Chaos, Solitons & Fractals Vol. 4, Nos 8/9. pp. 1323-1354, 1994

Copyright © 1994 Elsevier Science Ltd

Pergamon Printed in Great Britain. All rights reserved
0960-0779/94$7.00 + .0

0960-0779(94)E0091-3

Pattern Formation in a Passive Kerr Cavity

A. J. SCROGGIE, W. J. FIRTH and G. S. McDONALD*

Department of Physics and Applied Physics, John Anderson Building, Glasgow G4 ONG, UK

and

M. TLIDI and R. LEFEVER

Service de Chimie-Physique., Université Libre Bruxelles, CP 231, Campus Plaine ULB, 1050 Bruxelles, Belgium

and

L. A. LUGIATO

Dipartimento di Fisica, Universitd di Milano, Via Celoria 16, Milano, Italy

Abstract — Analytic and numerical investigations of a cavity containing a Kerr medium are reported.
The mean field equation with plane-wave excitation and diffraction is assumed. Stable hexagons are
dominant close to threshold for a self-focusing medium. Bistable switching frustrates pattern
formation for a self-defocusing medium. Under appropriate parametric conditions that we identify,
there is coexistence of a homogeneous stationary solution, of a hexagonal pattern solution and of a
large (in principle infinite) number of localized structure solutions which connect the homogeneous
and hexagonal state. Further above threshold, the hexagons show defects, and then break up with
apparent turbulence. For Gaussian beam excitation, the different symmetry leads to polygon
formation for narrow beams, but quasihexagonal structures appear for broader beams.

1. INTRODUCTION

The phenomena of spontaneous pattern formation and transformation are of general
interest for all sciences [1, 2]. Of conceptually fundamental importance are the processes by
which a spatial pattern arises from a homogeneous state, as a consequence of the combined
action of a nonlinearity and of a cross-talk mechanism among the different spatial points,
as for example diffusion. This mechanism was first elucidated in a pioneering work of
Turing [3], whence it is customary to call Turing instabilities those instabilities which lead
to the onset of a stationary structure from a spatially uniform state.

The last decade has witnessed an increasing interest in the phenomena which arise in the
structure of the electromagnetic field in the planes orthogonal to the direction of
propagation, when the field travels through a nonlinear medium. These activities have
created a new discipline which is commonly designated transverse nonlinear optics [4-6]. In
the case of optical systems, diffraction of radiation provides the cross-talk mechanism
necessary for spontaneous structure formation.
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Passive systems without population inversion were the first to be systematically investi-
gated from the viewpoint of transverse pattern dynamics. Moloney er al. [7] considered a
ring cavity containing a saturable refractive medium, and showed the formation of
soliton-like structures on top of the Gaussian profile of the ficld intensity. In the case of
two transverse dimensions. the evolution exhibits the onset of filaments in a ring pattern:
the filaments show a slow chaotic dance and then. in the course of a very long time
evolution, give rise to the formation of patterns which cxhibit a progressive loss of
symmetry [§].

Two of us formulated a simple model [9] which demonstrates in a paradigmatic way the
existence of a Turing instability in a nonlinear optical system, in a way similar to what is
shown by the so called Brusselator [1, 10] in the case of nonlinear chemical reactions. The
model is essentially a generalization of the mean-field model for dispersive optical
bistability [11] to include diffraction.

Pattern formation in counterpropagating waves in a cavityless Kerr or saturable passive
dispersive medium was the subject of intensive investigations in recent vears [12-24]. The
most prominent phenomenon which emerges in this case is the formation of regular
hexagonal patterns. with properties similar to those of hexagonal cellula in the Rayleigh—
Bernard instability [25]. These structures have been experimentally observed by Grynberg
and collaborators in Na [12] and in Rb [24] and theoretically predicted in refs [13. 17}.

The purpose of this paper is to analyse and simulate the model [9] in two transverse
dimensions. The advantage of this equation with respect. for cxample. to the case of
counterpropagating waves, is that it involves only two spatial coordinates. and theretore
requires much less numerical power. The linear stability analysis of the homogencous
stationary solution was already done in [9]. Here we provide both a detailed bifurcation
analysis of the stationary patterns which may be produced by the instability. and an
extensive numerical investigation of the stationary and dynamical structures both close to
and well beyond the instability threshold. A comparison of analytical and numerical results
is also provided. A preliminary account of some of these results was given in [26].

In Section 2 we review the model and the lincar stability analysis of the transversally
homogencous stationary solution. Section 3 illustrates the nonlinear bifurcation analysis.
the results of which are compared to numerical simulations in the next section. Section 4,
in turn. describes hexagonal patterns, of both stationary and chaotic nature. In Scction 3
we illustrate the localized structures and the conditions under which one can find them.

All the results in Sections 2-5 are obtained assuming a plane-wave configuration for the
input field. In Section 6 we tocus, instead, on the case of a Gaussian beam excitation and
show that one can recover structures closely related to the hexagonal patterns of the
plane-wave case for broad input beams, whereas in the casc of narrow beams one meets
polygonal structures. The final Section 7 discusses the main results of this paper.

