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Abstract 
Two-colour nonlinear light beams comprise a pair of optical waves at two well-separated temporal frequencies, 
and which are coupled together by way of the refractive properties of the host medium [1–3].  Exotic 
electromagnetic structures of this kind involve a complex and subtle interplay between many distinct feedback 
loops, each of which is a combination of linear (two-dimensional diffraction) and nonlinear (self- and cross-
focusing) processes.  The interaction between the constituent waves is strongest when they overlap in the 
propagation plane.  Under the right conditions, the feedback loops may reach an equilibrium point whereupon 
the system can sustain stationary localized states – vector spatial solitons.  Such waves play a key role in our 
understanding of a wide range of nonlinear optical phenomena.  In addition to their fundamental theoretical 
interest, two-colour vector spatial solitons have huge potential for exploitation in future photonic device 
architectures that operate on multi-frequency principles [4]. 
 

Classic analyses of vector spatial solitons have been limited by assumptions of beam paraxiality [1–4].  
While this conventional approach proffers a model with a simple nonlinear-Schrödinger form, its adoption 
imposes strong restrictions on the physical regimes that may be accurately described.  Our research opens up 
fresh avenues of exploration into two-colour photonics by going beyond well-known paraxial wave optics.  
Recently, we have been able to take the first steps towards a deeper understanding of two-colour light fields by 
relaxing the ubiquitous slowly-varying envelope approximation, and dealing instead with a more general pair of 
coupled nonlinear Helmholtz equations [5]: 
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(1a,b) 
Briefly, u1 and u2 are the dimensionless electric field envelopes at the two frequencies, while (, ) are the 

transverse and longitudinal coordinates (normalized with respect to the waist and diffraction length of a 
reference Gaussian beam, respectively).  The small parameter  << O(1) quantifies beam waist compared to the 
optical wavelength, and p = ±1 flags a focusing/defocusing nonlinearity.  Coupling between the two fields is 
parameterized by , while  and  are related to the dispersive properties of the host medium (ratios of 
wavelengths and linear refractive indexes).  The paraxial model [1,2] is obtained by neglecting the first term in 
each equation.  
 

We will present, to the best of our knowledge, the first analysis of two-colour Helmholtz light fields.  Plane 
wave modulational instability (MI) calculations [6] have been made through linearization techniques [see Fig. 
1(a)].  While Agrawal’s paraxial analysis [7] holds only for the special case  = 2, our generalized approach 
involves two-fold novelty: (i) consideration of arbitrary values of the coupling parameter , and (ii) inclusion of 
Helmholtz-type nonparaxiality.  Extensive simulations of spontaneous MI have tested, and confirmed, our 
theoretical predictions of the resilience of two-colour plane waves to small perturbations [see Fig. 1(b)]. 
 

 
Figure 1.  (a) Typical induced-MI spectrum for a two-colour plane wave with  > 1.  The most unstable 
spatial frequency, referred to as K0, corresponds to the peak of the “bow-tie” (inset) of the MI gain curve.  
(b) Evolution of the spatial spectrum of one component (here, u2) in an unstable two-colour plane wave 
perturbed by a 1% level of background noise.  The spatial frequencies that grow preferentially during the 
early stages of propagation corresponds to ±K0, which confirms the predictions of our analysis.   



In-depth analysis of model (1) has also uncovered four families of exact analytical vector soliton: bright-
bright and bright-dark for a focusing nonlinearity, dark-bright and dark-dark for defocusing.  It is worth 
emphasising that bright-dark and dark-bright solutions are physically distinct from each other (for instance, they 
possess notably different stability properties).  Each vector soliton family has co- and counter-propagation 
classes that are related by geometrical transformation; this type of bi-directionality is a natural consequence of 
our model, where the ∂2/∂2 operators have been retained.  Simulations and analysis have also been used to 
predict the robustness of the new spatial solitons (see Fig. 2). 
 

 
 

Figure 2.  Modulational instability of the bright-dark Helmholtz soliton family [bright component in (a), 
dark component in (b)] in a focusing Kerr medium.  Instability develops initially on the plane-wave 
background of the dark component, leading to filamentation.  Nonlinearity provides a mechanism whereby 
this instability subsequently feeds through the system to destabilize the bright component.   

 
In conclusion, we have proposed a more sophisticated model for describing two-colour light fields in planar 

waveguides using a nonlinear Helmholtz-type formalism. We have unravelled the MI properties of this 
generalized system, and the predictions of our fully-2nd-order calculation have been borne out by extensive 
simulations.  We note, in passing, that the algorithm routinely deployed to integrate single-colour Helmholtz 
equations (see Ref. 8) had to be modified non-trivially in order to solve Eqs. (1a) and (1b) numerically.  New 
families and classes of exact analytical Helmholtz vector soliton have been derived.  These solutions are 
endowed with a wide range of physically desirable properties that are absent from their paraxial counterparts [1–
3], and their stability properties have been mapped by combining linear analysis with computer simulations. 
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