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The theory of ultrabroadband multifrequency Raman generation is extended, for the first time, to allow for
beam-propagation effects in one and two transverse dimensions. We show that a complex transverse struc-
ture develops even when diffraction is neglected. In the general case, we examine how the ultrabroadband
multifrequency Raman generation process is affected by the intensity, phase quality, and width of the input
beams, and by the length of the Raman medium. The evolution of power spectra, intensity profiles, and global
characteristics of the multifrequency beams are investigated and explained. In the two-dimensional trans-
verse case, bandwidths comparable to the optical carrier frequency, spanning the whole visible spectrum and
beyond, are still achievable. © 2000 Optical Society of America [S0740-3224(00)01408-9]
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1. INTRODUCTION
Ultrabroadband multifrequency Raman generation
(UMRG) is unique among nonlinear optical interactions
in terms of the number of distinct frequencies of compa-
rable energy that can be generated.1–13 UMRG differs
from conventional Raman conversion schemes in that two
input beams of comparable intensity and shape are em-
ployed whose frequency separation matches the highest-
gain Raman resonance of the medium. This scheme is
called resonant symmetric pumping, and its advantage is
that a very wide comb of both Stokes and anti-Stokes
components is rapidly generated.

With H2 gas as the Raman medium, beams containing
several tens of frequency components are possible, while
air at atmospheric pressure has the potential for generat-
ing beams with well over 100 frequency channels.5 Al-
though transverse effects have received considerable at-
tention in the context of conventional Raman geometries,
the theory of UMRG has to date been based exclusively on
plane-wave analyses. Given that narrow focused beams
are regularly used to create high intensities in UMRG ex-
periments, the role of beam-propagation effects clearly
needs to be examined. In this paper we present the first
theoretical investigation of UMRG in which transverse ef-
fects in one and two dimensions are taken into account.

2. MODEL EQUATIONS
To model transverse UMRG, the total electric field
ET(x8, y8, z, t) is expanded in terms of a set of individual
beams Fn(x8, y8 , z, t) whose carrier frequencies are
given by vn 5 v0 1 nvR , where n 5 0, 6 1, 6 2 ,... ,v0
and vR are the pump frequency and the Stokes shift, re-
spectively, and x8, y8, and z are the transverse and the
longitudinal coordinates. We write ET(x8, y8, z, t)
5 (nFn(x8, y8, z, t)exp@i(vnt 2 knz)#, in which Fn is a
complex amplitude profile and kn is the z component of
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the propagation vector of the nth beam; kn 5 vn /c
1 Dkn 5 kn

0 1 Dkn , and Dkn is the momentum mis-
match arising from dispersion. For a local time frame t
5 t lab 2 z/c, the coupled propagation equations take the
form
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Here, ¹ t8
2 is the (diffractive) transverse Laplacian, r is the

molecular number density, a12 is a coupling constant de-
termining the Raman gain (see below), Dn 5 (Dkn
2 Dkn21)2(Dk0 2 Dk21) 5 (kn 2 kn21)2(k0 2 k21) is
a composite momentum mismatch,14,15 and q is a complex
variable characterizing the state of the medium that
evolves in time according to
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in which T2 is the dephasing time of the medium. The
variation of the refractive index of H2 with frequency is
assumed to follow a Cauchy-type dispersion relation:
mn 5 1 1 d0V0

2d/(V0
2 2 vn

2), where d is gas density,
d0 5 1.4 3 1024 amagat21 is a constant, and V0/2pc
5 1.17 3 1025 cm21 is an effective resonant
frequency.16 It is well known that n2 , the coefficient for
nonlinear refraction, is particularly small for H2 gas. For
the purposes of this paper we include only linear refrac-
tion in the modeling, and hence self-focusing effects are
assumed negligible. We consider pump beams derived
from the second harmonic of a Nd-doped yttrium alumi-
num garnet laser (v0/2pc 5 18 900 cm21) and a Raman
sideband that is generated by conventional stimulated
Raman scattering (SRS) techniques. At atmospheric
2000 Optical Society of America
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pressure and room temperature the Raman line with the
highest gain coefficient ( g 5 0.2 cm GW21) corresponds
to the S(1) rotational transition (vR/2pc 5 587 cm21)
and T2 . 2 ns.