2. THE MODEL
We consider a unidirectional ring (Fig. 1(a)) or Fabry—Perot (Fig. 1(b)) cavity with plane
mirrors. containing a Kerr medium and driven by a coherent plane-wave field. Assuming
conditions such that only one longitudinal mode of the cavity is relevant, the dynamics of
the system can be described by the partial differential equation [9]

77777 = —F + E, + in(|E]’ = O)E + iaV" £ (1

where [ is the normalized slowly-varying envelope of the clectric field. £, s the



Patterns in a passive Kerr cavity 1325

E E

I out

out

(a) (b)

Fig. 1. (a) Ring cavity; (b) Fabry—Perot cavity.

normalized input field (assumed real and positive for definiteness) and 6 is the detuning
parameter. The normalized time 7 is defined as

T=t/ty, (2)

where ¢, is the mean lifetime of photons in the cavity given by L/cT for a unidirectional
ring cavity and by 2L/cT for a Fabry-Perot cavity, with L being the cavity length, T the
transmission coefficient of the cavity mirrors and ¢ the light velocity in vacuum. The
parameter n equals +1 (—1) for self-focusing (self-defocusing) Kerr media. The transverse
Laplacian, which describes diffraction in the paraxial approximation, is given by
2 2
9 + S -, x'=x/b, y' =y/b, (3)
3x? 3y

where b is an arbitrary length, introduced to make dimensionless the parameter a, which is
defined as

V) =

Citph .
4nb?’

A denotes the wavelength. By appropriate choice of b, a can always be set to unity.

Equation (1) holds also in the case of cavity containing a two-level medium under
conditions of large atomic detuning, as demonstrated in [28].

Both cases of unidirectional ring cavity and Fabry-Perot, under conditions of single-
longitudinal-mode operation, lead to the same equation (1), and the difference remains
hidden in the normalization constant which links the variable E to the field envelope. An
alternative derivation of (1) from the full counterpropagation equations with mirror
boundary conditions for a Fabry—Perot cavity, based on a pole analysis, is given in [29].

In [9] the model (1) was analysed in the case of one transverse dimension which can be
forced, for example, by introducing a waveguide configuration. In this paper, instead, we
will consider the full two-dimensional (2D) model.

Equation (1) admits transversely homogeneous stationary solutions (i.e. solutions inde-
pendent of time and of the transverse variables x and y) which obey the classic steady-state
equation [11]

a =

(4)

Ej = |EF[1+ (8 = [EFY]. (5)
The steady-state curve of |E¢* as a function of E7 is single-valued for 6 < V3 and
S-shaped (i.e. exhibits optical bistability) for 8 > \/3 (Fig. 2(a), (b)). By introducing the
transformation

E=Egl+ A) (6)
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of the input intensity for (a) # = 1. {b) 8 = 5. The dotted parts are unstable in the self-focusing case 1= |1
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equation (1) becomes
CA C g0 = [ESDA + a2 A + i EfP(A + A* + A2+ 2/AF + AlAP) (D)
31
and displays quadratically nonlinear terms which typically lead to hexagon formation [31].
Note that (7) is fully equivalent to (1), i.e. there are no additional approximations
involved. As well as the quadratic terms responsible for hexagon formation, we can
recognize in (7) a phase-conjugate term, and cubically nonlinear terms which saturate the
hexagon amplitude.

If we set

0= |Eg] (8)

equation (7) becomes formally identical to a model recently proposed by Courtois and
Grynberg [22] to provide an approximate description of the system of counterpropagating
waves in a cavityless Kerr medium. With respect to the steady-state cquation (5), condition
(8) defines the “bleaching point” where the transmitted intensity equals the input intensity.
i.e. |Eg]*=|E,. As a matter of fact, in the casc of counterpropagating waves in a Kerr
medium the field intensity is constant along the sample. For 6 # |E|*, (7) can be viewed
as a generalization of the model [22] to include the possibility of complex values for the
damping rate of the field, which is of course a characteristic feature of an optical cavity.

The stability of the stationary solution (5) can be analysed by assuming that A is small
and by lincarizing (7) with respect to A. The linearized equation must be considered of
course, together with its complex conjugate equation to which it is coupled by the
phase-conjugate term A* in (7). Thus, the linearized problem reads

i) =) <9>
dr\A* A*
where the operator L is given by
. - (’—[1 + in(0 = 2/ EsP) + iaV} o mlEP ) (10)
—in|Ey [} = [1—in(0 = 2[EP) — iV

By introducing the ansatz that the perturbation A has the form of a plane-wave modulation

(A)(YEMEIA X (11)
A*

where ¥ = (x, v) and k= (k,, k,), onc obtains the characteristic cquation for A which
governs the stability. It turns out [9] that the stationary state characterized by the value
| E¢]* is unstable with respect to the growth of modulations with modulus of the transverse
wavevector k = (kT + k3)'? such that

a T EP) < ak® < a" (| Esl?), (12)

with
a N (|EsP) = nQIEs] — 0) = (Ef[' — 1) (13)
As shown in [30] this instability is caused by the_four-wave mixing process which
involves three modes k = 0 (pump mode)_; %= ks and k = —ks (signal modes), where the
orientation of the transverse wavevector kg is arbitrary. This feature is similar to the case

of counterpropagating waves, in which forward four-wave mixing is a significant factor in
the instability {14, 16, 17].
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Let us consider now the unstable domain in the plance of the variables (ak”. [ 7Y for
fixed values of 5 and 6. We note that a change of the value of ¢ produces simply a
translation of this figure with respect to ak” by a quantity —nAf. where A6 denotes the
variation of 6 in performing the translation. one must keep in mind that the physically
meaningful values of ak” arc non-ncgative. A significant and helptul corollary is that cvery
plane-wave (k = 0) instability is just one member of a family of finite-4 instabilities all with
the same threshold | £ but corresponding to different cavity tunings. One would expect,
therefore. that for a given tuning the lowest threshold instability will often oceur at finite
A. i.c. the instability will be of pattern-forming type.

