a given tuning the lowest  lh rcsho ld  instabi l i ty  will of ten occur  at finite 
k. i .e. the instabi l i ty  will bc of  pa t t c rn - fo rnf ing  type.  

I .ei  us cxanl inc  first the self- focusing case: Fig. 3 shows thc uns table  doma in  for 11: 1. 
0 - - I  arid l iu  ~1- 1. 0 -  5. The curves display ~l mininlutn (point ( '  in Fig. 3) which 
corresponds to the "critical point" for the onset of  thc instabili lty: ils coordinales in'L" 

levi]-- 1. , ~ .5  = 2 - o. (14)  

where  K< d e p e n d s  on the crit ical value  of  k. No te  that  equa t ion  (14) only has physical  
mean ing  for values  of  0 < 2. F o r  0 = X/3 the poin t  A lies on the ver t ical  axis, and in the 
b is tab le  case 0 > ~,/3 the  uns tab le  d o m a i n  in tersec ts  the ver t ical  axis in the segment  
BD (Fig.  3), which c o r r e s p o n d s  to the  negat ive  s lope  por t ion  of  the s t eady-s t a t e  curve 
(see Fig. 2(b)) .  F o r  ' , /3 < 0 < 2 the ent i re  u p p e r  branch  of  the hys teres is  cycle (Fig.  2(b))  
is uns tab le  as well as a segment  of  the  lower  b ranch ,  whe reas  for 0 > 2 the u p p e r  branch  is 
still uns table  but  the lower  branch  is s table .  

In the se l f -defocus ing  case,  the ins tabi l i ty  exists  only  for 0 > 2, hence  only  in condi t ions  
of  b is tabi l i ty ,  and affects only  the s egmen t  C D  of  the lower  branch (Fig.  4(a)) .  F igure  4(b)  
shows the uns tab le  d o m a i n  in this case:  the cri t ical  po in t  C has coo rd ina t e s  

Because  the u p p e r  branch  is s tab le ,  it is expec ted  that  finite wavevec to r  p e r t u r b a t i o n s  in 

4 

3 

2/ 

A 
1 

0 • 

-4 -2 0 2 4 6 8 10 

Fig. 3. Self-focusing case q - 1. Tile figure shows the domain of the plane (ak2,lE, 2) in which the transversall~ 
homogeneous stationary solution is unstable to the growth of inhomogeneous perturbations for 0 -  1 (the solidi 
curve) and 0 - 5 (the dotted curve). Note that the negative part of the ak ~ axis has no physical meaning and is 

drawn only to show that the dotted curve is simply a translation of the solid curve parallel to the horizontal axis. 
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Fig. 4. (a) Same as Fig. 2(b), but the dotted part is unstable in the self-defocusing case r/= -1.  The section CD 
indicates the lower branch instability region. (b) Same as Fig. 3, but for t/= -1,  0 = 5. 

the instabil ity region o f  the lower branch will s imply cause the system to switch to a 
p lane-wave  so lut ion  on the upper branch. 

The  predict ions of  the l inear stability analysis described in this sect ion have been  
conf irmed numerica l ly ,  for both focusing and defocus ing  media ,  and will be discussed in 
Sect ion 4. 
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3. NONIJNEAR ANALYSIS 

The l inear  s tabi l i ty  analysis  of  the p rev ious  sect ion gives in fo rmat ion  about  xvhcrc the 
h o m o g e n e o u s ,  s t a t iona ry  so lu t ion  of  (1) b e c o m e s  uns table  to small  pe r tu rba t ions .  Once  ~ c  
fire above  the l inear  th resho ld  howeve r  (given bv !E~! -~ = 1), we must  turn to some fornl t)i 
non l inea r  analysis  in o r d e r  to find out  abou t  the b e h a v i o u r  of  anv non-tr ivia l  solut ion ~hich  
may  e m e r g e  f rom the b i furca t ion  [27]. 

In the case of  one  t ransverse  d imens ion  the ncmlinear  analysis ,  p e r f o r m e d  in It)I, p redic ts  
the b i fu rca t ion  of  a m o d u l a t e d  wave:  the b i furca t ion  is supercr i t ica l  for H - 4 t , O 0 .  In the 
2D case,  that  we analyse  in this pape r ,  the non l inea r  analysis  of the b i furca t ion  of  a roll 
pa t t e rn  can be p e r f o r m e d  in a s imilar  way,  but wc do not r epor t  these ca lcula t ions  because  
in 2D,  as we will see,  the roll pa t t e rn  is uns tab le  against  the fo rma t ion  of  hexagons .  In this 
sect ion we descr ibe  two a p p r o a c h e s  used to find the ampl i t udes  of  purc ,  s t a t i ona r \  
hexagona l  pa t t e rns  which exist as s table  so lu t ions  above  the l inear  l h rc sho ld ,  primaril> as ;~ 
compa r i son  with out  numer ica l  results .  