It is convenient to recast Eqs. (1) and (2) into dimen-
sionless form. We define constants A 5 a12T2/2\ and B
5 pra12v0 /c and the dimensionless variables: t
5 t/tp , Z 5 gI0z, x 5 x8/wp , y 5 y8/wp , An 5 Fn /F0 ,
and P 5 q/AI0 , where g 5 2AB (the gain coefficient at
v0), F0 is the peak amplitude of the pump field, I0
5 uF0u2, tp is the input pulse width, and wp is the half-
width of a reference Gaussian beam. The set of normal-
ized dispersive mistunings gn 5 Dn /gI0 is also intro-
duced.

We now have a set of equations describing the propa-
gation, in Z, of the nth normalized electric field envelope
An(x, y, Z, t) and an equation for the time evolution of
the polarization wave P in the medium:
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where ¹ t
2 5 ¹ t8

2 /wp
2 is a scaled transverse Laplacian and

an characterizes diffraction at vn . To give an intuitive
measure of the strength of diffraction at v0 , and how this
varies across the Raman spectrum, it is useful to consider
the free-space propagation of a continuous-wave Gauss-
ian beam in each of the frequency channels. At the pump
frequency this beam would have a normalized diffraction
length of ZD 5 gI0LD , where LD 5 k0

0wp
2/2 is the dis-

tance over which the beam broadens to twice its width.
The corresponding diffraction length in the nth channel
would be given by LD

(n) 5 (vn /v0)LD . Defining an SRS
gain length as LR 5 1/gI0 , an can be expressed in terms
of a ratio of lengths: an 5 LR/4LD

(n). These coefficients
thus quantify the relative strength of diffraction and SRS
in each frequency channel. For any particular configura-
tion, where the system is evolved from Z 5 0 to Z
5 Zmax (i.e., from z 5 0 to z 5 zmax), the absolute level of
diffraction can be deduced from the value of Zmax /ZD
5 zmax /LD .

The simultaneous solution of a very large number of
coupled four-dimensional equations clearly presents an
insurmountable computational challenge in terms of the
requirements of both time and memory. However, we
found in earlier work2 that UMRG is generally most ef-
fective when tp is larger than approximately 8T2 and that
this quasi-steady-state regime can be accurately modeled
by considering the limit T2 /tp → 0. In this paper we
thus investigate transverse UMRG under steady-state
conditions by setting
P 5 (
j

Aj Aj21* exp~2ig j Z !. (5)

Equation (3) is solved numerically using a split-step Fou-
rier method17 in which each Laplacian is implemented in
the spatial-frequency domain whereas other terms are
solved in real space by finite-difference techniques. The
solution of the steady-state model still demands excep-
tionally large resources, so only one transverse coordinate
is considered before progressing to simulations of the full
two-dimensional (2D) transverse model. We will show
that even in the one-dimensional (1D) system, transverse
effects can result in quite dramatic modifications to the
predictions of plane-wave theory. Moreover, although
2D simulations are strictly necessary to obtain accurate
quantitative results, it will be shown that 1D transverse
modeling yields surprising good overall agreement with
results of the higher-dimensional system.

3. PLANE-WAVE ULTRABROADBAND
MULTIFREQUENCY RAMAN GENERATION
In this section, key results from the steady-state plane-
wave system (an 5 0) are presented. This permits the
introduction of terminology and concepts that are neces-
sary to interpret the more complex behaviors of the 1D
and 2D transverse solutions. In conventional SRS, a
single intense beam at the pump frequency v0 is con-
verted to a Stokes beam frequency v21 5 v0 2 vR . For
high dispersion, and before significant depletion of the in-
put energy, this process is described by

dA21
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yielding uA21(Z)u2 . uA21(0)u2 exp(Z) and thus exponen-
tial amplification of an existing Stokes wave A21(0).
Taking pump depletion into account, one arrives at the
sequence of events depicted in Fig. 1(a). Typically,18 the
threshold for generating a Stokes wave from background
noise to a level of 1% of the pump energy is Z 5 Zth
. 25. Once the Stokes wave is established, it can lead
to the generation of a second Stokes component at v22
5 v21 2 vR , and so on. This cascade of frequency gen-
eration is nonparametric because each new frequency is
required to exist at some level so that it can be amplified.
Energy is transferred only to lower frequencies and, at
any one distance, there can be at most only two distinct
waves of comparable energy. Thus the generation of a
spectrum of many frequencies is not possible with this
configuration.

