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Abstract

The modes of unstable optical resonators possess fractal character. In this paper, the fundamental question of how
and why fractals originate in one of the simplest linear optical systems is addressed. The answer is related to the fact
that unstable resonator modes consist of a superposition of Fresnel diffraction patterns with effectively random phases.
A connection is established between the mode eigenvalues and their fractal dimensions, and the consequent prediction
that higher-order modes should exhibit lower fractal dimension is confirmed by numerical demonstration. © 2001

Elsevier Science B.V. All rights reserved.
PACS: 42.60.Jf; 42.60.Da; 47.53.4n
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When two spherical mirrors face each other on
a common axis to form an unstable optical reso-
nator, a system is formed whose modes possess
fractal structure [1,2]. No specialised hardware
is required and no fractal boundary conditions
are involved. This remarkable finding may have
practical implications for novel laser designs and
applications in the probing of natural fractal
structures; it may also lead to a better under-
standing of phenomena such as chaotic scattering
and optical pattern formation.

Most laser systems are based on stable optical
cavities in which light rays are trapped forever
between the mirrors and the cavity modes are

* Corresponding author. Fax: +44-20-7594-7714.
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concentrated near the cavity axis. In contrast, the
rays within an unstable cavity run away from
the axis and ultimately escape; correspondingly
the cavity modes fill the entire resonator volume
and energy spills out at the sides. The mode pro-
files are formed from repeated diffraction of the
field circulating in the cavity at the transverse
outer boundary, and the shape of the mirrors (or
whatever component defines the aperture of the
system) is therefore critical [3].

In previous work [1-3], we demonstrated the
fractal nature of unstable resonator modes and
studied their detailed properties. The fractal di-
mensions D of typical mode profiles generated in a
high Fresnel number (upper branch) confocal slit
resonator were calculated, and the dynamic range
of the fractal structure was shown to extend over
many decades [1]. Mode patterns were subsequently
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computed in two transverse dimensions [2,3] and,
although calculations of D were not practical at
the lower Fresnel number used in this case, the
patterns clearly exhibited the general self-similar
features associated with fractal structures.

In the present paper, the fundamental question
regarding the origin of the fractal features is ad-
dressed. How is it that one of the simplest linear
optical systems imaginable possesses such an un-
expected property? The answer to this question
may have an important bearing on fractal forma-
tion in other areas of physical science.

It was argued in Ref. [1] that self-similarity
arises from the inherent round-trip magnification
M of an unstable resonator; the fact that the beam
is expanded by a factor M each time it cycles the
cavity implies that the mode is constructed from
multiple patterns of different sizes. This picture,
which is of course based on ray optics in which
diffraction is neglected, may perhaps be applicable
under certain very restrictive conditions, at par-
ticular planes in self-imaging unstable resonators
for instance [4]; this is the case treated by Courtial
and Padgett [5]. But in all other circumstances
diffraction plays a central role; indeed it is almost
certainly diffractive effects that render the modes
not rigorously but only statistically self-similar
[1,2].

In this paper, we present a detailed interpreta-
tion of the origin of the fractal structure in which
full account is taken of diffraction; the analysis is
not limited to particular positions within the cav-
ity. It is shown on the basis of unstable resonator
theory how the appropriate spatial frequency
spectrum for fractal formation originates, a fea-
ture that cannot be explained using geometrical
optics. Semi-analytic methods are employed to
relate the fractal dimension to the mode eigen-
value; the argument suggests that the fractal
dimension should be somewhat smaller for higher-
order modes and we demonstrate that this is in-
deed the case by presenting a specific example.

Fractal structures have a particular signature in
the Fourier (spatial frequency) domain. A profile
is fractal if the angular power spectrum follows a
power law of the form |F(k)|* ~ k* where k is the
angular frequency, and the phases of the Fourier
components are random. In this case, one expects

that the fractal dimension D will be given by
D= (5-5)/2[6). If D = 1.5 for instance (close to
the value observed in Ref. [1]), b =2 and |F(k)|*
obeys an inverse square law. Our key objective
here is to establish the diffractive origin of fractal
mode structure by explaining how these conditions
originate in an unstable resonator. The argument
is based on three main considerations:

(A) In Southwell’s virtual source (VS) method
[7], ' a mode of an unstable resonator is expressed
as a superposition of the Fresnel diffraction pat-
terns cast by a set of virtual images of the defining
aperture of the system. The mode profile is duly
represented as a series containing a constant term
and terms representing the edge waves from each
virtual aperture (see Eq. (5) below). The mode ei-
genvalue determines the relative amplitudes and
phases within the summation.

