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Abstract. We present an analysis and simulation of the non-paraxial non-
linear SchroÈ dinger equation. Exact general relations describing energy ¯ ow
conservation and transformation invariance are reported, and then explained on
physical grounds. New instabilities of fundamental and higher-order paraxial
solitons are discovered in regimes where exact analytical non-paraxial solitons
are found to be robust attractors. Inverse-scattering theory and the known form
of solutions are shown to enable the prediction of the characteristics of non-
paraxial soliton formation. Finally, analysis of higher-order soliton break up
due to non-paraxial eå ects reveals features that appear to be of a rather general
nature.

1. Introduction
Spatial solitons are self-trapped beams that have innate appeal as binary

elements in future optical information processing and storage devices [1± 3].
They have been studied experimentally in diå erent Kerr-like media [4± 7] and

analyses are usually based on the paraxial nonlinear SchroÈ dinger equation (NSE),

which is analytically solvable using inverse scattering theory [8]. In a more general

context, NSE solitons have underpinned the understanding of nonlinear beams in

a wide range of physical systems, including those in which higher-order eå ects

come into play. However, in the progressive miniaturization of optical devices, the
paraxial approximation will ultimately be violated when the optical wavelength is

no longer negligible in comparison to the beam width.

In a previous work [9], we derived the non-paraxial nonlinear SchroÈ dinger

equation (NNSE) to give a more complete description of beam propagation in

Kerr media. The ® rst exact analytical non-paraxial soliton solution was presented
and we explored its underlying mathematical and physical geometry through
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dispersion relations and approximations. This work also uncovered other more
general situations in which the paraxial approximation breaks down. One example

is when a soliton beam propagates at a signi® cant angle to the reference axis or,

equivalently, when two or more soliton beams interact at such an angle. This latter

con® guration arises in the proposed use of spatial solitons as multi-port switching

devices [10]. However, to date, the mathematical description of such devices has

necessarily been approximate since it has been limited by assumptions of para-
xiality [10]. The character of non-paraxiality in linear beam propagation is best

summarized in terms of spatial spectra. A single ultra-narrow beam and the

multiplexing of several broad beams are two contexts where high spatial wave-

numbers arise by diå erent means. In the ® rst case, a broad angular spectrum

results from the spatial transform of the beam pro® le, whereas the second
con® guration involves beams with individually narrow spectra but whose collec-

tive description can span a broad spatial frequency range. Precisely the same ideas

are applicable to the nonlinear evolution of beams, though additional considera-

tions also need to be made.

In this paper, we present new exact analytical properties of the non-paraxial
evolution equation and then address questions relating to the propagation stability

of paraxial and non-paraxial solutions. A generalized conservation law is reported

that has both fundamental and practical implications. The relations describing the

transformation invariance of the NNSE are then presented. These transformations

can be applied to derive generalizations of exact nonlinear solutions and are shown

to arise from a combination of physically meaningful operations. In our earlier
work [9], we presented exact solutions but neither their basins of attraction nor

their stability were examined. Our knowledge of these solutions, and of properties

of the NNSE has permitted, for the ® rst time, the testing of existing non-paraxial

beam propagation methods. Here, we report results from simulations that use two

new numerical algorithms that have been rigorously tested using exact analyses.
We ® rstly report on the stability and dynamics of oå -axis paraxial and non-

paraxial fundamental solitons. Both our earlier analyses and inverse scattering

theory prove to be useful tools for predicting the long-term states. The stability

of higher-order paraxial solitons and on-axis non-paraxial solitons are then

addressed.

2. Exact analytical properties
We consider the scalar ® eld envelope u…¹;±† of a continuous-wave (cw) beam

which evolves according to the NNSE

µ
@2u

@±2
‡ i

@u

@±
‡ 1

2

@2u

@¹2
‡ juj2u ˆ 0; …1†

where ± and ¹ (z and x) are the scaled (unscaled) longitudinal and transverse
coordinates, respectively, and

± ˆ z

LD
; ¹ ˆ 21=2x
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;u…¹;±† ˆ kn2LD
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w0 is a transverse scale parameter which can be considered as equivalent to

the waist of a (reference) Gaussian beam with diå raction length LD ˆ kw2
0
=2.
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k ˆ n0!=c, n0 is the linear refractive index, n2 is the Kerr coeæ cient, A…¹;±† is the
unscaled ® eld and µ ˆ 1=…kw0†2 ˆ …¶=w0†2=4p2n2

0, where ¶ is the optical wave-

length. In free space, µ ˆ 10¡3, 10¡4 and 10¡5 imply around 10¶, 32¶ and 100¶,

respectively, in the full-width of the reference beam.

