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Abstract— A numerical algorithm is propesed for comput-
ing the eigenvalues of the linear scattering problem associated
with the nonlinear Schridinger equation. The numerical
method allows a fast calculation of the dynamical evolution
of the properties: of optical solitons under a wide range of
perturbations.
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I. INTRODUCTION

The nonlinear Schrodinger equation (NSE) provides a
model for studying nonlinear pulse propagation in opti-
cal fibers, as well as a description of the self-lensing of
optical beams in two-dimensional nonlinear Kerr media
[1]. Since they were first proposed as a basis for high
bit rate transoceanic links [2], temporal solitons in opti-
cal fibers have been the subject of intense study. Spatial
solitons have also received much attention, having poten-
tial applications in optical switching and memory devices
[3]-[5]. However, in practice, soliton propagation can be
affected by a wide variety of effects in addition to the dis-
persive/diffractive and self-phase modulation effects that
are already accounted for in the NSE. These new effects
can be introduced into the nonlinear evolution equation
as higher-order terms and lead to modifications of the
propagation characteristics of optical solitons.

Computation of the discrete spectrum of the direct scat-
tering problem can reduce the full complexity of the non-
linear evolution problem to the analysis of only the soli-
tonic components. In this paper, we propose a novel
method for computing the evolution of this scattering
data. The algorithm is suitable for studying a wide range
of physical problems which typically arise in experiments
dealing with spatial or temporal optical soltions. Our
method offers a very low computational load when com-
pared to previous approaches. A key difference in our
approach is that the evolution of the scattering data is
tracked by employing a refinement technique.
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In section II, we give a brief overview of background
theory and outline the inverse scattering technique associ-
ated with the NSE. We focus on the numerical analysis of
the direct scattering spectrum in section III. Finally, ap-
plications of the new algorithm, to problems in the spatial
and temporal domains, are presented in section IV.

IT. INVERSE SCATTERING THEORY
The nonlinear Schrédinger equation (NSE),

2
ig—;,+-;—-g?%+|u|2u=0, (1)
describes the evolution of a normalized electric field en-
velope u(T, Z), where T is the temporal (or transverse
spatial) coordinate normalized to the initial pulse dura-
tion (or beam width) 7. Z is the propagation coordi-
nate normalized to the dispersion (or diffraction) length.
Equation (1) belongs to a class of integrable nonlinear
partial differential equations which can be solved using
inverse scattering theory. This analytical technique can
be thought of as a generalization of the Fourier transform
method for solving linear partial differential equations.

The linear eigenvalue problem associated with the
NSE[6],

i 20 4 uo(T)n = G
i (2)
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where the superscript * denotes the complex conju-
gate, defines a spectral problem in which ¢ is the com-
plex wavenumber and the initial field envelope uo(T) =
u(T,Z = 0) plays the role of a scattering potential.
ST Juo|dT < oo is assumed for the initial condition and
|uo| is required to decrease faster than any power func-
tion when |T! — oo. The NSE is recovered from the
compatibility condition ¥zr = ¥z [6] when an appro-
priate Z evolution is defined for the complex wave func-
tion ¥ = (¢1,%2)! (superscript ¢ denotes transposition).
Once the solution ¥ is given, the linearly independent
solution ¥ = (¥3(¢*), =7 (¢*))! completes a system of
solutions for (2). Jost functions are solutions of (2) which
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are defined by the following asymptotic behaviours [7]

®(T;¢) — (é) exp (—i¢T), T — ~o0
(3)
¥ (T;¢) — ((1)) exp (i¢T), T = o0

Since {¥,¥} form a complete set for (2), one can ex-
press ®(T;¢) and ®(T’; ¢) as a linear combination of these
solutions

&(T;¢) = a(¢)¥(T; ) + b(OU(T;¢)
&(T;¢) = b(O)¥(T;¢) — a()¥(T; ).

a({) , b(¢), a(¢) and b(¢) are the scattering coefficients.
They verify ag@ + bb = 1, @(¢) = a*(¢*) and b(¢) = b*(¢*),
and define the scattering matrix

_fa b
A= (b a ) (5)
such that [, —®] = [¥, T]A.
The roots {¢n Yoz of a(¢) with Im{¢} > 0 define the

discrete spectrum and eigenfunctions which are bounded.
Then,

4)

(T;¢n) = b(Cn)‘I’(T; ¢n) (6)

and & and ¥ approach zero as |T'| goes to infinity.

The discrete scattering spectrum, corresponding to the
soliton components of the initial field envelope, ug(T), is
defined as

Sa(Z = 0) = {¢n, Ca(0)}1, (M)

where Cr(0) = b,(0)/al,(0) are the normalization con-
stants for the bound states, b, = b(¢,) and a], =
(0a/3¢)(¢n). The continuous spectrum, corresponding to
the radiation field, is

Z¢(0) = {r(¢; 0) for ( real} (&)

where 7((;0) = b(¢;0)/a(¢;0).