Generalizing considerations to a three-wave system,
and a small but finite level of dispersion (g1 ! 1), one ar-
rives at the following expressions governing the evolution
of the Stokes, pump, and anti-Stokes waves:
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Fig. 1. Evolution of plane-wave intensities at distinct frequencies as a function of normalized propagation distance; individual curves
are labeled with the appropriate channel number n: (a) conventional (single pump beam) stimulated Raman scattering (SRS); (b)–(d)
the effect of symmetric two-color pumping. (b) High dispersion ultimately results in a single (nonparametric) downconversion ladder
that is similar to conventional SRS. (c),(d) A low level of dispersion; significant parametric conversion over a relatively short propaga-
tion distance is demonstrated.
dA1

dZ
5

v1

2v0

@2uA0u2A1 2 A21* A0
2exp~ig1Z !#. (9)

Two types of terms can be distinguished on the right-
hand side of Eqs. (7), (8), and (9): terms containing uAju2,
(e.g., uAju2Aj21 or 2uAju2Aj11) represent nonparametric
processes, whereas the remaining dispersion-dependent
parametric terms involve two distinct waves generating a
third and thus effect frequency conversion without the
need for an initial seed.

In the limit of exact phase matching, g1 5 0, all three
waves can be considered as real. If one then attempts to
amplify a small Stokes seed using an intense pump wave,
the parametric term in Eq. (9) gives rise to a negative
anti-Stokes component. The second term on the right-
hand side of the Stokes equation then results in attenua-
tion of the seed that one is trying to amplify. The growth
of an antiphase wave at v1 thus leads to an abrupt end to
Stokes amplification. The way to avoid such suppression
of the Stokes gain, and simultaneously allow anti-Stokes
generation, is to introduce finite dispersion.18 This dis-
persion has to be small so that the parametric terms os-
cillate sufficiently slowly that they can still make a con-
tribution to the system.
While g1 has been defined as the axial dispersion for
collinear waves, it can also be expressed in a slightly more
general form for the three-wave system that encompasses
noncollinear geometries: g1 5 uk1 1 k21 2 2k0u/gI0 .
In later sections, when finite beams and diffraction are
considered, we will continue to parametrize dispersion us-
ing g1 defined as a longitudinal mistuning. However,
such angular phase-matching considerations will be built
into the modeling and expressed through the transverse
components of the wave vectors of the interacting fields.
For many years it was believed that the most efficient
way to generate multiple anti-Stokes waves was to in-
clude a small amount of angular dispersion in the system
by injecting a weak Stokes wave at a finite angle to the
pump beam.19 One problem with this geometry is that
noncollinear waves lead to a low interaction volume
which, in turn, severely limits the number of waves that
can be generated.

Let us now consider the consequences of launching two
collinear waves of equal amplitude. To facilitate a direct
comparison with SRS using a single pump beam, for the
moment we will examine the case of input beams at the
pump and the anti-Stokes frequencies, A1(Z 5 0)
5 A0(Z 5 0) 5 1, even though in the remainder of this
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paper we deal with symmetric pumping at v0 and v21 .
Irrespective of the level of dispersion, in the initial stages
of propagation, dA0 /dZ . uA1u2A0/2 and A0(Z) . 1
1 Z/2. This implies a rapid transfer of energy from the
higher-frequency input beam to the one with lower fre-
quency. In the particular case of low dispersion, g1
. 0, one also has that

dA21 /dZ . A1A0
2/2 . 1/2. (10)

This yields A21(Z) . Z/2 and a threshold of 1% paramet-
ric conversion to the Stokes frequency of Zth . 0.2. A
comparison of this value with the corresponding thresh-
old for single-pump SRS, Zth . 25, immediately demon-
strates the relative efficiency of frequency generation un-
der two-color pumping. Expression (10) also quantifies
the importance of symmetric pumping for strong para-
metric conversion.

To explore the consequences of some of the above con-
siderations, we present results from simulations of the
plane-wave model that include many Stokes and anti-
Stokes components. First, we investigate the effect of
two-color pumping in the high-dispersion regime (g1
. 10). Setting A0 5 A21 5 1 and all other waves to
zero at Z 5 0 gives the results shown in Fig. 1(b). While
one might have suspected that two simultaneous down
conversion cascades would have resulted, it is found that
the initial transfer of energy to the lower-frequency input
channel leads to a single ladder of conversions and thus a
maximum of only two waves at any large Z. For the
same initial conditions we now lower the level of disper-
sion to g1 . 0 and allow parametric processes to make a
significant contribution. Figure 1(c) shows that these
processes result in the generation of numerous waves
over relatively short propagation distances. Indeed, five
distinct frequencies are clearly visible at Z 5 1.5. A
more detailed examination of this case, Fig. 1(d), confirms
the prediction of Zth . 0.2 and demonstrates that a wide
spectrum of pairs of frequencies is generated. The key
differences between UMRG and geometries that use a
weak seed and angular dispersion are thus that symmet-
ric pumping maximizes the strength of parametric fre-
quency generation and that collinear propagation allows
this efficient conversion to continue to large Z.