The  first m e t h o d  which we cons ide r  [22J involves a pe r t u rba t i on  expans ion  ~I hoth the: 

ampl i t ude  of  the field and of  # ,=  Esl -~. which wc te rm thc cont ro l  p a r a m e t e r .  A b o v c  the. 
b i furca t ion  point  the amp l i t ude  of  any non- t r iv ia l  so lu t ion  has a funct ional  d c p e n d e n c c  ~m 
the cont ro l  p a r a m e t e r .  In o r d e r  to makc  this d e p e n d e n c e  explici t  both  the a m p l i t u d e  and /, 
are  e x p a n d e d  in powers  of the same smal lness  p a r a m e t e r  s [271 , which is e l im ina t ed  al l i l t  
end  of  the ca lcula t ion .  

To avo id  te rms o f  ()(~~') in ou r  ca lcu la t ion  we choose to analyse equa t ion  (7) which ~u 
rewr i t e  in the f o l l o w i n g  f o r m  

3A _- - ( 1  + i<'J)A + i a V : A  + i t l k (A  ± A* + ,4: + 2 i , t - -  + ,4 A[-) .  f l n t  
St 

where  O =  q ( f t -  t5~! -~) 
Wri t ing  V = [R,  1] I where  R Lind / are the real and iinaginar_x par is  e l  the fiehl ,-t. 

respectively 122i. we then h:,lVe 

% -  ~V ~ ' + ,<eli'<-" ÷ ~~V~" + . . . .  ( 1 - i  

h - -  h ~ ~:h.qlJ ~- ~,_'1,..(2, l- ,ct/x "( t '  -. . . . .  { i , ~ )  

with ~,-~ I. 
We  assume thai  our  lowest  o r d e r  so lu t ion  is of  thc fornl V ~j' - ~LJ'0(.v, v) wllcrc 0 is ~t 

funct ion con ta in ing  the t ransverse  d e p e n d e n c e  of  the field var iable  A .  in this case :i 
hexagona l  pa t te rn .  Thus  we set 

0(.v, y )  = c o s ( K , . r )  + cos < 72 + + cos K ,  + 3' 
2 1] 

Wr i t t en  in this form,  the funct ion 0 is a supe rpos i t ion  of  three  rolls of  equal  ampl i tudes .  
the sum of  whose  phases  is zero .  This  r ep re sen t s  a hexagona l  pa t t e rn  of  spots  consis t ing of  
peaks  in the intensi ty .  If, ins tead ,  we had  a l lowed  the sum of  the phases  of  the th ree  rolls 
to equal  ~ a n o t h e r  hexagona l  so lu t ion  would  be o b t a i n e d  whose spots  are  min ima  of  
in tens i ty  c o r r e s p o n d i n g  to a "honeycomb" s t ruc ture .  On ly  one  of  these two pa t t e rn s  is 
s tab le ,  howeve r  [31 l, and  in the p resen t  case the s table  form is a lways the one  we have 
wri t ten  in equat ion (19).  

W e  subs t i tu te  (17) and (18) into (16) and solve the resul t ing  equa t ion  at each o r d e r  in ~. 
At  O(~) we ob ta in  
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- 1  6 --  aV2 / V(i)  
LV4:~) = 2r/K c -- O + a V  2 - 1  ] 

which, remember ing that V (~) = v(~)O(x, y) ,  has solution 

(1) V {1) = 0d 0,  

0 
where ol is a real number.  

At O(e 2) we have an equation of the form 

LV ~2) = S !2) 

= 0, (20) 

(21) 

(22) 

where 

S (2) = (_30KcR(1):  2qxcR(I )P1)  ) (23) 
_ OKcllI~ ~ _ 20KII~RO)/• 

The r.h.s, contains terms quadratic in V tI) as well as linear terms involving the unknown 
K l~l. There are thus source terms with spatial frequencies k = 0, Kc, X/3Kc, 2Kc and it is 
necessary to separate both S ~2) and V (2) into their different spatial frequencies and solve 
this problem for each frequency component  separately, which is possible because it is linear 
in V (2/. 

For k 2 = nK~,  n = 0, 3, 4 the problem is quite trivial and simply involves the inversion 
• . . 9 9 2 

of the hnear matrix L w~th V 2 replaced by - n K c .  When k- = K c, however,  L is singular 
from the condition imposed at O(e). We must therefore invoke the Fredholm Alternative 
Theorem [22, 27]. This states that the equation 

LV(2)k2 K~ = S(2)k:=K~ (24) 

can only be solved if S{2),.:=h. ~ is orthogonal to the null-space of L*, the adjoint of L. Since 
in this case L is self-adjoint we have that St2)k: ~ must be orthogonal to V 11). Imposing 
this condition allows us to fix the value of K {~) which is contained in  8(2)k2 K~ and then to 
solve for V(2)a.z K~: 

K ( I )  _ - o l  ( 2 5 )  

X/3 '  

(26) V(2)k'=*< = X/3\ 0 ' 

Note that we have, for convenience, imposed the further condition that the higher order 
corrections to V (~) should be orthogonal to V/i) itself [27]• 

The pattern has now been set for calculations at third and higher orders, which are 
simply repetitions of that at second order with even more spatial frequencies• We can stop 
at O(~3), however,  indeed solving only for the resonant term (that with k 2 = K~) in order 
to determine the value of I< Iz), since at third order the most important  features of the 
bifurcation have been captured: 