The scattering potential u(T, Z) can be recovered from
the scattering spectrum X4 U . by means of an integral
equation [6]. The inverse scattering technique is com-
pleted with a description of the evolution of the scattering
data

a(¢, Z) = a((,Z = 0) 9
b((, Z) = b(¢, Z = 0) exp (—2i¢%Z) . )

In summary, the field envelope u(T, Z) can be deter-
mined in three stages: (i) calculation of the scattering
data for the initial condition ug(T'), (ii) Z evolution of the
scattering spectrum and (ili) reconstruction of the scat-
‘tering potential at Z.
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II1. NUMERICAL ANALYSIS

The soliton eigenvalues, (,, of the linear scattering
problem are Z invariant when u(7T, Z) evolves according
to the NSE. These eigenvalues can be written as

_ knt i

L (10)

Cn

where 7, is the soliton energy and k,, is the soliton veloc-
ity. kn is related to a shift of the optical carrier frequency
in the temporal case and a transverse velocity in the spa-
tial case. The discrete spectrum of the direct scattering
transform (DST) contains all the information required for
studying the solitonic components of the optical field.

The NSE describes the basic dispersive/diffractive and
nonlinear effects that give rise to soliton formation, but
one often needs to include additional physical effects to
model accurately any particular experiment. For instance,
when considering picosecond pulse propagation in opti-
cal fibers, it is sometimes also necessary. to consider lin-
ear losses. For ultrashort pulse propagation, higher-order
dispersion, pulse self-steepening and intra-pulse Raman
scattering may become important [8]. In the description
of spatial solitons in Kerr-like media, nonlinear loss due
to two-photon absorption [9], or nonparaxial effects [10],
[11], may be needed in the modeling. These additional ef-
fects give rise to higher-order terms in the evolution equa-
tion. Under such conditions, the soliton eigenvalues are no
longer Z independent. Nevertheless, it is found that the
evolving field envelope can still demonstrate soliton-like
behaviour even when the characteristic soliton parameters
are not constant. Thus, even though the perturbed evolu-
tion equation may no longer be integrable, the DST data
can still prove to be an invaluable tool for interpreting the
underlying structure of the nonlinear wave propagation.

There are various analytical approaches to calculating
the evolution of the discrete scattering spectrum [12].
However, numerical computation of the DST, based on
data obtained using a beam propagation method [13], of-
fers a straightforward technique for determining the evo-
lution of the field envelope while simultaneously permit-
ting the analysis of this data in terms of the constituent
nonlinear structures.

A. Previous Approaches

The numerical computation of the direct scattering
transform starts with a discretization of the eigenvalue
problem. In previous works [14], [15], the T coordinate
(time or transverse space) is firstly discretized by con-
sidering the grid points {Tk}kK=1. The scattering po-
tential in the interval Iy = [Tk, Tk+1] is then approx-
imated by its value at the mid point of this interval,
ug = uo((Tk + Tx+1)/2). The corresponding scattering
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matrix Ax({) can then be calculated analytically [7], [15],

sin dy,

ar, = exp(iChy) lcosdy — iChy

¢ (1)

. sind
br = uphr exp (—zCTk+1/2) dr k >

where dy = hg/(2 + Iuk]2 and hy = Tge1 — Tx. The
global scattering matrix A is now given by

K
AQ) = ] 40 (12)
k=1

From (12), an approximation for a(¢) can be obtained,
yielding roots which give the discrete eigenvalue spectrum.

B. Proposed Method

It is commonly the case that the eigenvalues corre-
sponding to the initial scattering potential are known and
that one is interested in the subsequent evolution (gov-
erned by a perturbed NSE). We propose an algorithm for
the fast computation of the evolving eigenvalues which is
applicable to this case. At the heart of the method is the
calculation of eigenvalues by an eflicient refinement tech-
nique. The frequency of this refinement is determined by
the strength of the perturbation and the resulting rate of
change of the soliton characteristics.

Equations (2) are discretized using a finite difference
scheme, defining a grid spacing AT and an end point
To in the T domain. Y™ = ¢¥(Tp + mAT) and ul =
wo{To + mAT) (m = 1,2,..., M) are the values of the
scattering function and the potential, respectively, at the
node points. For the T derivatives, we use the approxi-

mation
m+1 __ ,ym—1
(&) e o
To+mAT

ar 2AT (13)

to obtain the following system of equations

Myl GATURYS = — 2 AT (Y
—5 T PP + HAT @) YT = ~HATCHT (149

Writing A = —2iAT¢, ¥, = (91, ¢%,..., M)t and ¥, =
(¥3,42,...,v3)?t we obtain a (2M) x (2M) matrix eigen-
value problem for A

U D 21 =2 21

DH UH||w,| =g,
where the superscript H stands for the transpose complex-
conjugate. Matrix U has only an upper and lower di-
agonal with nonzero elements (values of +1 and —1, re-
spectively), whereas D is a diagonal matrix with elements
Dy = —2iATuf. In deriving the matrix eigenvalue equa-
tion, we have used a finite domain in the T direction.
The solution is assumed to be zero outside of this region.