4. ONE-DIMENSIONAL TRANSVERSE
ULTRABROADBAND MULTIFREQUENCY
RAMAN GENERATION
In this section the full complexity of transverse UMRG is
constrained by allowing the spatial structure of the
propagating fields to develop in only one transverse di-
mension. This particular system has a physical corre-
spondence to frequency generation in a narrow gas-filled
waveguide, and its modeling permits a thorough explora-
tion of certain qualitative aspects of transverse UMRG.
A relatively large number of transverse points can be
used, typically 2048 in each frequency channel, and this
also allows extensive checking of the required transverse
sampling densities for each parameter regime.

The first, and perhaps the most fundamental, question
to ask is whether diffraction is intrinsically detrimental
to ultrabroadband light generation. One aspect of this is
whether diffractive coupling, in combination with Raman
nonlinearity of the medium, leads to the growth of any
spontaneous transverse instabilities as the fields propa-
gate. We tested for this possibility in the context of
plane-wave pump fields. Because one would expect the
characteristic transverse length of any instability to scale
as 1/Aan, investigations were performed for a wide range
of diffractive coupling strengths. One strategy was to
test whether finite numerical precision (representing a
low level of background noise) could be selectively ampli-
fied and lead to spatial structure, even when no finite-
beam effects were explicitly introduced into the system.
However, no such spontaneous structure was found, and
the results obtained were the same as those of plane-wave
modeling with no transverse coupling. As a further test,
the above investigations were repeated with each fre-
quency channel initially flooded with white noise (at a
level of Anoise 5 1023, representing a strong seed for any
instabilities). Once again, results were essentially iden-
tical to those of plane-wave theory; the evolution of the
transverse noise structure that was imposed, and its spa-
tial Fourier spectrum, were examined, and no evidence of
selective noise amplification was found. We concluded
there were no appreciable spatial modulational instabili-
ties present in the system, at least within the regimes we
proposed to study.

A second issue is whether finite-beam effects alone im-
ply that the propagating fields develop a complex spatial
structure. To investigate this, the case of UMRG with
symmetric Gaussian input beams, A0(x) 5 A21(x)
5 exp(2x2) at Z 5 0, in the absence of both diffraction
and dispersion, an 5 gn 5 0, was considered. Figure 2
shows the evolution of the transverse profile at the first
Stokes frequency. Without dispersion or diffraction in
the system, Eq. (3) has an exact and stable solution.1

This is, of course, reflected in the evolution of the trans-
verse field in each of the frequency channels. The slow
convergence of the first Stokes beam in the latter stages
of this simulation indicates that at Z 5 100 the global so-
lution $An(x, Z) : n 5 0, 6 1, 6 2 ,...% is close to a fixed
point of the system. However, both the Z 5 100 solution
and the transient evolution that precedes it exhibit strong
transverse modulations.

The benefits of using dimensionless variables becomes
apparent in the physical interpretation of the solutions

Fig. 2. Evolution of the first Stokes beam over a normalized dis-
tance of Z 5 Zmax 5 200. Pump energy is rapidly converted
into new frequencies during propagation, and the interplay of
Raman and finite-beam effects alone is shown to lead to a signifi-
cant transverse structure (an 5 gn 5 0).
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calculated. For example, negligible dispersion (D1 5 0
and thus g1 5 D1 /gI0 5 0) implies that the actual value
of the SRS gain gI0 is not specified. Transverse profiles
at each Z 5 gI0z (the SRS gain–length product) can then
be interpreted as applying to any peak beam intensity I0 ,
provided that a suitable distance z is specified. An alter-
native viewpoint is that the dependence of the dispersion-
less plane-wave solution on pump intensity is mapped out
across the transverse plane at each Z. The development
of spatial structure is most rapid at the center of the
beam because the higher light intensity there drives
stronger (parametric) frequency conversion. Because Z
is defined in terms of the peak input intensity, I0 , the
threshold for 1% conversion at beam center is given by
the value for planar symmetric pumping Z 5 Zth . 0.2.
This is in marked contrast to the rate of frequency con-
version in the wings of the beam. It is this range of con-
version rates across the beam that quickly gives rise to a
complex transverse structure as the beam evolves. As
Z → `, the transverse profile converges to a fixed point
as the polarization wave becomes quenched owing to gain
suppression. When an 5 0, this requires that
limZ → `( jAj A j21* 5 0 at each x; thus locally P → 0 and
]An /]Z → 0.