Let us examine first the sclf-focusing case: Fig. 3 shows the unstable domain for iy = |.
@ =1 and for y=1. 6 =5 The curves display & minimum (point C in Fig. 3) which
corresponds to the “critical point” for the onset of the instabililty: its coordinates are

Ef:=1. aK.=2-0. (14)

where K. depends on the critical value of k. Note that equation (14) only has physical
meaning for values of € << 2. For 6 = V3 the point A lies on the vertical axis. and in the
bistable case 6> V3 the unstable domain intersects the vertical axis in the segment
BD (Fig. 3), which corresponds to the negative slope portion of the steady-state curve
(see Fig. 2(b)). For V3 < 0 <2 the entire upper branch of the hysteresis cycle (Fig. 2(b))
is unstable as well as a segment of the lower branch, whereas for # > 2 the upper branch is
still unstable but the lower branch is stable.

In the self-defocusing case, the instability exists only for 6 > 2. hence only in conditions
of bistability, and affects only the segment CD of the lower branch (Fig. 4(a)). Figure 4(b)
shows the unstable domain in this case: the critical point €' has coordinates

EJdi=1. aki=0-2. (15)

Because the upper branch is stable. it is expected that finite wavevector perturbations in

Y« o
4 2 0 2 4 6 8 10

[t

Fig. 3. Self-focusing casc n = 1. The figure shows the domain of the plane (ak?,|£,]?) in which the transversally

homogeneous stationary solution is unstable to the growth of inhomogeneous perturbations for # = 1 (the solid

curve) and 6 =35 (the dotted curve). Note that the negative part of the ak? axis has no physical meaning and is
drawn only to show that the dotted curve is simply a translation of the solid curve parallel to the horizontal axis.
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Fig. 4. (a) Same as Fig. 2(b), but the dotted part is unstable in the self-defocusing case n= —1. The section CD
indicates the lower branch instability region. (b) Same as Fig. 3, but for n= -1, 6 = 5.

the instability region of the lower branch will simply cause the system to switch to a
plane-wave solution on the upper branch.

The predictions of the linear stability analysis described in this section have been
confirmed numerically, for both focusing and defocusing media, and will be discussed in
Section 4.
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3. NONLINEAR ANALYSIS

The linear stability analysis of the previous section gives information about where the
homogeneous. stationary solution of (1) becomes unstable to small perturbations. Once we
are above the linear threshold however (given by [E£" = 1), we must turn to some form of
nonlinear analysis in order to find out about the behaviour of any non-trivial solution which
may emerge from the bifurcation [27].

In the case of one transverse dimension the nonlinear analysis. performed in [9]. predicts
the bifurcation of a modulated wave: the bifurcation is supercritical for ¢/ -2 41/30. In the
2D case. that we analyse in this paper. the nonlinear analysis of the bifurcation of a roll
pattern can be performed in a similar way. but we do not report these calculations because
in 2D, as we will see. the roll pattern is unstable against the formation of hexagons. In this
section we describe two approaches used to find the amplitudes of purc. stationan
hexagonal patterns which exist as stable solutions above the linear threshold. primarily as
comparison with out numerical results.

The first method which we consider [22] involves a perturbation expansion of hoth the
amplitude of the field and of x = £ (", which we term the control parameter. Above the
bifurcation point the amplitude of any non-trivial solution has a tunctional dependence on
the control parameter. In order to make this dependence explicit both the amplitude and &
are expanded in powers of the same smallness parameter ¢ [27], which is climinated at the
end of the calculation.

To avoid terms of O(£") in our calculation we choose to analyse equation (7) which we
rewrite in the following form

S = (L0 A VA k(A AT AT = 2+ A A, (o)
where o= (0 — [fd:)

Writing V = [R. /]’ where R and [/ are the real and imaginary parts of the field A
respectively |22]. we then have

L e e A (17
P O R o Gkl SV G L L S (18]

with n. = |.
We assume that our lowest order solution is of the form V&' = vy, v) where o s

function containing the transverse dependence of the field variable AL in this case a
hexagonal pattern. Thus we sel

I v R _ A
Ny, v) = /{cos(lx'(,\') + cos[[\',(: + N"“)] + cox[lx’(, ( L p )]} (19)
V3 2 2 2 2 :

Written in this form, the function @ is a superposition of three rolls of equal amplitudes.
the sum of whose phases is zero. This represents a hexagonal pattern of spots consisting of
peaks in the intensity. If. instead. we had allowed the sum of the phases of the three rolls
to equal 7 another hexagonal solution would be obtained whose spots are minima of
intensity corresponding to a ‘honeycomb’ structure. Only one of these two patterns is
stable, however [31]. and in the present casc the stable form is always the onc we have
written in equation (19).

We substitute (17) and (18) into (16) and solve the resulting cquation at each order in «¢.

At O(¢) we obtain
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— — agV?%
LV = (2nk - 61+ aVv? ° 1 ) Vi =0, (20)
which, remembering that V& = v(V8(x, y), has solution
VO = o ( 1) 9, 1)
N

where « is a real number.
At O(£) we have an equation of the form

LV® = 8@ (22)
where
' 20k RV
SO = (—3nKCR“>I TP O et g0 | (23)

The r.h.s. contains terms quadratic in VI as well as linear terms involving the unknown
kY. There are thus source terms with spatial frequencies k =0, K., V3K, 2K, and it is
necessary to separate both S8 and V' into their different spatial frequencies and solve
this problem for each frequency component separately, which is possible because it is linear
in V@@,

For k*=nK;, n =0, 3, 4 the problem is quite trivial and simply involves the inversion
of the linear matrix L with V? replaced by —nK:. When k*> = K, however, L is singular
from the condition imposed at O(¢e). We must therefore invoke the Fredholm Alternative
Theorem [22, 27]. This states that the equation

LV(Z)/{ZZK?_ = S(z)kZ:K:’_ (24)

can only be solved if S®,._x: is orthogonal to the null-space of L, the adjoint of L. Since
in this case L is self-adjoint we have that S*”;._y: must be orthogonal to V", Imposing
this condition allows us to fix the value of k"’ which is contained in S ;._y: and then to
solve for V& o=

= —% (25)
V3
(-1
VO o = : ( ) :
K=K Va\ 1 (26)

Note that we have, for convenience, imposed the further condition that the higher order
corrections to V) should be orthogonal to V! itself [27].

