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Laser optics

Fractal modes in
unstable resonators

One of the simplest optical systems, consist-
ing of two mirrors facing each other to form
a resonator, turns out to have a surprising
property. Stable resonators, in which the
paths of the rays are confined between the
two mirrors, have a well known mode struc-
ture (hermite—gaussian), but the nature of
the modes that can occur in unstable reson-
ant cavities (from which the rays ultimately
escape) are harder to calculate, particularly
for real three-dimensional situations'. Here
we show that these peculiar eigenmodes of
unstable resonators are fractals, a finding
that may lead to a better understanding of
phenomena such as chaotic scattering and
pattern formation. Our discovery may have
practical application to lasers based on
unstable resonators.

For a confocal unstable resonator con-
sisting of a large concave mirror and a small
convex feedback mirror sharing a common
focus, the rays spill over the small mirror so
that its size and shape define the output
aperture (Fig. 1, insets); the other mirror is
so large that its size and shape are irrele-
vant. The properties of an unstable res-
onator are determined by the round-
trip magnification M and the (equivalent)
Fresnel number N of the resonator:
N=(M—1)a%/2)L, where A is the optical
wavelength, 2a is the size of the small mir-
ror, and L is the cavity length®. The exist-
ence of a round-trip magnification M is
characteristic for unstable resonators, as
stable resonators lack such magnification.
The value of M determines the round-trip
spill-over loss around the small mirror, and
N controls the size of the smallest details in
the transverse mode profile as determined
by diffraction. In an unstable-cavity laser,
the losses are compensated by the gain pro-
vided by the laser medium.

Free-space propagation of the optical
field is described by the Huygens—Fresnel
integral', and cavity eigenmodes u(x,y) are
defined by the requirement that, after one
round trip, the field profile remains
unchanged apart from a complex multiplier
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(the eigenvalue of the mode). We have cal-
culated the mode patterns for a range of
different aperture shapes, concentrating
particularly on regular polygons and rhom-
boids. This calculation is numerically very
demanding, so we used a non-orthogonal
grid? to increase efficiency. For square or
circular apertures, the diffraction problem
can be reduced to a one-dimensional calcu-
lation, with the mode patterns for the
square factorizing into x and y components.

A typical modal intensity distribution
for triangular aperturing is shown in Fig. 1.
Smaller and smaller triangles keep appear-
ing as the mode pattern is repeatedly mag-
nified. This shows the self-similar nature
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Figure 1 Calculated lowest-loss eigenmode of an unstable res-
onator with a triangular mirror. Left inset, a three-dimensional
view; right inset, a side view. M=1.5, N=10.5. The intensity
distribution |¢/* on the small mirror is shown: white, high; red,
medium; blue, low. Bottom, magnification of the centre part, with
colour coding adjusted to exploit the full dynamical range.
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of the mode, which continues down to the
diffraction limit of approximately a/4N. On
even smaller scales, further magnification
does not reveal further substructure (Fig. 1,
bottom). In the asymptotic limit A10
(N - ), the diffractive spreading becomes
negligible, leading to an ideal fractal. Large-
N resonators are feasible (for example,
N = 14 has already been realized in ref. 3).

The origin of the self-similarity can be
understood intuitively: the existence of
the round-trip magnification M means that
the eigenmode must consist of (de)mag-
nified copies of itself. Note that the
hermite—gaussian modes of stable reson-
ators are not self-similar because the round-
trip magnification is absent.

A characteristic property of fractals is
their non-integer fractal dimension D; (refs
4,5). We found that an accurate determina-
tion of Dy for two-dimensional modes (as
in Fig. 1) would require calculations at
much higher N than considered here, and
hence computational resources beyond
those available; in earlier calculations® for
one-dimensional resonators with N=10°
we found that D; was 1.6 =0.1.

It has been shown that a tetraedical
stacking of four reflecting spheres represents
a chaotically scattering system with inherent
fractal properties’. Our results help to
explain this: light rays repeatedly scattering
in the inner chamber of the tetraedical
stacking undergo geometrical magnification
owing to the reflecting spheres, just as in
our unstable resonator. Coincidentally, the
‘aperture’ in ref. 7 is approximately triangu-
lar, like our aperture in Fig. 1, leading to
similar patterns. The self-similar aspect
seems to be a useful unifying feature of opti-
cal-pattern generation, providing insight
into chaotic scattering’ and transverse non-
linear optics®. In the latter case, there is
competition between bulk nonlinear behav-
iour and boundary-imposed linear diffrac-
tion as pattern-generating mechanisms.
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