An important global characteristic of the UMRG pro-
cess is the bandwidth generated. This can be defined as
either the number of frequency channels carrying compa-
rable energy, BN , or the actual frequency range that
these channels span, Bv . Under the above conditions of
an 5 gn 5 0, BN converges to v0 /vR . 32 at Z . 100,
and thus Bv . v0 , as predicted by dispersionless plane-
wave analysis.1 When a small amount of diffraction is
then introduced, we find that it can play an analogous
role to dispersion in the system; it can offset exact phase
matching and lead to an extension of the longitudinal in-
teraction length.2 This, in turn, can result in BN greater
than v0 /vR . However, realistic considerations require
both diffraction and dispersion to be accounted for.

In plane-wave modeling, a level of dispersion given by
g1 . 2.75 3 1023 was found to maximize the bandwidth
generated.2 It is necessary to ask how diffraction will af-
fect this optimization. Figure 3 shows the result of vary-
ing the pump-beam diffraction length LD . We have cho-
sen I0 5 5 GW cm22 to yield g1 . 2.75 3 1023, whereby
Z 5 200 corresponds to a propagation distance of 2 m.
Increasing levels of (relatively strong) diffraction, in the
presence of dispersion, is shown to decrease the band-
width generated. This is an important consideration for
experiments that employ tightly focused input beams.
Longitudinal dispersive mistunings and transverse dif-
fractive effects appear to contribute to the system in an
additive fashion and to push the point of optimum disper-
sion toward lower g1 (and hence higher pump intensities).
However, we stress that Bv may still be of the order of the
pump carrier frequency, even when diffraction is appre-
ciable. Another important characteristic of ultrabroad-
band light is the quality of the resultant multifrequency
beam. Figure 4 shows snapshots of the evolution of the
total (incoherent) beam intensity I((x) 5 ( juAj(x)u2 at
distances corresponding to z/LD 5 0.5 and 1. Although
plane-wave analysis is clearly invalid in such cases, the
transverse distribution of energy can be seen to remain
reasonably axial, and, aside from sharp local peaks, the
overall shape corresponds to that of a single multifre-
quency beam.

5. TWO-DIMENSIONAL TRANSVERSE
ULTRABROADBAND MULTIFREQUENCY
RAMAN GENERATION
The 1D results demonstrate the importance of including
diffractive effects in studies of UMRG, but there are few
experimental situations for which a single transverse di-
mension is appropriate. The results presented in the re-
mainder of this paper therefore include propagation ef-
fects in two transverse dimensions. We begin these 2D
investigations by examining the dependence of bandwidth
BN on the level of mistuning introduced by background
dispersion g1 . Figure 5 shows results at fixed Z 5 60 for
two pump-beam widths, corresponding to normalized dif-
fraction lengths of ZD 5 180 and ZD 5 600. The differ-
ence between these two cases is highlighted by plotting
the results on a scale that starts at BN 5 12. For fixed

Fig. 3. Bandwidth BN (in units of the Stokes shift) of 1D trans-
verse multifrequency beams as a function of normalized distance
Z. A 2-m chamber of H2 gas at 1-atm pressure is modeled. Dis-
persion and diffraction are accounted for (an Þ 0, gn Þ 0, and
ZD is the normalized diffraction length of the v0 pump). The
dispersion-optimized plane-wave curve is also shown (dotted).

Fig. 4. One-dimensional transverse profiles, at normalized dis-
tances Z 5 100 and Z 5 200, of the total (incoherent) intensity
(I() of the multifrequency beam. Parameters are for H2 gas at
1-atm pressure and relatively strong diffraction (ZD 5 200).
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pressure and temperature of the Raman medium, g1 is in-
versely proportional to peak input intensity I0 , and this
parameter is also shown in Fig. 5. While it was possible
to perform 1D simulations up to Zmax 5 200, computa-
tional memory requirements restrict 2D explorations to
Zmax 5 60. This is because, once a sufficient transverse
sampling density is determined, a maximum of 5123512
transverse points in each frequency channel dictates the
size of the transverse grids. Diffractive broadening of
the interacting beams then imposes an upper limit on the
propagation distance that can be accurately modeled.