The pattern has now been set for calculations at third and higher orders, which are
simply repetitions of that at second order with even more spatial frequencies. We can stop
at O(¢*), however, indeed solving only for the resonant term (that with k> = K?) in order
to determine the value of k¥, since at third order the most important features of the
bifurcation have been captured:

_ 2
2 az( 20 — 1026 + 185 ) 7
27(1 — nd)*
If we denote by Vy; the amplitude of the hexagon mode we then have, up to O(g?):
2 —
VH=£oz(1)+ ga2( 1), (28)
n/  V3\n
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{29)

o —ea | ( 20 — 10200 + 18&)
K — K, = + e a” .
V3 27(1 — noy’
Equation (29) can be solved for €a and the result substituted into equation (28) to give the
amplitude of the hexagons as a function of x — k.. When doing this the following point is
worth noting. From equations (18) and (29) you see that at threshold ¢ is given by ¢ = 0.
— k™M /K™ where &' is fixed and ' is a function of . If x#*' is too small we may expect
that ¢ (and therefore the amplitude of the hexagons) is large enough on the stable upper
branch to contradict the premise of our calculation, namely ¢ << 1. The most we can then
expect is that our perturbation calculation will show the correct qualitative behaviour for
the hexagon amplitude (see Fig. 7 and Section 4). With these reservations, however. we
have an explicit formula for the hexagon amplitude as a function of the control parameters
Kk, O, and for either sign # of nonlinearity.

The second approach which has been used [22,34] is the standard one of converting a
partial differential equation into a system of ordinary differential equations by projecting
onto an appropriate basis set. In the present case Fourier modes are the natural basis
functions to use. Since a partial differential equation will generate an infinite number of
ordinary differential equations by this procedure some form of truncation is necessary
[22, 34]. Thus we write the field A as

A=>A,(0)D, (3

=0
where the @, are the Fourier modes. and keep only ®, and ®,. namely the plane-wave
term and the hexagon made itself. A, is the modification to the homogeneous solution due
to the hexagonal pattern and is generally complex.
We separate A, and A, into real and imaginary parts
Ay = ay(1) + iai(T) (31)
A, =a(r) + ia(T) (32)

and substitute into equation (16) to obtain four coupled nonlinear ordinary differential
equations:

. . N U
a, = —ua, + oa), — 7}1((2@(1(, + aya; + oagan + oo dodd
i
l ;2 ’ /3 3 ol | 3 N
+ ——ayjay + apaya) + oal + —alay;T + ——d (33)
2V3 2 2V3

a

: / 2 . Lo
= na; - a, — r]K(2a.,a, + 2a\a, + ——a,a; + ——aud]
V3 \

/

S ,
+ 2alaya, + aya;, + “ayay + ——apaa;
4 V3

5 > 5 '3 B
+ 3alia; + V3ajam + 4(11‘) (34

. > 3 s
a, = —al, — oa, + r)K(2a[, + 3ay + “aiy + a)y
]

s

1 A 3 3 2 1 3
+ —u;” + ay + —apa; + ———d;
2 2V3

. 1 )5 . 1 ,o
+ apa|” + —agay” + ayapa, + —a,al') (.
2 2V73 /
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ai = —na;, — a{ + K(Zal + 6“()611 + \/3(1% + 20(}(1[

1 N)
+ —;a{z + 30%)(11 + \/3&()(1% + Za:;

1 ' 2 ' 5 9
+ 2a()a(,)a{ + —‘a()ai2 ‘*’(llaq)A + ——a dyd, + —-alal‘ . (36)
V3 V3 4

Finding the fixed points of this system of equations gives the steady-state amplitude, |A,|,
of the hexagon pattern. These fixed points cannot be obtained analytically, with the
exception of the trival one corresponding to A =0, and we have therefore used the
software package KAOS by Guckenheimer and Kim to integrate equations (33) to
(36). The solutions obtained can then be used to plot |A,| as a function of the control
parameter k.

A comparison of the results produced by both of these methods with the results of
numerical integration of the equation is presented in the next section.

4. NUMERICAL SIMULATIONS

We have developed two numerical codes to integrate equations (1) and (16). Both codes
integrate the model equation on a square grid with periodic boundary conditions. The first
code employs a finite-difference Hopscotch algorithm [32] which splits the numerical grid
into even and odd points and alternates explicit and implicit steps on each of the two sets
of points. The second code integrates the equation using a split-step method [33]; the
operator describing the evolution of the field is split into one part consisting of the
transverse Laplacian and another part containing all other terms. The Laplacian part is
solved using a Fast Fourier Transform routine while a fourth order Runge—Kutta method is
employed to solve the remaining part of the equation. The Hopscotch program ran on a
Silicon Graphics 4D/210GTX using grids of 128 x 128 points while the split-step program
was run on a VAX with grids of 64 x 64 points. Most of the simulations were carried out
using the Hopscotch code while, because of the completely different character of the
numerical method involved, the split-step code acted as a check. Unless otherwise stated all
of the following refers specifically to the Hopscotch program to integrate equation (16).