(B) The spatial frequency power spectrum of a
Fresnel intensity profile can be shown to exhibit an
underlying inverse square law characteristic (see
Eq. (2) below). This is not to imply that a single
Fresnel diffraction pattern exhibits fractal charac-
ter, but rather that a randomly phased superposi-
tion of many such patterns can.

(C) The spatial frequency content of the in-
tensity profile diffracted by a particular virtual
aperture is found to lie within a clearly delineated
frequency band whose limits are readily deter-
mined (see Eq. (4) below). Within the band, the
frequency dependence varies essentially as k=2 (see
B above). Although bands associated with differ-
ent virtual apertures will not necessarily align so as
to maintain the inverse square law dependence, it
turns out that for typical low-order modes, the
overall power law dependence is preserved to a
good approximation. The contributions from dif-
ferent virtual apertures are uncorrelated in phase.

Each of these points is now elaborated in turn.
We take as our example the confocal unstable
resonator of Fig. 1, concentrating on the one-
dimensional (slit resonator) case for simplicity; a
non-confocal cavity can be represented by its
equivalent confocal cavity [8]. The focal lengths of
the convex and concave mirrors are respectively f

! Note that 7 is real and f is complex in this paper.
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Fig. 1. Schematic diagram of a confocal unstable resonator with
magnification M. The aperture of the system is determined by
the smaller convex mirror, whose boundaries lie at x = 4=a. The
rightward component of the lowest order mode approximates to
a plane wavefront X—X shown just as it reaches the convex
mirror

and (L 4 /) where L is the mirror separation. The
resonator is characterised by two key parameters:
the magnification M = 1 + L/f, and the equivalent
Fresnel number Ny = (1/2)(M — 1)Ng in which
the basic Fresnel number N = */L/ and a is the
half-width of the convex (“feedback’) mirror that
defines the aperture of this system.

An observer looking to the left from the refer-
ence plane X—X adjacent to the feedback mirror
sees a corridor of virtual images of the mirror
edges located at lateral and longitudinal coordi-
nates [7]

(xj,2)) = (xa;, (MY = 1)) (1)

where a; = aM’, the index j is 1 for the nearest
aperture, and the centre of the feedback mirror is

-a

Fig. 2. The last three virtual apertures (j = 1-3) in the South-
well sequence, drawn roughly to scale for M = 1.3.

at x =z = 0. Fig. 2 shows the last three apertures
in the sequence, drawn roughly to scale for
M =1.3. In the VS approach, a plane wave
propagates through the corridor, and each virtual
slit becomes the source of a pair of edge waves; it
is these “‘virtual sources” that give Southwell’s
method its name. The resonator mode is formed
on the z =0 plane in Fig. 2 from the interference
of the edge waves with the original plane wave and
with each other. The mode profile at other planes
in the resonator can be determined by subtracting
the appropriate constant distance from z;.

To understand how the spatial power spectrum
of the complete mode is constructed, it is first
necessary to consider the contribution of indivi-
dual apertures. The power spectrum of the Fresnel
intensity pattern formed a distance L from a single
slit of width 2a can be shown to be

sin{ka(1 — k/kei)} 2 |
|P(k)|2 = ( kn ) (k < kcrlt)
0 (k > kcrit)

2)

where ki = 4ma/LZ; in the case of aperture j, a is
replaced by a; and L by z;. |P(k)]* thus has an
underlying inverse square law dependence on k,
and a sharp cut-off at k£ = k..