2.1. Non-paraxial solitons
We have shown [9] that the NNSE has a bright non-paraxial soliton solution

given by

u…¹;±† ˆ ² sech
²…¹ ‡ V±†

…1 ‡ 2µV2†1=2

" #
exp i

1 ‡ 2µ²2

1 ‡ 2µV2… †1=2

¡V¹ ‡ ±

2µ… †
" #

exp
¡i±

2µ
;

…3†
in which the usual amplitude and transverse velocity parameters, ² and V
respectively, are supplemented with the non-paraxial parameter µ. It can be

seen that the width of the non-paraxial soliton is given by ¹0 ˆ …1 ‡ 2µV2†1=2=².

Its area is thus proportional to ¹0² ˆ …1 ‡ 2µV2†1=2
and depends on both the

transverse velocity and the size of the beam (through µ). In common with the
paraxial solution, this area is de® ned by the initial conditions and remains

conserved during subsequent propagation. Non-paraxiality also introduces a

correction in the longitudinal phase of the beam; for a beam with zero transverse

velocity, the soliton phase period is ±0 ˆ 4p=²2­ , where ­ is the solution of

µ²2­ 2 ‡ 2­ ˆ 2.

The NSE is an approximation to the NNSE as the term involving µ is
neglected. Both wave equations describe beam evolution with respect to a

forward-propagating reference frame. However, while the paraxial equation

neglects backward-travelling waves, it has been shown that the non-paraxial

description does not entail this approximation [9]. The NSE is recovered from

equation (1) under certain limiting conditions. A beam that is broad compared to
the optical wavelength, µ ! 0, is an obvious choice, but this is neither a necessary

nor a suæ cient condition. Strictly, one has to require that µ @2u=@±2 remains

negligible with respect to the other terms of the NNSE. For nonlinear solutions,

one needs to stipulate that the peak intensity is such that self-phase modulation

leads to suæ ciently slow variations along the ± coordinate. This is in addition to
the constraints that need to be placed on the spatial spectrum. In fact, all of the

above considerations involve the parameter µ. This is clearly demonstrated in the

case of the particular solution (3); to recover the paraxial soliton, one is required to

enforce the multiple limit µ ! 0, µ²2 ! 0 and µV2 ! 0.

2.2. Energy ¯ ow conservation
The NSE is exactly integrable and thus possesses an in® nite number of

conserved quantities. The ® rst of these is the energy invariant; any solution

u…¹;±†, evolving according to the NSE, satis® es
…‡1

¡1
ju…¹;±†j2 d¹ ˆ C; …4†

where C is a constant. To derive a counterpart of expression (4), that is applicable

to solutions of the NNSE, one multiplies the non-paraxial wave equation by

u¤…¹;±† and integrates the real part of the resulting equation with respect to the
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transverse coordinate. Then, by writing the solution in terms of its modulus
ju…¹;±†j and its phase ¿…¹;±†, and assuming that the solution vanishes as ¹ ! §1,

one ® nds that
…‡1

¡1

1

2µ
‡ @¿…¹;±†

@±… †ju…¹;±†j2 d¹ ˆ C 0 ; …5†

where C 0 is a constant. In the non-paraxial case, it is thus the energy ¯ ow that is
conserved. Equation (5) generalizes a previously published result for which only

fast on-axis phase variations were taken into account [11, 12]. The appearance of

1=2µ in the energy ¯ ow expression is due to the phase reference assumed in the

derivation of the NNSE. A fast phase term exp …ikz† is implicit in the solutions and

this becomes exp …i±=2µ† in the normalized reference frame. The expression inside
the bracket in equation (5) is thus the ± derivative of the total phase in scaled

coordinates.