The length of the computational box was generally chosen to be eight times the critical
wavelength A., where A, =2m/K. with K. given by equations (14) or (15). Examples of
initial conditions used include a pure roll (modulation of the form cos(K.x)), a Gaussian
and a roll on top of a Gaussian—i.e. a field of the form

A = fycos(K.x)exp [—M (37)

2
To

with f, a real number—both with or without noise added, and simply noise added to the
A =0 solution. The noise used was white noise which was filtered in Fourier space to
remove high spatial frequencies. This was done to avoid any numerical problems which
could occur as a result of large gradients in the initial field.

We first of all discuss the case of a focusing medium (=1 in equation (1)). Carrying
out simulations above the linear threshold and using a Gaussian or a roll on top of a
Gaussian as the initial condition, without any noise added, it was found that the Gaussian
broke up into a series of concentric rings which further broke up in a collection of spots.
These spots formed a pattern with roughly fourfold symmetry which persisted until the end
of the simulations, a duration of several thousand time-steps. Adding to the initial
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condition small amplitude noise (for example an amplitude of 1077) allowed the spots to
escape the pattern of fourfold symmetry imposed by the numerical grid and form a
hexagonal pattern instead, as in Fig. 5 for the case of 7% above threshold and o = 0.

Above threshold an initial condition consisting of a pure roll went to a stationary roll
pattern. Adding some small amplitude noise, however. caused the rolls to destabilize
leading to the formation of a hexagonal pattern (Fig. 6). Any other initial conditions which
were tried gave only hexagonal patterns. It is clear from these results that. for this system
at least, studies in onc transverse dimension are inadequate to describe the behaviour
which occurs when the second transverse dimension is included.

For the case where 0 =0 Fig. 7 compares the hexagon amplitude as a function of the
control parameter x predicted by each of the analytical techniques in Section 3 with the
results obtained by numerical integration of equation (16). The numerical points were
obtained by starting at 6% above the linear threshold. waiting for a stationary hexagonal
pattern to be reached, and then varying the value of x to trace out the stable hexagon
solution branch.

Figure 7 shows moderate correspondence between the numerics and the perturbation
calculation. The reason for this was discussed in Section 3. and is due to the fact that the
value of &% in equation (18) may become too small. Figure 8. which is a plot of the
amplitude of the hexagons as a function of o for ~ = 1.07, demonstrates this. We see that
the perturbation calculation comes closest to the numerical result when o=~ —31/33.

The amplitudes predicted by the modal expansion calculation do not agree too well
quantitatively with the numerical results either. although the qualitative behaviour is
correct; in particular the régime of coexistence of the stable hexagon and flat solutions in

B d = - N W
U A B ) 68 N s e |
- - ) 0 1 2 4 1

Fig. 5. Contour plot of a stationary hexagon pattern (real part of the field A) in the transverse plane. obtained at
7% above the linear instability threshold (x = 1.07). Mean ficld. 5= 1. =0, « = | and plane-wave pumping.
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Fig. 7. Comparison of the amplitude of the hexagon pattern, as given by perturbation and modal expansion
calculations and by numerical integration, for the case =0, a=1, n=1.

Fig. 7, as given by the modal expansion calculation, extends about 3% below the linear
threshold, which agrees quite well with the numerics.

Defected patterns can be produced by starting the simulations from noise further above
the linear threshold, as in Fig. 9 which shows a penta—hepta defect obtained at 27% above
threshold. Such defects persist throughout the length of the simulation, which is typically
several thousand cavity lifetimes. Decreasing the control parameter k causes them to
anneal to produce a hexagonal pattern.

All simulations described so far were obtained in the case that the steady-state equation
admits only one solution (Fig. 2(a)). When we investigated the case of S-shaped steady-
state curve (corresponding to 6> V3 in equations (1) and (5)) it was found that in
simulations started on the negative-slope portion of the steady-state curve (Fig. 2(b)) the
field appears to switch to the upper stable branch, with the formation of the usual spots in
the transverse plane. Recall that for a self-focusing medium part of the negative-slope
branch of the bistability curve and the whole of the upper branch (Fig. 2(b)) lie within the
region unstable to finite wavevector perturbations.

The search for hexagons on the upper branch is complicated by the fact that, as shown in
Section 2, above the linear threshold a continuous band of wavevectors is unstable and the
upper branch is far enough above threshold for this to be significant. The problem this
presents for numerical simulations is that the size of the numerical grid appears to play a
role in the selection of modes: since not all numerical box sizes will accommodate a
hexagonal pattern, there appears to be a relationship between the computational box
length and the unstable wavevector which, for a given wavevector, allows some box lengths
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and excludes others. The result is that on the order of several tens of percent above
threshold it is necessary to try different sizes of computational grid to find the one which
produces the optimum hexagonal pattern.

The existence and stability of hexagonal solutions with a wavevector of magnitude A on
the upper branch were also checked by using a hexagonal pattern as the initial condition
and allowing the program to converge to a stable amplitude. This avoids the lengthy
box-fitting  procedure described above by cffectively forcing the solution to have «
particular transverse wavevector.

With « on the order of 150% above threshold and starting from noise, it was found that.
instead of the usual stationary patterns, the field exhibited complicated dynamical be-
haviour with “spots” appearing. disappearing, moving about and deforming in an apparently
disordered way. an cxample of which is shown in Fig. 10. This far above threshold
hexagonal pattern was unstable. breaking up into the kind of turbulent patterns described
above. This phenomenon  occurred  for both  monostability (6 <. \/3) and bistability
(0= \3).

Turning to the case of a defocusing medium (one with n= —1) we find that from the
linear stability analysis of Section 2 such a system is only unstable in the bistable region:
specifically for # > 2 (or &< —1). In that case the instability region consists of the unstable
middle branch of the bistable curve and a small part of the stable lower branch: the stable
upper branches entirely outside the instability region. Figure 4(a) shows the bistable curve
for the case 6 = 5 with the instability region indicated.
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Fig. 9. Penta—hepta defect in the pattern obtained at 27% above threshold. k= 1.07, otherwise as Fig. 5. The two
spots just right of centre have. respectively, five and seven neighbours.