As suggested by 1D investigations, to obtain 2D beams
with bandwidths comparable to those of plane-wave con-
figurations, one generally requires higher input intensi-
ties. This can be understood in terms of the evolution of
the light intensity at each transverse point. In the
plane-wave case, energy launched at a specific transverse
point is implicitly confined and remains at that location.
In 1D beam configurations, input energy diffracts, and
this generally leads to lower intensities in the region
where the energy was launched. Progressing to 2D
beams, diffraction in an additional transverse direction
results in a further reduction in local intensities during
propagation. Nevertheless, Fig. 5 reveals the existence
of a broad plateau region around I0 5 30 GW cm22,
within which the bandwidth generated is relatively insen-
sitive to the value of pump intensity. We have also veri-
fied that this feature appears for values of ZD that are in-
termediate to those used in Fig. 5.

By focusing attention on this plateau region, more gen-
eral conclusions regarding the evolution of the bandwidth
generated, and its dependence on pump diffraction
length, can be drawn. Hereafter, we consider a fixed
value of pump intensity I0 5 30 GW cm22. Figure 6
charts the growth of bandwidth up to Zmax 5 60 and
shows the effect of varying the input-beam width. For 1
atm of H2 gas, this pump intensity and normalized propa-
gation distance imply a Raman cell of length 10 cm.
Since ZD is proportional to intensity, the values of nor-
malized diffraction length used in Fig. 3 now correspond
to narrower input beams. A comparison with 1D beam
evolution reveals that, by focusing down the pumps to
narrower beams of higher intensity, bandwidths obtained
with 2D beams are only marginally smaller and are still
of the order of the pump carrier frequency.

Such physical considerations raise other questions of
interest: What role is played by the quality of the input
beams, and what are the consequences of launching ei-
ther converging or diverging beams into the gas chamber?
Through further simulations and examination of the ini-
tial stages of conversion, we have found that the trans-
verse phase profile of each input beam is rapidly
scrambled after entering the Raman medium, and that
this renders the detail of the incident phase profile essen-
tially irrelevant. Transverse UMRG is thus robust with
respect to the focusing character and to the phase quality
of the sources used. This leaves the peak intensity and
the beam width of the pumps, along with the total propa-
gation distance, as key parameters for bandwidth optimi-
zation.

Typical wavelength distributions of the bandwidth gen-
erated are shown in Fig. 7, where the power spectrum
(transversally integrated intensity versus wavelength) is
plotted at three normalized distances. This particular
configuration corresponds to the ZD 5 600 curve of Fig. 6
and thus to an input beam diffraction length of 1 m. Two
vertical lines are also drawn in Fig. 7 to delimit ultravio-

Fig. 5. Dependence of bandwidth BN of 2D transverse multifre-
quency beams on the intensity and the diffraction length of the
pump beams (Z 5 60).

Fig. 6. Evolution of the bandwidth of 2D transverse beams
along a 10-cm Raman cell. Three normalized pump-beam dif-
fraction lengths are considered (I0 5 30 GW cm22).

Fig. 7. Evolution of the power spectrum of a multifrequency
beam. The limits of the visible spectrum are indicated by two
vertical lines. The pump parameters are I0 5 30 GW cm22 and
ZD 5 600.
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let (UV), visible, and infrared (IR) regions. The input
beams are positioned near the center of the visible spec-
trum and reside at 0.529 mm and 0.546 mm. This latter
wavelength is that of the first Stokes beam and is also as-
sociated with the strong peak in both the Z 5 20 and Z
5 40 curves. The fact that, in the very first stage of fre-
quency conversion, a large amount of pump energy is
transferred into the first Stokes channel appears to have
a residual effect on the power spectrum over much more
significant distances.

Because parametric processes generate new frequen-
cies in pairs, one could expect that spectra would be
roughly symmetrically distributed around the input fre-
quencies. However, Fig. 7 shows that the combined ef-
fect of dispersion and diffraction results in bandwidth
growth that progressively redistributes power toward the
red and IR regions of the spectrum. This feature is made
more pronounced by the fact that, whereas each spectrum
consists of a comb of equidistant frequencies vn 5 v0
1 nvR , on a wavelength scale, Raman lines are not uni-
formly spaced. The physical origin of asymmetric energy
redistribution is that UMRG also involves (phase-
insensitive) nonparametric processes that transfer energy
only to lower-frequency channels; parametrically gener-
ated components can provide strong seeds for this type of
downconversion.