Since both forward- and backward-travelling waves can be described by the

non-paraxial equation, we note that a solution with ¿…¹;±† ˆ ¡±=2µ ‡ ¿0, where ¿0

is a constant, is a nonlinear standing wave. As one would expect, the energy ¯ ow in

this case is zero. For solutions that have phase of the form ¬± ‡ ¿0, where constant

¬ 6ˆ ¡1=2µ, the longitudinal phase derivative is constant and the paraxial energy

invariant is conserved. This is the case for stationary solutions such as the V ˆ 0

fundamental non-paraxial soliton. When V 6ˆ 0, the energy ¯ ow for a non-paraxial

soliton is found to be ²…1 ‡ 2µ²2†1=2=µ and is thus independent of the transverse

velocity. This is to be expected since, for ® xed ² and µ, expression (3) can be
considered to describe a single forward-propagating beam whose energy ¯ ow

should be independent of the particular orientation of the coordinate axes.

2.3. Transformation invariance
The paraxial NSE is known to be invariant under the Galilean transformation

[13]; when the coordinates are changed according to

¹ ˆ ¹ 0 ‡ V± 0 ; ± ˆ ± 0 ; …6†
one is also required to transform the ® eld as

u…¹; ±† ˆ exp ‰i…V¹ 0 ‡ 1
2 V2± 0†Šu 0…¹ 0 ; ± 0† …7†

to preserve the form of the equation. Instead of applying these relations to the

evolution equation, one can apply them to known solutions. This provides a means

of generating general solutions from particular ones that can sometimes be more
straightforward to ® nd. We have derived the transformations under which the

NNSE is invariant:

¹ ˆ ¹ 0 ‡ V± 0

…1 ‡ 2µV2†1=2
; ± ˆ ¡2µV¹ 0 ‡ ± 0

…1 ‡ 2µV2†1=2
…8†

and

u…¹; ±† ˆ exp i
V¹ 0

…1 ‡ 2µV2†1=2
‡ 1

2µ
1 ¡ 1

…1 ‡ 2µV2†1=2… †± 0… †
" #

u 0…¹ 0 ;± 0†: …9†

The Galilean transformation is, of course, recovered in the appropriate paraxial

limit. Expressions (8) and (9) can be used to introduce, or to remove, the transverse
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velocity dependence of a non-paraxial solution, and thus to eå ect a rotation of this
solution in the …¹; ±† plane. Considering the non-paraxial soliton solution (3), a

beam with zero transverse velocity de® nes a stripe of light of width 1=². When

V 6ˆ 0, this same stripe will lie at an angle ³ to the longitudinal axis. One thus

expects the beam width (at ® xed ± ) to be increased. The correspondence between

this physical rotation and the form of the non-paraxial soliton yields

sec ³ ˆ …1 ‡ 2µV2†1=2
and ® xes the relation between ³ and V.

It should be stressed that the absence of a beam-broadening factor in the

paraxial soliton is unphysical. On the other hand, the non-paraxial transformation

(8) can be decomposed into three physical steps. Firstly, a solution is written in

terms of the original (unscaled) coordinates. Then, a rotation of angle ³ is

introduced. Finally, the solution is transformed back to scaled units. This yields
an alternative form for (8), in terms of the angle of rotation,

¹

±

" #
ˆ

cos ³
1

…2µ†1=2
sin ³

¡…2µ†1=2
sin ³ cos ³

2
64

3
75 ¹ 0

± 0

" #
: …10†

There is also an additional phase term in (9) that accounts for the factor exp …ikz†
introduced by transforming to the forward-propagating reference frame.