Simulations carried out for a defocusing medium showed that starting in the finite
wavevector instability region, for all the initial conditions tried, the field always switched to
the upper branch homogeneous steady-state before any transverse pattern could form.
Outside the finite wavevector instability region the behaviour of the field was as expected
from plane-wave theory. Thus, no spatial patterns were observable, as expected.

5. LOCALIZED STRUCTURES

Up to this point, we examined hexagonal patterns, either of stationary or of chaotic
character. On the other hand, under appropriate parametric conditions, one can meet 2D
localized structures instead of patterns. This, was possibly first demonstrated in the case of
nonlinear chemical reactions [35] and in hydrodynamics [36]. Recently, the existence of this
phenomenon was numerically proved in the case of a 2D optical system, namely a model
which describes nascent optical bistability [37, 38]. In this paper, we show that a similar
scenario occurs in the paradigmatic optical bistability model given by equation (1). The
discussion of this subject requires a digression to the 1D case. The numerical simulations in
both the 1D case and in the 2D case have been performed using periodic boundary
conditions. A first algorithm was based on the implicit method [39]. In the case of 1D
simulations up to 200 spatial grid points were used, while 2D calculations were performed
using a grid of 80 x 80 points. Simulations were mainly performed on a Silicon Graphics
IRIS/Indigo R3000 workstation.
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5.1. 1D structures

Let us consider equation (1) in the case of one transverse dimension x. i.e. with v
replaced by 3°/3x’? The results of the linear stability analysis of the transversely
homogeneous stationary solution is identical to that of the 2D case and the Turing
instability leads in 1D to the bifurcation of a spatially modulated solution which may be
stable. whereas the corresponding roll pattern in 2D is always unstable against the onset of
a hexagonal pattern, as we saw in Sections 3 and 4. More precisely, the analysis of [9] has
shown that the bifurcation is supercritical, and hence the bifurcated solution is stable. for
6 << 41/30, whereas it is subcritical when

6 > 41/30. (38)

Let us now focus on the subcritical case in which, even if the modulated solution which
bifurcates at the instability threshold is unstable, there exists a stable brach of modulated
solutions which is disconnected from the homogeneous stationary solution and coexists with
it in a suitable range of input ficld amplitude values E,. Figure 11(a) shows an example of
this situation for # = 1.7. The stable (unstable) part of the steady-state curve of the
homogeneous stationary solution is shown by a full (broken) line. The dots represent the
maximum and minimum values of the real part of the field amplitude in the stable
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Fig. 11. (a) Steady-state curve of the homogeneous stationary solution for & =1.7. The solid (broken) part is

stable (unstable) against inhomogeneous perturbations. The dots indicate the maximum and the minimum value of

| E|? of the modulated stationary solution in 1D. The arrows identify the interval of £, in which the homogeneous

and the modulated states coexist. (b} and (c) Localized structures in 1D for £, = 1.2. (d) Modulated stationary
solution in 1D for E; = 1.2.
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modulated pattern. The arrows indicate the interval of E; where the modulated solution
coexists with a stable homogeneous state. The profile of the modulated state is shown in
Fig. 11(d) for E; = 1.2. The localized structures can be found in the interval of E, where
the homogeneous and the modulated states coexist. An example is given in Fig. 11(b) for
E,=12; it shows that the localized structures ‘connect’ the homogeneous and the
modulated solution, in the sense that they are similar to one or the other solution in
different spatial domains. In fact the height of the peak is exactly equal to the maximum
value of the modulated state, while far from the peak the value of the field coincides with
that of the homogeneous stationary state for the same value of E,. Figure 11(c) shows the
same state for a larger computational box, thus proving that this solution is independent of
its size and from boundary effects. We note that, because the system has translational
symmetry, each stationary solution (both of modulated and of localized nature) cor-
responds, in fact, to an infinity of stationary solutions obtained one from another by
arbitrary translations along the x-axis. In addition, there are other localized stationary
states which may display two, three or more isolated peaks, all with the same height equal
to the maximum of the modulated solution while the value of the field far from one peak is
equal to that of the homogeneous state.

Thus, there is a very large number of coexisting states: the homogeneous and the
modulated states. and the localized solutions which connect them. The system approaches
one or another according to the initial condition; for example, an initial spatial profile
which presents a point-like peak of height comparable to the maxima of the modulated
solution, evolves toward a localized stationary state centered at the position of the initial
peak.

Figure 12(a) shows the same phenomena for a larger value of 6(6 =3), so that the
steady-state curve of the homogeneous stationary solution is S-shaped. In this case the
coexistence region is much more extended. Figures 12(b) and (c) exhibit a localized
structure solution for E; = 1.6 and E,; = 2.0, respectively. It can be noted that the peak
height grows, with E; following the maximum value of the modulated solution. shown in
Fig. 12(d) for the same value of E; as in Fig. 12(b).

These results can be linked to early work on spatial patterns in dispersive OB by
Moloney er al. |40], in a model based on a mapping for longitudinal propagation,
and mainly using Gaussian beam input. Moloney er al. [40] showed that the mapping
tends towards the nonlinear Schrodinger equation in the limit of high finesse. as docs
equation (1). The localized structure can thus be interpreted as a soliton-like solitary wave.
McDonald and Firth [41] later demonstrated that isolated ‘solitons’ could be created by
address pulses, and were quasi-stable with plane-wave pumping but tended to coalesce
when created on a Gaussian beam.