K(2) = a,2( 2 0 -  10276 + 1802 ) (27) 
27 - , 

If we denote by VH the amplitude of the hexagon mode we then have, up to O(e2): 

vH ,28, 
,I , , / 3  \ ' 
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- a ' a '  ( 2 0 -  102~10+ 18~2) a - -  a ~ . -  + t-2a 2 . . . . . . . . .  . {29} 
\ / 3  27( 1 - ~1~) 2 , 

Equat ion  (29) can be solved for ect and the result substi tuted into equat ion  (28) to give the 
ampli tude of  the hexagons as a function of  h -  h,. When  doing this the following point is 
worth noting. F rom equat ions  (18) and (29) you see that at threshold t is given bv ~ =  0, 
--K{It/IC (2) where K l~l is fixed and I, -I~-~ is a function of  O. If h -(2~ is too small we max,' expect 
that t" (and therefore  the ampli tude of  the hexagons)  is large enough  on the stable upper  
branch to contradict  the premise of  our  calculation,  namely  t" << 1. The most  we can then 
expect is that our  per turbat ion  calculation will show the correct  qualitative behaviour  for 
the hexagon ampli tude (see Fig. 7 and Section 4). With these reserwnions,  however ,  we 
have an explicit formula  for the hexagon ampli tude as a function of  the control  parameters  
w, ('~, and for ei ther  sign q of  nonlinearity.  

The second approach  which has been used [22, 34] is the s tandard one of  conver t ing a 
partial differential equat ion into a system of ordinary differential equat ions  by projecting 
onto  an appropr ia te  basis set. In the present  case Fourier  modes  are the natural basis 
functions to use. Since a partial differential equat ion  will genera te  an infinite number  of  
ordinary differential equat ions  by this p rocedure  some form of t runcat ion is necessary 
[22, 34]. Thus  we write the field A as 

A = ,~ A,,(r)(l),, (3(I) 
11=[) 

where the elL, are the Four ier  modes ,  and keep only d0, and ~ ,  namely the plane-w, ave 
term and the hexagon made itself. A ,  is the modificat ion to the h o m o g e n e o u s  solution due 
to the hexagonal  pat tern and is generally complex.  

We separate A,, and A, into real and imaginary parts 

A .  = a . ( r )  + ia,',(r) (31) 

A I = a l ( r  ) + ia'l(r) (321 

and substitute into equat ion (16) to obtain four  coupled nonl inear  ordinary differential 
equat ions:  

, 1 UI,I~ l ~ 
"3 

+ - - - - - a l a ~  + a . a l a l  + a,'." + a,;al + 2 ~ ,  2 '~/3 

( , 2v/3a.a, 1 , ~ ~)1 = ~la'l - al  - ~1 ~c 2a .a l  + 2a.a l  + ' + a , a l  
V 3  

+ 2a[,a,la~ + a;a~ + a;a~ + ~ a . a l a l  
V3 

. . . . .  3 , , 2  > 4 )  + 3a . -a l  + v ~ a o a l  + al ~ (34) 

&'~ = - a , ,  - 0a.  + rlK 2a .  + 3a~ + a + a.-  

+ !a'l'- + a i ]  + 3aoa{ + l :, 
2 2 2 \ / 3  aj 

+ allai'~ 2 + lallai2 + alal'lal + 1 ] ' , a ~ a ' ~ :  I 3 5 ~  
2 2 ',/3 ! 
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/ 

= -r la l  - al + K(2al + 6aoal + ~/3a~ + 2al'~al 

+ 1~a'12 + 3aoal + ~/3aoa~ + 5 3 
~/3 4 al 

+ 2aoaoal + l~aoai: +alao + , alaoal + ala{ 2 . (36) 
X/3 V3 

Finding the fixed points of this system of equations gives the steady-state amplitude, I AjI, 
of the hexagon pattern. These fixed points cannot be obtained analytically, with the 
exception of the trival one corresponding to A = 0, and we have therefore used the 
software package KAOS by Guckenheimer and Kim to integrate equations (33) to 
(36). The solutions obtained can then be used to plot [A,I as a function of the control 
parameter K. 

A comparison of the results produced by both of these methods with the results of 
numerical integration of the equation is presented in the next section. 

4. NUMERICAL SIMULATIONS 

We have developed two numerical codes to integrate equations (1) and (16). Both codes 
integrate the model equation on a square grid with periodic boundary conditions. The first 
code employs a finite-difference Hopscotch algorithm [32] which splits the numerical grid 
into even and odd points and alternates explicit and implicit steps on each of the two sets 
of points. The second code integrates the equation using a split-step method [33]; the 
operator  describing the evolution of the field is split into one part consisting of the 
transverse Laplacian and another part containing all other terms. The Laplacian part is 
solved using a Fast Fourier Transform routine while a fourth order Runge-Kut t a  method is 
employed to solve the remaining part of the equation. The Hopscotch program ran on a 
Silicon Graphics 4D/210GTX using grids of 128 x 128 points while the split-step program 
was run on a VAX with grids of 64 x 64 points. Most of the simulations were carried out 
using the Hopscotch code while, because of the completely different character of the 
numerical method involved, the split-step code acted as a check. Unless otherwise stated all 
of the following refers specifically to the Hopscotch program to integrate equation (16). 