3. Initial value problems
Numerical studies are needed to address important questions regarding the

stability of nonlinear solutions and whether they can be generated from arbitrary

initial conditions. Our exact non-paraxial solution and the energy ¯ ow conserva-

tion law provide, for the ® rst time, a framework for testing existing non-paraxial

beam propagation methods. Indeed, distinct methods tend to yield quantitatively

diå erent results [14] and, to obtain accurate results, we found it necessary to derive

new algorithms.
Firstly, we developed a generalization of the Feit± Fleck method [15]. After

analysing their approach, we proposed a modi® ed evolution operator. Both this

and the exact propagation operator were expanded in power series of the diå rac-

tion, @2=@¹2, and the nonlinear, juj2, operators; the leading order error terms were

then corrected. This allowed for an accurate computation of oå -axis non-paraxial

soliton propagation, provided that the peak beam intensity was O…1†. Secondly, a
complementary method, based on a ® nite-diå erence scheme, was derived to study

the propagation of higher-order paraxial solitons. In this case, the restriction on

the peak intensity of the solution was relaxed. A detailed account of these algor-

ithms, including comparisons with well-known methods and error analyses, will be
presented elsewhere. In this paper, we focus on the mathematical and physical

consequences of non-paraxiality.

3.1. Oå -axis non-paraxiality
In this subsection, we study non-paraxial soliton formation from the initial

condition u…¹;0† ˆ sech …¹† exp …¡iS0¹†, which corresponds to an exact paraxial
soliton with ² ˆ 1 and V ˆ S0. One may suspect that the paraxial approximation

could fail for large S0, since the spatial spectrum of the propagating beam is

then highly asymmetrical. For beam widths of at least a few optical wavelengths
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(µ ½ 1), and for µ²2 ½ 1, the slope of the transverse phase pro® le of the non-
paraxial soliton is given by

S ˆ V
1 ‡ 2µ²2

1 ‡ 2µV2… †1=2

’ V

…1 ‡ 2µV2†1=2
ˆ sin ³

…2µ†1=2
: …11†

Both the propagation angle ³ and the slope of the phase pro® le are constant during

propagation. µ²2 ½ 1 implies, in this case, that non-paraxiality arises primarily

from the angle that the beam makes to the ± axis. Then, by applying

transformations (8) and (9) and examining the beam in the ³ direction, the initial

condition can be considered as a perturbed paraxial soliton (its width having been
reduced by a factor of …1 ‡ 2µV2†1=2

). Thus, the long term evolution of the soliton

beam can be predicted by using (paraxial) inverse scattering techniques [13].

Figure 1 (a) shows the evolution of the peak amplitude of the beam jujm for

µ ˆ 10¡3 and for three values of S0 (giving ³ ˆ 12:98, 26:68 and 42:18). Horizontal

lines show the predicted asymptotic values of jujm. It can be seen that the beam
parameters undergo decaying oscillations and approach the predicted limit value in

a formally analogous fashion to perturbed paraxial solitons with V ˆ 0. For

µ ˆ 10¡4 and after multiplying the previous values of S0 by 101=2 (broader

beams launched at approximately the same angles), we found that the results
obtained were almost identical, as expected for µ²2 ½ 1. However, the physical

length scalings for the two values of µ are diå erent and a more rapid evolution to a

stationary non-paraxial soliton pro® le occurs for narrower beams. Figure 1 (b)

shows the evolution of the beam area A (as computed from the numerical data).

The non-paraxial soliton that ultimately results is determined by the initial

condition. Its area depends on S0 and is given by the beam broadening factor,

1= cos ³, of the appropriate solution (plotted as a horizontal line).

3.2. On-axis non-paraxiality
We now consider the initial condition u…¹;0† ˆ N sech …¹†, where

N ˆ 2;3 ;4 ; . . ., that, in the paraxial limit, leads to higher-order solitons propagat-

ing along the ± axis. These solutions are multi-soliton quasi-bound states (soliton

superpositions with zero binding energy) in which the beam pro® le undergoes

periodic focusing and defocusing stages. The NSE solitons can be of arbitrarily

high order and this can lead to extremely narrow beams (and hence very wide

symmetric spatial spectra) at certain propagation distances. During such narrow-
ing, non-paraxial eå ects can play an important role and one could expect that this

places a physical limit on the order of the soliton that can be supported.