To illustrate the transverse profiles of beams in the
constituent frequency channels, we consider the case of
relatively strong diffraction. Such smaller pump-beam
widths generally result in reduced bandwidth, when com-
pared with broader input beams of the same intensity,
but diffractive spreading is greater, and this allows the
variation of the transverse structure across the Raman
spectrum to be inspected more easily. An array of indi-
vidual intensity profiles is shown in Fig. 8. Moving down
column 1, the first two beams are IR, and the next four
are in the red region of the visible spectrum. Column 2 is
a continuation of column 1 (downward corresponding to
increasing frequency), and columns 3 and 4 continue this
sequence. The first Stokes and pump frequency channels
are at the bottom of column 2 and at the top of column 3,
respectively. Many of the beams are found to exhibit
complex ring structures. From the 1D results, one can
deduce that the origin of these rings lies in the interplay
of finite-beam effects and the intensity dependence of Ra-
man conversion. A lack of appreciable modulational in-
stability in the system is also further evidenced, since its
presence would tend to break up such rings into necklaces
of spatial filaments.

High-order anti-Stokes beams are generated primarily
through parametric mechanisms. In particular, for blue
and indigo wavelengths (the lower section of column 3
and the top of column 4), beam profiles are generally nar-
rower than those in other regions of the spectrum. This
reflects both weaker diffraction in the higher-frequency
regime and that near-phase-matching conditions exist
when these beams propagate collinearly. At the other
end of the spectrum, toward IR, nonparametric effects
will be stronger, and diffraction is also much more severe.
In the transition from visible to IR frequencies, multiple
ring structures begin to disappear and beams assume the
shape of a single ring. These rings are bright and rela-
tively wide, thus containing more power than higher-
frequency beams. It is their presence that ultimately
limits the propagation distances that can be modeled in
2D transverse simulations. Noting from Eq. (3) that
when a number of adjacent fields, n 5 j 2 1, j, and
j 1 1, become zero and thus the UMRG process is halted,
one can infer that conversion is halted in the dark regions
enclosed by the IR rings and also that any further down-
conversion will result in similar doughnut-shaped beams.

Examination of constituent beam profiles provides
qualitative snapshots of transverse effects for specific
propagation distances and for particular levels of diffrac-
tion. A more comprehensive picture is obtained by defin-
ing quantities that characterize the overall transverse
structure in individual frequency channels and then by
studying how these quantities vary with respect to both Z
and ZD . We first define a mean radius Rn , for the in-
tensity distribution in channel n, as

Fig. 8. Transverse intensity profiles of beams within distinct
frequency channels (Z 5 60, ZD 5 180, and I0 5 30
GW cm22). Moving downward through each column, the carrier
frequency of the light increases, whereas adjacent columns (mov-
ing from left to right) give a continuation of the sequence. In
column 1, the beams are in the infrared regime and then
progress through the red section of the visible spectrum. Col-
umn 2 contains red, orange, yellow, and green beams, whereas
column 3 has green, blue, and indigo components. Column 4
spans the spectral region from indigo, through violet, and into
the ultraviolet.
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Rn 5

E
0

`

r2uAn~r !u2dr

E
0

`

ruAn~r !u2dr

, (11)

where r is the radial coordinate in the transverse plane.
Rn measures the radius of doughnut-shaped beams or, in
the case of multiple ring structures, yields a value for the
mean ring radius. Second, we define an rms beam width
wrms as the radius within which there is 86% of the beam
energy. For a Gaussian amplitude profile, wrms yields
the 1/e point, and for comparative purposes we normalize
values of wrms to those defined by the input beams.

Rn and wrms are plotted as a function of frequency in
Figs. 9(a) and 9(b), respectively, where two propagation
distances and three input beam widths are considered.
The low-frequency (n , 210) sections of the Z 5 30
curves indicate that IR rings also form at earlier stages of
propagation, whereas the Z 5 60 data show that these
rings undergo rapid expansion for each level of diffraction
considered. The sharp definition of IR rings is reflected

Fig. 9. Variation of beam radii with respect to frequency at two
normalized propagation distances (Z 5 30 and 60) and for three
levels of diffraction (ZD 5 180, 300, and 600). (a) Mean ring ra-
dii Rn , as defined in the text; (b) rms beam widths wrms are plot-
ted.
in the similarity between the evolution of Rn and wrms in
this part of the frequency domain. At higher frequencies,
beyond indigo and into UV, diffraction is weaker, but
stronger dispersion acts to suppress parametric genera-
tion of on-axis beams. Particularly for narrower input
beams, such as those shown in Fig. 8 that have ZD
5 180, there is a marked increase in beam radii. This
feature can be attributed to the formation of the weak
rings that can be seen in Fig. 8. Interestingly, Fig. 9 in-
dicates that the phase-matching conditions for the exis-
tence of high-frequency rings depend on the presence of
both strong dispersion and moderate diffraction.