The length of the computational box was generally chosen to be eight times the critical 
wavelength )~c, where ~c =27r/Kc with Kc given by equations (14) or (15). Examples of 
initial conditions used include a pure roll (modulation of the form cos (Kcx ) ) ,  a Gaussian 
and a roll on top of a Gaussian--i .e.  a field of the form 

A =  f o c o s ( K c x ) e x p [  (x-~+Y2)]~ (37) 
F0 

with f0 a real number - -bo th  with or without noise added, and simply noise added to the 
A = 0 solution. The noise used was white noise which was filtered in Fourier space to 
remove high spatial frequencies. This was done to avoid any numerical problems which 
could occur as a result of large gradients in the initial field. 

We first of all discuss the case of a focusing medium (r /=  1 in equation (1)). Carrying 
out simulations above the linear threshold and using a Gaussian or a roll on top of a 
Gaussian as the initial condition, without any noise added, it was found that the Gaussian 
broke up into a series of concentric rings which further broke up in a collection of spots. 
These spots formed a pattern with roughly fourfold symmetry which persisted until the end 
of the simulations, a duration of several thousand time-steps. Adding to the initial 
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cond i t ion  small  a m p l i t u d e  noise (for  examp le  an a m p l i t u d e  of  10 ~) a l lowed the spots  lo 
escape  the pa t t e rn  of  four fo ld  s y m m e t r y  i m p o s e d  by the numer ica l  grid and form a 
hexagona l  pa t t e rn  ins tead ,  as in Fig. 5 for  the case of  7% above  th resho ld  and ~3 = It. 

A b o v e  th resho ld  an initial cond i t ion  consis t ing of  a pure  roll went  to a s t a t ionary  roll 
pa t tern•  A d d i n g  some small  amp l i t ude  noise ,  however ,  caused the rolls to dcs tabi l izc  
leading  to the f o r m a t i o n  of  a hexagona l  pa t t e rn  (Fig.  6). A n y  o t h e r  initial condi t ions  which 
were  t r ied  gave only  hexagona l  pa t te rns .  It is c lear  f rom these results  that ,  for this system 
at least ,  s tudies  in one  t r ansverse  d imens ion  are  i n a d e q u a t e  to descr ibe  the behav iou r  
which occurs  when the second  t r ansve r se  d imens ion  is inc luded.  

Fo r  the case where  a = 0 Fig. 7 c o m p a r e s  the hexagon  a m p l i t u d e  as a funct ion of  thc 
cont ro l  p a r a m e t e r  I, p r ed i c t ed  by, each of  the analy t ica l  t echniques  in Sect ion 3 with the 
resul ts  o b t a i n e d  by numer ica l  in t eg ra t ion  of  equa t ion  (16). The  numer ica l  poin ts  were 
o b t a i n e d  by s ta r t ing  at 6% above  the l inear  th resho ld ,  wai t ing for a s t a t iona ry  hexagona l  
pa t t e rn  to be r eached ,  and  then vary ing  the value of  ~," to t race out  the s table  hexagon 
so lu t ion  branch .  

F igure  7 shows m o d e r a t e  c o r r e s p o n d e n c e  be tween  the numer ics  and the pe r t u rba t i on  
ca lcula t ion .  The  reason  for this was d iscussed in Sect ion 3, and is due  to the fact that  the 
value of  ~,,~et in equa t ion  (18) may  b e c o m e  too  small .  F igure  8, which is a plot  of  the 
a m p l i t u d e  of  the hexagons  as a funct ion of  a for  ~ , -  I.(17, d e m o n s t r a t e s  this. We sec that 
the p e r t u r b a t i o n  ca lcula t ion  comes  closest  to the numer ica l  resul t  when a ~ -31,, '33. 

The  amp l i t udes  p r e d i c t e d  by the moda l  expans ion  ca lcu la t ion  do not  agree  too  well 
quan t i t a t ive ly  with the  numer ica l  resul ts  e i ther ,  a l though  the qua l i t a t ive  b e h a v i o u r  is 
cor rec t :  in pa r t i cu l a r  the reg ime of  coex is tence  of  the s table  hexagon  and flat so lu t ions  in 
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Fig. 5. Contour plot of a stationary hexagon pattern (real part of the field A in tile transverse plane, obtamcd at 
7% above the linear instability threshold (~,-= 1.07). Mean field, t / = l. t~ = (), a = 1 and plane-wave pumping. 
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Fig. 7. C o m p a r i s o n  of  the ampl i tude  of  the hexagon  pattern,  as given by perturbat ion  and modal  expans ion  
calculat ions and by numerical  integrat ion,  for the case 6 = 0 ,  a = 1, ~ / =  1. 

Fig. 7, as given by the modal expansion calculation, extends about 3% below the linear 
threshold, which agrees quite well with the numerics. 

Defected patterns can be produced by starting the simulations from noise further above 
the linear threshold, as in Fig. 9 which shows a penta-hepta  defect obtained at 27% above 
threshold. Such defects persist throughout the length of the simulation, which is typically 
several thousand cavity lifetimes. Decreasing the control parameter ~c causes them to 
anneal to produce a hexagonal pattern. 