It must be noted that the modulated solution is stationary only up to a certain value of
E, (in the case of Figs. 11(a) and 12(a) this value is 2.4 and 2.5, respectively). Beyond this
value the field profile enters a dynamical regime. More precisely, the system displays at
first a periodic regime where the peaks oscillate more or less regularly; Fig. 13 shows these
oscillations for 8 = 3, E,; = 4. The transverse coordinate x lies on the horizontal axis and
time on the vertical axis. The value of Re (E) is measured by the grey scale; large (small)
values correspond to lighter (darker) hues. The figure shows an antiphase oscillation of the
adjacent peaks. The linear stability analysis of the homogeneous stationary solution does
not predict any oscillatory instability [9]; these oscillations arise from a secondary
bifurcation which affects the modulated solution.

If the input field is further increased, the system enters a complex spatio—temporal
regime. The actual values of E,; corresponding to the above-mentioned dynamical
instability thresholds is still not very well determined, because such thresholds proved to be
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dependent on the transverse size of the system; this means that using a spatial computa-
tional lattice of, e.g. 100 points, the simulations will display the onset of the temporal
oscillations for a value of E,; smaller than one could find when using a lattice of. e.g. 200
points. This is a mark of the relevance of boundary conditions in such phenomena.

5.2. 2D simulations

In the case of two transverse dimensions, the localized structures are met in the same
domain of E,; where. in the 1D case the homogeneous stationary solution coexists with the
modulated solution as a consequence of a subcritical bifurcation. In 2D, however. the
homogeneous state coexists with a hexagonal pattern, because the roll pattern which
corresponds to the 1D modulated solution is unstable.

Figure 14 displays some structures obtained for # = 1.7 and E,; = 1.2: the quantity shown
is again Re(FE) in the transverse plane. In particular Fig. 14(a) exhibits the hexagonal
pattern. where some local defects can be identified. Figure 14(b)-(d) show 2D localized
structures with one, two and three dots. respectively: here the dots of maximum Re ( £) arc
such that their value is the same as in the peaks of the hexagons in Fig. 14(a). while in the
rest of the transverse plane. Re (E) has the same value as in the homogeneous stationary
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Fig. 13. Regular oscillations in the 1D modulated solution for 8 =3, E; = 4. The horizontal axis corresponds to
the spatial variable x, the vertical axis corresponds to the time variable.

solution. Figure 14(e) shows a single hexagon with seven dots; finally in Fig. 14(f) the
homogeneous state is present in the upper and lower portion of the transverse plane, while
the central part displays a hexagonal structure identical to that of Fig. 14(a) (some defects
at the boundary are visible). All the results we showed for the localized structures hold in
the self-focusing case =1 both in 1D and 2D. In the case of self-defocusing (n= —1)
research is in progress, but has not evidenced localized states in 2D.

The existence of the localized structures seems very interesting from the optical
information processing viewpoint. The intensity peaks in these states can work as pixels,
and the possibility of having a large number of them, and of locating them at arbitrary
positions (and possibly of shifting them) is interesting. Of course, it is crucial to assess (1)
the possibility of controlling the pixels, in the sense of writing and erasing arbitrarily the
localized dots (e.g. using appropriately spatially modulated input beams), and (2) the
limitation in density and positioning of the dots. These problems have been addressed in
the 1D ‘mapping’ case by the Strathclyde group [41, 42]. Their adaptation to the mean-field
model and to 2D will be the subject of future work.

6. GAUSSIAN PUMP

The analysis and simulations of Sections 3 and 4 treat the case where the external pump
field, parameterized by E; in equation (1), is a plane-wave. This enables us to obtain
quantitative analytical predictions which we can compare with the results of simulations. In
an experiment, however, the pump will have a variation, probably Gaussian in shape, in
the plane transverse to the direction of propagation. This section, then, attempts to address
the more realistic case where the pump field has a Gaussian transverse profile.
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Fig. 4. Patterns and localized structures in 21>, (a) Hexagonal pattern: (b). (). (d) one. two and three-dot
localized solutions. respectively: (¢) single hexagon: (f) stripe of hexagons,
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An examination of the derivation of the mean-field model [9] shows that we are free to
regard E; in equation (1) as a function of the transverse coordinates so long as the spatial
extent of this function is larger than the scale of the pattern. This function should represent
the transverse variation of the pump field at the entrance to the nonlinear medium.

With this in mind, equation (1) can now be used with the constant E; replaced by a
function of the transverse coordinates of the of form E,exp(—r?/wj) where r? = x2 + y2
and w, is the waist of the pump beam, which acts as a control parameter in addition to the
pump amplitude E;.

With a Gaussian source term in equation (1) we can no longer perform a linear stability
analysis, since we are unable to determine analytically the zero-order solution around
which to do the analysis. It is possible to predict the kind of solution which may emerge
from any symmetry-breaking bifurcation, however, from considerations of the symmetry of
the full problem (equation plus boundary conditions), as has been demonstrated recently
for the case of a Kerr slice with single feedback mirror [43]. With Gaussian pump beam the
symmetry of the problem corresponds to the O, group, rather than to the Euclidean group
E, of the plane-wave pump case. This means that the constraint of bifurcation to patterns
with discrete translational symmetries is no longer applicable, i.e. we are not restricted to
patterns which will tile the plane. We may then expect solutions with polygonal patterns of
spots corresponding to the subgroups D, of O,, rather than the hexagons of the
plane-wave case.

