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Introduction 

Diffraction plays a fundamental role in our understanding of wave physics in general, and it is perhaps at its 

most fascinating when the system under consideration incorporates some degree of fractality (where proportional 

levels of spatial structure persist over many decades of scale).  For example, Berry examined “diffractals” arising 

from plane waves scattered from fractal phase objects (Berry, 1979).  Those scattered waves acquire multi-scale 

characteristics in their statistical properties. 

In this theoretical study, we present a detailed and systematic analysis of the Fresnel (near-field) patterns 

produced when a plane wave illuminates a fractal aperture that has a shape tending toward the classic von Koch 

snowflake (an iterated function system involving self-similar sequences of superimposed equilateral triangles).  

Related analyses by other authors have considered mainly Fraunhofer (far-field) patterns (Uozumi et al., 1991).  

Our mathematical description is based upon line integrals and Young’s edges waves.  Key results will be 

presented for several stages of iteration, progressing from the initiator (a single triangle) through four subsequent 

applications of the generator algorithm (see Fig. 1).   

 

 

Figure 1: Left to right: initiator (n = 0) and first four iterations toward creating a fractal snowflake (n = 1, 

2, 3 and 4).  The n
th

 iteration has N = 3  4
n
 sides (N = 3, 12, 48, 192, and 768, respectively), so one might 

expect the computation times for calculating Fresnel patterns to diverge geometrically. 

Attention is paid not only to snowflake apertures but also, by way of Babinet’s Principle (Born & Wolf, 1980), 

the patterns produced by their complementary stops.  Our results in the optics domain provide the basis for 

modelling a new generation of unstable-resonator systems, where the feedback mirror has the shape of a fractal 

rather than the regular polygon associated with proposed “kaleidoscope” laser cavities (McDonald et al., 2000). 

 

Line Integral Method and Babinet’s Principle 

When a plane monochromatic wave of complex amplitude U0 is incident on a simple closed aperture with area  

in the (, ) plane, the diffraction light pattern U(p) at a distance L downstream can be well-described by the 

two-dimensional Huygens-Fresnel integral 

 

    

          (1) 

 
  

where p ≡ x + iy and q ≡  + i are vectors (and coordinates) in the image and aperture planes, respectively, 

while k = 2/ and  is the optical wavelength (see Fig. 2).  Here, we consider  to be progressing toward a 

fractal shape.  Over recent decades, many authors have analysed the Fraunhofer patterns from the von Koch 

snowflake, both experimentally (Horváth et al., 2010) and theoretically (Uozumi, Kimura, & Asakura, 1991). 

More recently, the Fresnel patterns have received some attention (Lisicki et al., 2008) but there are, to the best of 

our knowledge, almost no published works providing a full detailed theoretical account of such spatial structures. 



 
Figure 2: Schematic diagram of the typical setup for diffraction at an aperture.  For Eq. (1) to be valid, it 

must be that L >> (kb
4
/8)

1/3
 (with b denoting the largest characteristic length-scale of the aperture). 

In this research, we consider a systematic transition from a triangular aperture toward a (pre-fractal) snowflake 

(see Fig. 1).  Analysis is based on converting the conventional integration over the aperture area [c.f. Eq. (1)] to 

a circulation around the aperture edge (Hannay, 2000).  If the apexes of the initiator (that is, the triangular 

aperture in Fig. 1) lie on a circle of radius a and all transverse spatial distances are measured in units of a, then 

one can transform Eq. (1) (by deployment of a low-dimensional divergence theorem) to be in the form 
  

 

  (2) 

 

where  denotes the aperture boundary, dl is an element along , and n is an outward-normal unit vector.  Also, 

 = 1 (or 0) if the observation point p lies inside (or outside) the geometrical projection of the aperture. 

The diffraction pattern from an aperture is thus parametrized solely by the Fresnel number NF ≡ a
2
/L.  Analysis 

proceeds by breaking-up Eq. (2) into a piecewise superposition of edge waves (Huang, Christian, & McDonald, 

2006).  One can also calculate the pattern from the complementary aperture – in this case, a snowflake stop that 

has the same size and shape as the snowflake aperture “cut out of” the screen shown in Fig. 2.  If the pattern 

from the stop is denoted by Ustop(p), then Babinet’s Principle states that Ustop(p) = U0 – U(p).  Thus, a single 

numerical calculation yields both aperture and stop patterns. 

Patterns from Snowflakes: Low NF 

Fresnel patterns with low but finite NF numbers are shown in Fig. 3.  The patterns are relatively smooth, having a 

narrow spatial frequency content and they are tending toward their Fraunhofer counterparts.  Hence, for low 

Fresnel numbers the presence of smaller-scale edge-related aperture/stop details has a less noticeable effect on 

the scattered patterns. 

 

 
Figure 3: Diffraction intensity patterns from snowflakes with low Fresnel number (NF = 5) (left to right: 

iteration n = 1, 2, 3, and 4).  Upper panes: apertures.  Lower panes: stops. 



Patterns from Snowflakes: Moderate and High NF 

Results for snowflakes with moderate and high Fresnel numbers are shown in Figs. 4 and 5, respectively.  As 

expected, full six-fold rotation symmetry is always evident in the pattern (as it must be).  When NF increases, the 

patterns become ‘sharper’ and resemble more strongly the shape of the aperture.  A recurrent trend is that for 

fixed NF, one always reaches a point where additional substructure in the pattern can no longer be discerned as 

the aperture becomes ‘more fractal’ (i.e., as n increases).  To that end, we have also magnified the central region 

of the aperture patterns (see Fig. 6). 

 
Figure 4: Diffraction intensity patterns from snowflakes with moderate Fresnel number (NF = 50) (left to 

right: iteration n = 1, 2, 3, and 4).  Upper panes: apertures.  Lower panes: stops. 

 

 
Figure 5: Diffraction intensity patterns from snowflakes with high Fresnel number (NF = 200) (left to 

right: iteration n = 1, 2, 3, and 4).  Upper panes: apertures.  Lower panes: stops. 

Conclusions 

We have presented, to the best of our knowledge, the first systematic description of diffraction patterns from the 

first four applications of the von Koch snowflake initiator-generator algorithm.  A semi-analytical approach has 

been deployed, based upon a line integral formulation of Fresnel diffraction and Young’s edge waves.  Both far-

field (low-NF) and near-field (high-NF) regions have been considered, and patterns computed for a series of 

apertures and their corresponding stops.  Since accurate numerical evaluation of fully-two-dimensional (2D) 

edge-waves are exceptionally time-consuming and resource-hungry, our calculations have so far not gone 

beyond the fifth iteration (where the snowflake comprises 3072 edges).  However, we expect to be able to 

compute and analyze 1D cross-sections through fully-2D patterns from apertures with much higher n values 



 
Figure 6: Magnification of diffraction intensity patterns from snowflake apertures (left to right: iteration 

n = 1, 2, 3, and 4) in a central square region with side 0.6a.  Six-fold rotation symmetry is fully preserved.  

Upper panes: NF = 50.  Lower panes: NF = 100.  Note that the use of different colour mappings for the two 

NF values helps to bring out finer pattern details.  

(e.g., to assess the potential for a possible fractal dimension 1 < D ≤ 2 related to n).  Our suite of codes is also 

readily adaptable for 2D virtual-source modelling of novel designs of unstable resonators (Huang, Christian, & 

McDonald, 2006, Southwell, 1986, 1981). 
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