All simulations described so far were obtained in the case that the steady-state equation 
admits only one solution (Fig. 2(a)). When we investigated the case of S-shaped steady- 
state curve (corresponding to 0 > X/3 in equations (1) and (5)) it was found that in 
simulations started on the negative-slope portion of the steady-state curve (Fig. 2(b)) the 
field appears to switch to the upper stable branch, with the formation of the usual spots in 
the transverse plane. Recall that for a self-focusing medium part of the negative-slope 
branch of the bistability curve and the whole of the upper branch (Fig. 2(b)) lie within the 
region unstable to finite wavevector perturbations. 

The search for hexagons on the upper branch is complicated by the fact that, as shown in 
Section 2, above the linear threshold a continuous band of wavevectors is unstable and the 
upper branch is far enough above threshold for this to be significant. The problem this 
presents for numerical simulations is that the size of the numerical grid appears to play a 
role in the selection of modes: since not all numerical box sizes will accommodate a 
hexagonal pattern, there appears to be a relationship between the computational box 
length and the unstable wavevector which, for a given wavevector, allows some box lengths 
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and excludes others. The result is that on the order of several tens of percent above 
threshold it is necessary to try different sizes of computational grid to find the one which 
produces the optimum hexagonal pattern. 

Thc existcnce and stability of hcxagonal solutions wilh a waveveclor of nlagnitudc K< oil 
ihc uppcr branch wcrc also chcckcd by using a hexagonal pattern as the initial condition 
and allowing lhe proglam to convcrgc to :l st:.lblc amplitude. This avoids Illc lengthy 
box-fitt ing procedure described above by cl:fcetivch, forcing the solution to have ~ 
particular t r a n s v e r s e  w a v e v c c l o r .  

With ,v on the order of 150% above threshoh_l and starting from noise, it was found that. 
instead of the usual stationary patterns, thc field cxhibited complicated dynamical hc- 
haviour with "spots" appcaring, disappearing, moving about and dcfornling in an apparently 
disordcrcd way. an example of which is shown in Fig. I(). This far above threshold 
hexagonal pattern was unstablc, breaking Lip into the kind of turbulent patterns describccl 
above. This phcilomenori occurred for both rnonostability ( 0  \ 3 )  and bislabilil~, 
{{# : , \ '3 ) .  

Turning to the case of a defocusing medium (one with q - - 1 )  we find that from the 
linear stability analysis of Section 2 such a system is only unstable in the bistable region: 
specifically for # > 2 (or 0 < - 1 ) .  In that case the instability region consists of the unstable 
middle branch of the bistable curve and a small part of the stable lower branch: the stable 
upper branches entirely outside the instability region. Figure 4(a) shows the bistable curve 
for the case O = 5 with the instability region indicated. 
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Fig. 9. Penta hepta defect in the pattern obtained at 27% above threshold,  I," 1.07, otherwise as Fig. 5. The two 
spots just right of centre have. respectively, five and seven neighbours .  

Simulations carried out for a defocusing medium showed that starting in the finite 
wavevector instability region, for all the initial conditions tried, the field always switched to 
the upper branch homogeneous steady-state before any transverse pattern could form. 
Outside the finite wavevector instability region the behaviour of the field was as expected 
from plane-wave theory. Thus, no spatial patterns were observable, as expected. 

5. LOCALIZED STRUCTURES 

Up to this point, we examined hexagonal patterns, either of stationary or of chaotic 
character. On the other hand, under appropriate parametric conditions, one can meet 2D 
localized structures instead of patterns. This, was possibly first demonstrated in the case of 
nonlinear chemical reactions [35] and in hydrodynamics [36]. Recently, the existence of this 
phenomenon was numerically proved in the case of a 2D optical system, namely a model 
which describes nascent optical bistability [37, 38]. In this paper, we show that a similar 
scenario occurs in the paradigmatic optical bistability model given by equation (1). The 
discussion of this subject requires a digression to the 1D case. The numerical simulations in 
both the 1D case and in the 2D case have been performed using periodic boundary 
conditions. A first algorithm was based on the implicit method [39]. In the case of 1D 
simulations up to 200 spatial grid points were used, while 2D calculations were performed 
using a grid of 80 x 80 points. Simulations were mainly performed on a Silicon Graphics 
IRIS/Indigo R3000 workstation. 
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5 .1 .  1D s t r u c t u r e s  

Let us consider  equa t ion  (1) in the case of one t ransverse d imens ion  x.  i.e. with V ~ 
replaced by D2/Dx '2 The results of the l inear  stability analysis of the t ransversely 
homogeneous  s ta t ionary solut ion is identical  to that of the 2D case and the Tur ing  
instabil i ty leads in 1D to the b i furca t ion  of a spatially modu la t ed  solut ion which may be 
stable,  whereas  the cor responding  roll pa t te rn  in 2D is always unstable  against  the onset  of 
a hexagonal  pa t te rn ,  as we saw in Sections 3 and 4. More precisely, the analysis of [9] has 
shown that  the bifurcat ion is supercri t ical ,  and hence the bi furcated solut ion is stable,  for 
0 < 41/30, whereas  it is subcritical when 

O > 41/30. (3S) 