We have integrated equation (1) with a Gaussian pump using a modified version of the
Hopscotch code used for the plane-wave simulations described in Section 4. A square grid
of 128 x 128 points was generally used, with the integration now being carried out on a
circular domain within the square grid. We discuss first of all the case of a self-focusing
medium and concentrate on results obtained for 8 =0. We find that the lowest order
solution depends only on the radial coordinate r and thus shows the full O, symmetry. By
altering the control parameters w, and E,; we observe bifurcations to steady-state patterns
with dihedral symmetry D, with n =2, 3, 5, 6, the patterns with larger n generally being
obtained for larger pump waists (see Figs 15-19).

In Figs 5, 6, 9 and 10 we displayed only the near-field pattern, i.e. the spatial
configuration of the field E in the cavity or in the immediate neighbourhood of the cavity.
In Figs 15(b)-20(b) we also show the far-field configuration, which corresponds to the
Fourier transform of the near-field. As done, for example, in the experiments of [24], we
remove the central zero-frequency spot. As a comparison with the small aspect ratio
simulations used to produce Figs 15-19, Fig. 20 shows the pattern obtained from a
simulation performed with a relatively large value of pump waist (@, =21.972) on a
512 x 512 point grid. The field displays hexagonal structures reminiscent of the plane-wave
pump case. The threshold value of the pump intensity necessary for an instability of the
basic state varies smoothly with the size of the pump waist «,, starting off close to the
plane-wave threshold for large pump waists and increasing as the width of the pump is
decreased. In principle, approximations to threshold curves in the (w5, E /)-plane for each
pattern are obtainable numerically. In regions where two such curves seem to approach
each other metastability of patterns can sometimes be seen: one pattern forms from noise
and persists for times of the order of 100 or 200 cavity lifetimes, after which the other
pattern forms and appears to be stable; that is, it lasts until the end of the simulation,
which is usually about 1600 cavity lifetimes long. Bistability between patterns can also be
seen. By starting from a stationary pattern and slowly increasing the pump waist it is
possible to have this pattern stable in a region of the parameter space where a different
pattern forms from noise. Secondary bifurcations from the triangular and ‘rhomboidal’
patterns obtainable at small values of the pump waist can be seen when the pump



1352 A. J. Scroaan eral.

amplitude is increased sufficiently: the stationary patterns begin to rotate. the only type of
secondary bifurcation expected from a solution with symmetry D, where n is prime [43].

With Dy (hexagonal) patterns we have also observed the kind of behaviour reported in
[43]. We have seen secondary bifurcations to solutions with symmetry D, followed by
irregular itinerancy among patterns with imperfect D;, D, and D, symmetry. Simulations
for values of 6 # 0 have shown the same qualitative results as in the # = () case, with the
length scale of the patiern generally increasing with 6. as predicted analytically and
observed numerically in the plane-wave case. For the case of a defocusing medium we have
been unable to observe any symmetry-breaking bifurcations for any of the parameter
values tried. There is, therefore, agreement with the plane-wave case where we also see no
stationary transverse patterns.

7. CONCLUSIONS

In this paper we have given a description of pattern formation in a high-finesse Kerr
cavity. This, the dispersive limit of the standard mean-field model of optical bistability.
ought to be amenable to experimental investigation.

We have found pattern formation only for a self-focusing medium, which conforms to
the intuitive picture of nonlinearity being able to compensate diffraction only on the self-
focusing side. For a plane-wave (i.e. broad) pump, we find hexagon formation in the
simulations, with amplitudes in reasonable conformity with the results of two forms of
nonlinear analysis of the model. Both analyses and simulations point to the existence of a
region of coexistence of stable hexagons and stable plane-wave solutions—i.c. the bifurca-
tion is transcritical. The general behaviour is similar to that observed in other spheres, e.g.
in fluid convection [1]. The intrinsically two-dimensional nature of the hexagonal struc-
tures, as well as the coexistence phenomenon, demonstrates that one-dimensional treat-
ments have a validity restricted to situations where the second transverse dimension is
physically suppressed.

Simulations well above threshold indicate a progression from stable regular patterns.
through static defected patterns, to an apparently turbulent motion of a ‘gas™ of bright
spots.

Under the conditions such that the 1D model predicts the subcritical bifurcation of a
modulated pattern. one meets both in 1D and 2D interesting localized structures which
connect the homogeneous state with the modulated solution in the interval of input field
values where the two states coexist. The scenario we find here is similar to that uncovered
in the case of nonlinear chemical reactions [35] and of hydrodynamics [36]. The flexibility
of these localized states, in terms of number and position of the intensity peaks. make
these results interesting also from the viewpoint of possible applications to optical
information processing.

The underlying optical bistability complicates the behaviour, particularly where the
threshold intracavity intensity lies on or near the unstable branch of the characteristic. In
particular. it frustrates the pattern formation for a self-defocusing medium. It should be
noted, however. that for a self-focusing medium pattern formation occurs also in parts of
the monostable regime.

With a view to experiment, simulations have been undertaken with a gaussian pump
beam. The general behaviour is similar to that of the plane-wave pump. but with
differences associated with ihe different symmetry of the two problems. An extension of
the present treatment, again with a view to experiment. would include the possibility of
curved mirrors. which would make a cavity mode description possible. Alternatively. one
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can relax the dispersive limit, and consider a two-level medium, which has an absorptive as
well as dispersive nonlinearity [28]: work on this problem will be reported elsewhere.

Finally, it is worth making a general observation on the physical origin of these
instabilities. It was noted in Section 2 that the transverse wavevector and the cavity tuning
parameter appear only in combination in the stability analysis. The form of this combina-
tion strongly suggests a physical interpretation, namely that the patterns arise because
off-axis waves can compensate the mistuning of the cavity and attain cavity resonance. This
suggests a rather general mechanism, and indeed such ‘tilted-wave’ resonances have been
proposed in lasers [44] and in optical parametric oscillators [45], as well as the present
passive cavity configuration.
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