(15)

Thus, numerical calculations require a sufficiently wide
computational window so that the scattering potential is
well-resolved from the actual boundaries imposed.

At each propagation distance, Z, one wishes to find the
eigenvalues of the matrix A(Z) = A(U, D(Z)), as defined
in (15). In each case, the solution at a previous propa-
gation point Z' = Z — pAZ is known (p is the number
of beam propagation steps between computations of the
DST data). We assume a slow variation of the soliton
parameters over pAZ and use the shifted inverse power
method to refine iteratively the eigenvalues at Z'. For
each of the eigenvalues of the discrete spectrum, X!, we
use the iterations

(A-XDy=b (16)
y _
B, = = 17
k41 ”ﬂ” ( )
1 .
Nop1 = N + Ty (18)
_k-_

Fast convergence, within only a few iterations, is guar-
anteed by taking the initial guesses for A, and bj as the
corresponding eigenvalue and eigenvector of the previous
DST computation. At each iteration, one is required
to solve the sparse linear system (16), where (4 — AL I)
is a 2M x 2M matrix. We define an M x M matrix
UL =U - M.I and vectors y., y,, by 5 and b, ;, such that
y' = [yiyl] and B}, = [b 45 i), and rewrite this system in
block matrix notation,

[fj}c ~D :l Ql] — Qi,k]
DH (Ullc)H y2 B bl2,k, ’

It then follows that
(D - THDP)MTH) g, = B4 — ULDH) by (20)

1= 07 [t = (3) "3, 20

The problem is now reduced to the solution of the M x M
band diagonal linear system given by (20). In transform-
ing from (16) to (20), only an inversion of a diagonal ma-
trix is required and the expression of the matrix of the
final system is very straightforward to implement.

(19)

IV. APPLICATIONS AND RESULTS

Higher-order solitons of the NSE are solutions with ini-
tial condition u(T,0) = Nsech(T"), where N is an integer
greater than one. The higher-order solutions are multi-
soliton bound states in which the pulse (or beam) profile
continually evolves during propagation. The period of this
evolution is given by Zy = 7/2. However, the bound state
can be destroyed by the presence of perturbations, lead-
ing to fission into individual soliton components. In this
section, we consider higher-order soliton break-up in two
different contexts: third-order dispersion effects on tem-
poral solitons in optical fibers and two-photon absorption
in spatial soliton propagation.
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Fig. 1. Evolution of the soliton energies (71,72) and soliton velocities
(1, x2) (solid lines) of a N = 2 temporal soliton under TOD (¢ =
0.03). The dashed-dotted line shows peak pulse amplitude.

A. Higher-Order Dispersion

The derivation of the NSE for optical pulse propagation
in monomode fibers is based on a Taylor series expansion
of the propagation constant 8 around the optical carrier
frequency wo. Writing B(w) = Bo-+ Awf; + 1/2A026, +
1/6Aw3Bs + ..., where 8, is defined as d"8/dw™ eval-
uated at wp and Aw = w — wp, only the first three
terms are usually retained. In the vicinity of the low-
dispersion wavelength Ap, where B2 ~ 0, or when ul-
trashort pulses are concerned, it can be necessary to in-
clude third-order dispersion (TOD) effects through the
consideration of the contribution of 83 to 5. Then, the
extra term —i6(8%u/8T3) has to be included in the evo-
lution equation. The coefficient in this term is given by
d = B3/(6|B2|7) [8]. Higher-order dispersion leads to soli-
ton decay when ¢ exceeds a threshold value [16] and, for
an N = 2 soliton, this threshold is given by é = 0.022.
Fig. 1 shows the evolution of the constituent soliton pa-
rameters during break-up of an N = 2 soliton due to the
effect of TOD.

B. Two-Photon Absorption

In many highly nonlinear média, such as ZnSe, the Kerr
nonlinearity is accompanied by strong two-photon absorp-
tion (TPA). This effect can be included in the modeling
by adding the nonlinear loss term —iK|ul?u to the NSE
[9]. Fig. 2 shows the evolution of parameters for an N = 2
soliton in the presence of two-photon absorption [9]. TPA
is shown to result in higher-order soliton fission, leading
to the generation of two escaping solitons with equal am-
plitudes and opposite transverse velocities.

V. CONCLUSIONS

We have developed a fast numerical algorithm for com-
puting the discrete spectrum of the direct scattering trans-
form of the NSE. The method is based on the iterative
refinement of the eigenvalues and is particularly suited
to the investigation of soliton evolution in the presence
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Fig. 2. Evolution of the soliton energies (71,172) and soliton velocities

(k1, &2) (solid lines) of a N = 2 spatial soliton under TPA (K =
0.01). The dashed-dotted line shows peak beam amplitude.

of higher-order effects. The application of this efficient
alogrithm has been demonstrated in two different physi-
cal contexts.
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