Let us now focus on the subcritical case in which, even if the modu la t ed  solut ion which 
bifurcates at the instabil i ty threshold is uns table ,  there exists a stable brach of modula ted  
solut ions which is d i sconnec ted  from the h o m o g e n e o u s  s ta t ionary solut ion and coexists with 
it in a sui table  range of input  field ampl i tude  values El .  Figure l l (a)  shows an example  of 
this s i tuat ion for 0 = 1.7. The stable (uns table)  part  of the s teady-state  curve of the 
homogeneous  s ta t ionary  solut ion is shown by a full (b roken)  line. The dots represent  the 
m a x i m u m  and  m i n i m u m  values of the real part  of the field ampl i tude  in the stable 
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modulated pattern.  The arrows indicate the interval of EI  where the modulated solution 
coexists with a stable homogeneous  state. The profile of the modulated state is shown in 
Fig. l l ( d )  for El  = 1.2. The localized structures can be found in the interval of Es where 
the homogeneous  and the modulated states coexist. An example is given in Fig. l l ( b )  for 
E/  = 1.2; it shows that the localized structures 'connect '  the homogeneous  and the 
modulated solution, in the sense that they are similar to one or the other solution in 
different spatial domains. In fact the height of the peak is exactly equal to the maximum 
value of the modulated state, while far from the peak  the value of the field coincides with 
that of the homogeneous  stationary state for the same value of Es. Figure l l (c )  shows the 
same state for a larger computat ional  box, thus proving that this solution is independent of 
its size and from boundary effects. We note that, because the system has translational 
symmetry,  each stationary solution (both of modulated and of localized nature) cor- 
responds, in fact, to an infinity of stationary solutions obtained one from another  by 
arbitrary translations along the x-axis. In addition, there are other localized stationary 
states which may display two, three or more isolated peaks, all with the same height equal 
to the maximum of the modulated solution while the value of the field far from one peak is 
equal to that of the homogeneous  state. 

Thus, there is a very large number  of coexisting states: the homogeneous  and the 
modulated states, and the localized solutions which connect them. The system approaches 
one or another  according to the initial condition; for example,  an initial spatial profile 
which presents a point-like peak of height comparable to the maxima of the modulated 
solution, evolves toward a localized stationary state centered at the position of the initial 
peak. 

Figure 12(a) shows the same phenomena  for a larger value of 0(0 = 3), so that the 
steady-state curve of the homogeneous  stationary solution is S-shaped. In this case the 
coexistence region is much more extended. Figures 12(b) and (c) exhibit a localized 
structure solution for El  = 1.6 and E1 = 2.0, respectively. It can be noted that the peak 
height grows, with E1 following the maximum value of the modulated solution, shown in 
Fig. 12(d) for the same value of Es as in Fig. 12(b). 

Thcsc results can be linkcd to early work on spatial patterns in dispersivc OB by 
Moloney et al. [40], in a model based on a mapping for longitudinal propagation,  
and mainly using Gaussian beam input. Moloncy et al. [401 showed that the mapping 
tends towards the nonlinear Schr6dingcr equation in the limit of high finesse, as does 
equation (1). The localized structure can thus be interpreted as a soliton-likc solitary wave. 
McDonald and Firth [41] later demonstrated that isolated 'solitons' could bc created by 
address pulscs, and were quasi-stable with plane-wave pumping but tended to coalcscc 
when created on a Gaussian beam. 

It must be noted that the modulated solution is stationary only up to a certain value of 
El (in the case of Figs. l l ( a )  and 12(a) this value is 2.4 and 2.5,  respectively). Beyond this 
value the field profile enters a dynamical regime. More precisely, the system displays at 
first a periodic regime where the peaks oscillate more or less regularly; Fig. 13 shows these 
oscillations for 0 = 3, E~ = 4. The transverse coordinate x lies on the horizontal axis and 
time on the vertical axis. The value of Re (E)  is measured by the grey scale; large (small) 
values correspond to lighter (darker) hues. The figure shows an antiphase oscillation of the 
adjacent peaks. The linear stability analysis of the homogeneous  stationary solution does 
not predict any oscillatory instability [9]; these oscillations arise from a secondary 
bifurcation which affects the modulated solution. 

If the input field is further increased, the system enters a complex spa t io - t empora l  
regime. The actual values of Et  corresponding to the above-ment ioned dynamical 
instability thresholds is still not very well determined,  because such thresholds proved to be 
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d e p e n d e n t  on the t ransverse size of the system; this means  that using a spatial computa-  
t ional lattice of, e.g. 100 points ,  the s imula t ions  will display the onset  of the temporal  
oscil lat ions for a value of E~ smaller  than one could find when using a lattice of, e.g. 2011 
points.  This is a mark of the relevance of b o u n d a r y  condi t ions  in such p h e n o m e n a .  

5.2. 2 D  s i m u l a t i o n . s  

In the case of two t ransverse  d imens ions ,  the localized structures are met in the same 
domain  of E z where,  in the 1D case the h o m o g e n e o u s  s ta t ionary solut ion coexists with the 
modu la t ed  solut ion as a consequence  of a subcrit ical  bi furcat ion.  In 2D, however ,  tile 
homogeneous  state coexists with a hexagonal  pa t te rn ,  because  the roll pa t te rn  which 
cor responds  to the 1D modu la t ed  solut ion is unstable .  