A comparison of the vertical scales of the Z 5 30 and
Z 5 60 curves of Fig. 9 reveals that the degree of beam
expansion, across the whole frequency range, is much
larger than one would expect on the basis of the pump dif-
fraction lengths. This rapid and global spreading merits
further investigation. In Fig. 10, we quantify the degree
to which the whole multifrequency beam diffracts by plot-
ting the evolution of the rms width that defines 86% of the
total intensity I((x). Results for three pump diffraction
lengths are displayed, along with a curve for free-space
propagation of the narrowest input beam considered
(shown dotted). These data make it abundantly clear
that a notional Gaussian pump beam parametrization is
misleading, as it grossly underestimates (by approxi-
mately two orders of magnitude) the true extent of dif-
fractive spreading. Because a diffraction length is gen-
erally proportional to the square of the characteristic
scale of a transverse structure, one could explain this dif-
ference in terms of additional spatial structure that is ap-
proximately an order of magnitude smaller than the
input-beam width. In fact, such a structure does arise
from the interplay of UMRG and finite-beam effects (see
Fig. 2). Moreover, as bandwidth is generated, the global
beam radius will be heavily weighted by the relatively
powerful IR rings, and these components experience
strong diffraction owing to the frequency dependence of
the an coefficients.

The data of Figs. 9 and 10 could also be interpreted in
terms of the spatial quality Mn

2 of each constituent beam,

Fig. 10. Evolution of the rms beam radius of the whole multi-
frequency beam with respect to normalized propagation distance
for three levels of diffraction (ZD 5 180, 300, and 600). The cor-
responding evolution for free-space propagation of a Gaussian
beam at the pump frequency and with ZD 5 180 is also shown
(dotted curve).
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giving the number of times that each beam is wider than
an ideal Gaussian beam of the same waist. Indeed, these
beam-quality parameters could be incorporated into an
alternative definition of LD

(n), the diffraction length for
each frequency channel, by simply letting vn → vn /Mn

2

in the expression for LD
(n).

6. CONCLUSIONS
In this paper we have presented results from simulations
of ultrabroadband multifrequency Raman generation
(UMRG). Key concepts and terminology were introduced
through analysis and modeling of plane-wave UMRG.
The importance of symmetric two-color pumping was
highlighted in this context. Considering only one trans-
verse dimension, we reported an absence of modulational
instabilities but that finite-beam effects alone (without
diffraction) result in significant transverse effects. For
both 1D and 2D transverse beams, the evolution and op-
timization of bandwidth were explored with respect to the
intensity and width of the input beams. Results were
found to be surprisingly insensitive to either the focusing
character or the phase quality of the pump beams.

We showed that beam diffraction generally leads to a
requirement of higher input intensities, over that of
plane-wave configurations. However, even when trans-
verse effects are fully taken into account, bandwidths of
the order of the carrier frequency that span the whole vis-
ible spectrum and beyond result. This conclusion is con-
sistent with experiments7–13 that have involved a range
of different Raman systems and that have similarities to
the specific configuration modeled here. The evolving
power spectra and beam shapes in individual frequency
channels have been examined and explained in terms of
the constituent parametric and nonparametric process,
phase-matching conditions, and the frequency depen-
dence of diffractive coupling lengths. We also examined
the dependencies of mean ring radii and rms beam radii
of light profiles at individual frequencies and have identi-
fied distinct regimes within the generated Raman spec-
tra.

Finally, it was shown that diffraction of the UMRG
beam as a whole is much greater than one would expect
from the parameters of the Gaussian input beams. This
was interpreted in terms of the interplay of finite beams
and the intensity dependence of Raman conversion, along
with particular features of the transverse effects re-
ported. Such nonlinear beam broadening, which could be
called Raman defocusing, is evidently an important effect
in high-power beam propagation. In the particular con-
text of UMRG in air at atmospheric pressure,5 the Raman
gain coefficient is much lower than the value for H2 gas,
and this dictates that longer propagation paths need to be
considered. One consequence of these greater distances
is that self-focusing effects also need to be taken into ac-
count. However, one expects there to be a trade-off be-
tween beam narrowing owing to nonlinear refraction and
beam broadening in the form of Raman defocusing in at-
mospheric UMRG.
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