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Abstract: We present the first analysis of spatial solitons refracting at the planar interface between 

dissimilar materials with both (3)
 and (5)

 optical susceptibilities. A nonparaxial Snell’s law is 

derived and giant Goos-Hänchen shifts are predicted. 
OCIS codes: (190.6135) Spatial solitons; (190.4350) Nonlinear optics at surfaces; (160.4330) Nonlinear optical materials 

 

1. Wave-interface problems 

In their most general form, wave-interface problems are inherently angular in nature.  For instance, the interaction 

between light waves and material boundaries essentially defines the entire field of optics.  The seminal works of 

Aceves et al. [1,2] considered scalar bright spatial solitons impinging on the planar interface between two dissimilar 

Kerr media.  While these classic nonlinear-Schrödinger models undeniably paved the way toward understanding 

how self-collimated light beams behave at material discontinuities, they suffer from a fundamental limitation: the 

assumption of slowly-varying envelopes means that, in the laboratory frame, angles of incidence, reflection and 

refraction (relative to the interface) must be near-negligibly small.  The intrinsic angular restriction may be 

eliminated by adopting a mathematical and computational framework that is based on the solution of nonlinear 

Helmholtz equations. To date, we have considered bright [3] and dark [4] soliton refraction in dissimilar focusing 

and defocusing Kerr materials, respectively. 

Here, the first detailed account will be given of bright soliton refraction beyond the Kerr approximation.  We 

consider the interface between media whose nonlinear polarization has contributions from both (3)
 (Kerr) and (5)

 

susceptibilities [5].  Our model is based on an inhomogeneous Helmholtz equation with a cubic-quintic nonlinearity, 

and analysis is facilitated by knowledge of the exact solitons of the corresponding homogeneous problem [6]. 
 

 
Fig. 1. (a) External refraction is characterized by ref > inc (which becomes possible when the beam crosses into a denser 

medium).  (b) Computational testing of the cubic-quintic Snell's law at a linear interface (Solid lines: theory.  Points: numerics). 

2.  Nonparaxial refraction & Snell's law 

By respecting field continuity conditions at the interface, a universal Snell’s law may be derived for describing the 

refractive properties of soliton beams.  If the angles of incidence and refraction in the laboratory frame are denoted 

by inc and ref, respectively [see Fig. 1(a)], then 
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and (n01, n02) are the linear refractive indexes, respectively.  This compact law contains a multiplicative factor  that 

captures the interplay between system nonlinearity (via the beam's peak intensity 0 and the quintic coefficient ), 



discontinuities in linear / nonlinear material properties (parametrized by  /  and v), and finite beam waists [ << 

O(1) for broad scalar beams].  External refraction scenarios (where ref > inc so that the soliton bends away from the 

interface) are inherently nonparaxial and have no counterpart in conventional (Schrödinger-type) frameworks [1,2].  

Extensive computations have tested analytical predictions, providing strong supporting evidence for the validity of 

the Helmholtz modelling approach across wide regions of a six-dimensional parameter space [see Fig. 1(b)].  The 

Snell’s law provides a simple algebraic result for the critical angle crit, namely 
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that is in good agreement with full simulations of solitons at linear and weakly-nonlinear interfaces. 

3.  Goos-Hänchen shifts 

In the current context, the Goos-Hänchen (GH) shift [1,7] is a phenomenon whereby a reflecting beam experiences a 

translation in its outgoing trajectory (along the interface) relative to the path predicted by geometrical optics (i.e., 

plane wave theory) [see Figs. 2(a) and 2(b)].  These shifts are most pronounced close to the critical angle, and they 

can be greatly enhanced (often termed giant) in systems where the host media are nonlinear.  Recently, we 

quantified the GH-shift characteristics of Helmholtz bright solitons at interfaces involving the Kerr nonlinearity [8], 

and particular attention was paid to regimes involving external linear refraction.  Here, we will give an overview of 

similar considerations in material regimes where the (5)
 susceptibility can no longer be neglected.  Detailed 

numerical calculations, guided by Eq. (2), have uncovered new qualitative behaviour at highly nonlinear interfaces 

and we have uncovered shifts that are orders-of-magnitude greater than those in earlier studies [see Fig. 2(c)]. 
 

 
Fig. 2. Simulations (in normalized units) of typical GH shifts with external refraction at (a) linear and (b) nonlinear interfaces.  
(c) Numerical calculations of GH shifts (measured in units of diffraction length) in systems where linear refraction is external.  

Here, the (3) susceptibility decreases across the interface (in the domain  > 0) while (5) is uniform throughout. 
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