Figure 14 displays some structures  ob ta ined  for 0 = 1.7 and  t+,l = 1.2: thc quant i ty  shown 
is again R e ( E )  in the t ransverse  plane.  In par t icular  Fig. 14(a) exhibits the hexagonal  
pa t te rn ,  where some local defects can be identif ied.  Figure 14(b) - (d)  show 2D localized 
s tructures  with one ,  two and three dots,  respectively: here the dots of ma x i mum Re (E} are 
such that their  value is the same as in the peaks of the hexagons in Fig. 14(a), while in thc 
rest of the t ransverse plane,  R e ( E )  has the same value as in the homoge ne ous  s ta t ionary 
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Fig. 13. Regular oscillations in the 1D modulated solution for 0 = 3, E~ = 4. The horizontal axis corresponds to 
the spatial variable x, the vertical axis corresponds to the time variable. 

solution. Figure 14(e) shows a single hexagon with seven dots; finally in Fig. 14(f) the 
homogeneous state is present in the upper and lower portion of the transverse plane, while 
the central part displays a hexagonal structure identical to that of Fig. 14(a) (some defects 
at the boundary are visible). All the results we showed for the localized structures hold in 
the self-focusing case r /= 1 both in 1D and 2D. In the case of self-defocusing (~/= - 1 )  
research is in progress, but has not evidenced localized states in 2D. 

The existence of the localized structures seems very interesting from the optical 
information processing viewpoint. The intensity peaks in these states can work as pixels, 
and the possibility of having a large number of them, and of locating them at arbitrary 
positions (and possibly of shifting them) is interesting. Of course, it is crucial to assess (1) 
the possibility of controlling the pixels, in the sense of writing and erasing arbitrarily the 
localized dots (e.g. using appropriately spatially modulated input beams), and (2) the 
limitation in density and positioning of the dots. These problems have been addressed in 
the 1D 'mapping' case by the Strathclyde group [41, 42]. Their  adaptation to the mean-field 
model and to 2D will be the subject of future work. 

6. G A U S S I A N  P U M P  

The analysis and simulations of Sections 3 and 4 treat the case where the external pump 
field, parameterized by E1 in equation (1), is a plane-wave. This enables us to obtain 
quantitative analytical predictions which we can compare with the results of simulations. In 
an experiment,  however, the pump will have a variation, probably Gaussian in shape, in 
the plane transverse to the direction of propagation. This section, then, attempts to address 
the more realistic case where the pump field has a Gaussian transverse profile. 



1 ~  I , \ . . I .  ,%~ l<<~<,c,l~ ~'1 ~d. 

" +l  • ( a )  l l c x a ~ . t m a l  p a t t e r n :  (I+). (,.'). (d'J t m u .  t'+',~+ a n d  thtu~_' d ~ t  Fits. 14. Pattcrn~ and It)cal i /ud '+;lltlCltlrc~; ill -~ ) 
],.~c:dizcd s,.~lutions, ruspccti'.'cl~,': (c) sinElc hcxagc, n: ( f)  sHipe t+l t'n_'x;ig~ms. 
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An examination of the derivation of the mean-field model [9] shows that we are free to 
regard EI in equation (1) as a function of the transverse coordinates so long as the spatial 
extent of this function is larger than the scale of the pattern. This function should represent 
the transverse variation of the pump field at the entrance to the nonlinear medium. 

With this in mind, equation (1) can now be used with the constant Et  replaced by a 
function of the transverse coordinates of the of form El exp(-r2/co 2) where r 2 =  x 2 +  y2 
and co o is the waist of the pump beam, which acts as a control parameter  in addition to the 
pump amplitude El .  

With a Gaussian source term in equation (1) we can no longer perform a linear stability 
analysis, since we are unable to determine analytically the zero-order solution around 
which to do the analysis. It is possible to predict the kind of solution which may emerge 
from any symmetry-breaking bifurcation, however, from considerations of the symmetry of 
the full problem (equation plus boundary conditions), as has been demonstrated recently 
for the case of a Kerr  slice with single feedback mirror [43]. With Gaussian pump beam the 
symmetry of the problem corresponds to the O2 group, rather than to the Euclidean group 
Ez of the plane-wave pump case. This means that the constraint of bifurcation to patterns 
with discrete translational symmetries is no longer applicable, i.e. we are not restricted to 
patterns which will tile the plane. We may then expect solutions with polygonal patterns of 
spots corresponding to the subgroups Dn of 02, rather than the hexagons of the 
plane-wave case. 

We have integrated equation (1) with 
Hopscotch code used for the plane-wave 
of 128 × 128 points was generally used, 

a Gaussian pump using a modified version of the 
simulations described in Section 4. A square grid 
with the integration now being carried out on a 

circular domain within the square grid. We discuss first of all the case of a self-focusing 
medium and concentrate on results obtained for 0 = 0. We find that the lowest order 
solution depends only on the radial coordinate r and thus shows the full 02 symmetry. By 
altering the control parameters coo and E t we observe bifurcations to steady-state patterns 
with dihedral symmetry Dn with n -- 2, 3, 5, 6, the patterns with larger n generally being 
obtained for larger pump waists (see Figs 15-19). 