While N ¾ 1 and µ ’ 10¡5 is a particular physical context of interest (i.e.

quasi-paraxial input leading to non-paraxial eå ects), for a clearer picture of the

beam evolution, we highlight the case of N ˆ 3 and a larger value of µ. In ® gure 2,
we plot the evolution of the peak amplitude for three levels of non-paraxiality. As µ
increases from zero, it is found that non-paraxiality leads to changes in the

periodicity of the beam and that higher-order soliton-like beams can propagate

for relatively long distances. However, for larger values of µ, this pattern breaks

down completely. Figure 3 gives a more detailed picture of this latter case, where
snapshots of the transverse intensity pro® le are plotted. It can be seen that the

multi-soliton beam is destroyed during the initial stages of propagation. This

results in distinct non-paraxial soliton beams that propagate stably and travel
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either along the ± axis or escape from this axis as pairs of equal amplitude solitons

with opposite transverse velocities.

Similar behaviour has in fact been reported for higher-order solitons perturbed

by two-photon absorption [16] and the mathematical description of that problem is

found to lend insight into the eå ects described here. In ® gure 4, we map out the

eigenvalues of the direct-scattering problem as the beam evolves [17]. Focusing

stages are found to introduce shifts in the amplitudes of the constituent solitons

that, in turn, result in a distortion of the periodicity of the beam [16]. Moreover,

higher-order soliton splitting is found to exhibit a similar bifurcation structure to

that reported in [16] and break-up occurs when two of the constituent solitons

become degenerate. Each of the above characteristics is thus likely to be of a more
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Figure 1. Formation of non-paraxial solitons from paraxial soliton initial conditions.
Evolution of (a) peak amplitude and (b) beam area for a launched beam with pro® le
u…¹;0† ˆ sech …¹† exp …¡iS0¹†. Horizontal lines display the long term evolution
values predicted from analyses. (µ ˆ 10¡3 and the three values of S0 considered are
shown in the inset.)



general nature. In particular, an exclusion principle for soliton beams appears to

apply, in which solitons of the same energy cannot co-exist at the same location in

transverse space. Such a principle could prove to be extremely useful in the study,

or the manipulation, of large ensembles of solitons.

Finally, since higher-order soliton propagation presents a reasonably severe

test of the accuracy of a numerical algorithm, we use this example to illustrate the

distinctness of the paraxial and non-paraxial conserved quantities and the accuracy
of our numerical technique. Figure 5 shows the evolution of the integrated beam

intensity and the energy ¯ ow during the N ˆ 3 soliton splitting process. Note that

the vertical scale has been greatly magni® ed in this plot. The data highlights both
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Figure 2. Peak amplitude of N ˆ 3 soliton beams showing the modi® cation of the
soliton period and then the breakdown of periodicity as µ varies from 0.0005 to
0.005.

Figure 3. Transverse intensity pro® les showing the splitting of a N ˆ 3 soliton due
to non-paraxial eå ects (µ ˆ 5 £ 10¡3).



the integrity of the computations reported and the breakdown of the paraxial

conservation law.

4. Conclusions
We have presented and explained new exact analytical properties of the

non-paraxial nonlinear SchroÈ dinger equation: the energy ¯ ow conservation law

and the relations governing transformation invariance. Simulations demonstrate
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Figure 4. Amplitudes and velocities of the constituent solitons for the data shown in
® gure 3. The dashed curve gives the peak amplitude of the total ® eld.

Figure 5. Evolution of the paraxial energy invariant and the non-paraxial energy ¯ ow
during the break-up of a N ˆ 3 paraxial soliton.



the inappropriateness of both fundamental and higher-order paraxial soliton
solutions in the non-paraxial regime and, instead, that non-paraxial solitons act

as robust attractors. Features uncovered in the analysis of perturbation-induced

break-up of higher-order solitons appear to be generic in character. We have also

shown that non-paraxial analysis and/or inverse-scattering theory can be used to

predict the parameters of soliton formation beyond the paraxial regime. Given the

fundamental role that paraxial solitons have played in nonlinear optics, the explicit
mathematical and computational features reported in this work are also expected to

have important implications for analysis and simulation of non-paraxial solitons in

systems of higher dimension and when additional higher-order eå ects are taken

into account.
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