In Figs 5, 6, 9 and 10 we displayed only the near-field pattern, i.e. the spatial 
configuration of the field E in the cavity or in the immediate neighbourhood of the cavity. 
In Figs 15(b)-20(b) we also show the far-field configuration, which corresponds to the 
Fourier transform of the near-field. As done, for example, in the experiments of [24], we 
remove the central zero-frequency spot. As a comparison with the small aspect ratio 
simulations used to produce Figs 15-19, Fig. 20 shows the pattern obtained from a 
simulation performed with a relatively large value of pump waist (coo = 21.972) on a 
512 x 512 point grid. The field displays hexagonal structures reminiscent of the plane-wave 
pump case. The threshold value of the pump intensity necessary for an instability of the 
basic state varies smoothly with the size of the pump waist coo, starting off close to the 
plane-wave threshold for large pump waists and increasing as the width of the pump is 
decreased. In principle, approximations to threshold curves in the (co~, E/)-plane for each 
pattern are obtainable numerically. In regions where two such curves seem to approach 
each other metastability of patterns can sometimes be seen: one pattern forms from noise 
and persists for times of the order  of 100 or 200 cavity lifetimes, after which the other 
pattern forms and appears to be stable; that is, it lasts until the end of the simulation, 
which is usually about 1600 cavity lifetimes long. Bistability between patterns can also be 
seen. By starting from a stationary pattern and slowly increasing the pump waist it is 
possible to have this pattern stable in a region of the parameter  space where a different 
pattern forms from noise. Secondary bifurcations from the triangular and 'rhomboidal '  
patterns obtainable at small values of the pump waist can be seen when the pump 
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amplitude is increased sufficiently: the stationary patterns begin to rotate, the only type ol 
secondary bifurcation expected from a solution with symmetry D,, where n is prime [43]. 

With D6 (hexagonal) patterns we have also observed the kind of behaviour reported in 
]43[. We have seen secondary bifurcations to solutions with symmetry D~ followed by 
irregular itinerancy among patterns with imperfect D3, D~ and D6 symmetry.  Simulations 
for values of 0 4= 0 have shown the same qualitative results as in the 0 = l) case, with the 
length scale of the pattern generally increasing with O, as predicted analytically and 
observed numerically in the plane-wave case. For the case of a defocusing medium we hax.c 
been unable to observe any symmetry-breaking bifurcations for any' of the parametcr  
values tried. There is, therefore,  agreement  with the plane-wave case where we also see no 
stationary transverse patterns. 

7. CONCLUSIONS 

In this paper  we have given a description of pattern formation in a high-finesse Kerr 
cavity. This, the dispersive limit of the standard mean-field model of optical bistability, 
ought to be amenable to experimental  investigation. 

We have found pattern formation only for a self-focusing medium, which conforms to 
the intuitive picture of nonlinearity being able to compensate  diffraction only on the self- 
focusing side. For a plane-wave (i.e. broad) pump,  we find hexagon formation in the 
simulations, with amplitudes in reasonable conformity with the results of two fornls of 
nonlinear analysis of the model.  Both analyses and simulations point to the existence of a 
region of coexistence of stable hexagons and stable plane-wave solut ions-- i .e ,  the bifurca- 
tion is transcritical. The general behaviour is similar to that observed in other spheres, e.g. 
in fluid convection [1]. The intrinsically two-dimensional nature of the hexagonal struc- 
tures, as well as the coexistence phenomenon,  demonstrates  that one-dimensional treat- 
ments have a validity restricted to situations where the second transverse dimension is 
physically suppressed. 

Simulations well above threshold indicate a progression from stable regular patterns. 
through static defected patterns,  to an apparently turbulent motion of a <gas" of bright 
spots. 

Under  the conditions such that the 1D model predicts the subcritical bifurcation of a 
modulated pattern,  one meets both in 1D and 2D interesting localized structures which 
connect the homogeneous  state with the modulated solution in the interval of input field 
values where the two states coexist. The scenario we find here is similar to that uncovered 
in the case of nonlinear chemical reactions [35] and of hydrodynamics [361. The flexibilitx 
of these localized states, in terms of number  and position of the iritensity peaks, make 
these results interesting also from the viewpoint of possible applications io optical 
information processing. 

The underlying optical bistability complicates the behaviour,  particularly where thc 
threshold intracavity intensity lies on or near the unstable branch of the characteristic. In 
particular, it frustrates the pattern formation for a self-defocusing medium. It should be 
noted, however,  that for a self-focusing medium pattern formation occurs also in parts of 
the monostable  regime. 

With a view to experiment,  simulations have been undertaken with a gaussian pump 
beam. The general behaviour is similar to that of the plane-wave pump, but with 
differences associated with the different symmetry of the two problems. An extension of 
the present t reatment ,  again with a view to experiment ,  would include the possibility of 
curved mirrors,  which would make a cavity mode description possible. Alternatively. one 
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can relax the dispersive limit, and consider a two-level medium, which has an absorptive as 
well as dispersive nonlinearity [28]: work on this problem will be reported elsewhere. 

Finally, it is worth making a general observation on the physical origin of these 
instabilities. It was noted in Section 2 that the transverse wavevector and the cavity tuning 
parameter appear only in combination in the stability analysis. The form of this combina- 
tion strongly suggests a physical interpretation, namely that the patterns arise because 
off-axis waves can compensate the mistuning of the cavity and attain cavity resonance. This 
suggests a rather general mechanism, and indeed such 'tilted-wave' resonances have been 
proposed in lasers [44] and in optical parametric oscillators [45], as well as the present 
passive cavity configuration. 
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