To a first approximation, each position within a
Fresnel pattern diffracted by a slit is associated
with just two spatial frequency components de-
termined by the angle between the respective edge
waves and the axis. Angle 0 corresponds to spatial
frequency 270/4, and it follows from simple geo-
metry that the two spatial frequencies present at
coordinate x are

~ 27

+a.:
ki(x) ~ X xa;

3)

Al oz
The power spectrum of the entire diffraction pat-
tern, given by Eq. (2), contains spatial frequencies
lying within a band running from k_(a;) =0 to
ki(a;) = 4na;//z; which is the value of ki for
aperture j; the band centre lies at k; = k. (0) =
2na;//z;. However, the range of spatial frequencies
lying within the much narrower confines of the
feedback mirror (—a < x < a) is obtained by set-

ting x = a in Eq. (3), yielding
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This equation defines the limits of the spatial fre-
quency band arising from virtual aperture j across
the entire feedback mirror. As j increases, k. (a)
and k_(a) converge to k; which itself decreases as
M~; this reflects the fact that the profiles from
distant apertures hardly vary across the feedback
mirror. Notice that the relative values of the band
centres of different apertures k; depend only on M,
since Nq is merely a multiplicative constant in Eq.
(4). Whether (for example) the bands from the first
and second apertures overlap, or are separated by
a gap, therefore depends solely on the magnifica-
tion.

According to the VS method, an unstable reso-
nator mode is formed from the superposition of a
plane wave and the edge-waves from the set of N
virtual sources. The mode profile is given by [7]

N

on(r) = 1+ 1> 2 D,(x) ()

J=1

where u = (¢ — 1)/Dyy (called u; in Ref. [6]) and
D, contains the pair of edge waves from aperture j;
under typical conditions, values of N no higher
than 20 yield accurate results [7]. The parameter o
is defined as o =7y/f where y is the (complex)
mode eigenvalue which includes the geometrical
factor f = M % where 6 (= 1 or 2) is the number
of transverse dimensions. Hence o can be regarded
as the eigenvalue with the geometrical component
removed.

A key feature of Eq. (5) is the factor o/, which
controls the weights of the different edge wave
contributions to the overall mode profile. Since « is
close to unity for the lowest-order mode of most
resonators [7], the edge waves from all apertures
are roughly of equal weight, and it follows that, to
a first approximation, the frequency bands from
different apertures align according to the inverse
square law of Eq. (2). At the same time, the phases
of the different edge waves are effectively random.
Detailed examination shows that each edge wave
component contains a phase factor, that depends
on the precise distance from the position on the
feedback mirror to the virtual source in question;
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Fig. 3. Intensity profiles for the lowest-order and fourth-order
even modes for the cavity of Fig. 1, in the range x = 0 to | and
for M = 1.9 and N.q = 703.3.

for a particular coordinate x, this gives a set of
uncorrelated values as required for fractality.
Finally, we present a numerical demonstration
based on a confocal slit resonator with M = 1.9
and Ngq = 703.3. Fig. 3 shows the central portions
of the profiles for the lowest-order and fourth-
order even modes (modes 1 and 4) computed by
the VS method. The corresponding power spectra
displayed in Figs. 4 and 5 respectively, were ob-
tained by taking the Fourier transforms of the
intensity profiles within a much wider window, but
with soft apodisation to attenuate the profile for
|x| > a. The figures are therefore reasonable rep-
resentations of the spatial spectra of the modes
across the feedback mirror. Different components
within the spectra are associated with particular
apertures in the VS scheme, and the aperture
numbers are used as labels in the figure. The low
and high frequency limits of the bands from ap-
ertures 1 and 2 are marked separately (e.g. 1L, 1H,
etc.). Notice that 2H lies to the right of 1L, indi-
cating that these bands overlap; the disturbance in
the spectrum in the overlap region is caused by
interference. Fig. 4 confirms that, because o = 1
for the lowest-order mode, the general inverse
square law dependence in the power spectrum
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Fig. 4. Computed spatial power spectrum of the intensity profile
for the lowest-order mode in Fig. 3. The frequency bands as-
sociated with individual virtual apertures are indicated. For
apertures 1 and 2, the low- and high-frequency limits (L and H
respectively) are shown separately. The broken line has a gra-
dient of —2.

1.0E-2

1.0E-3

1.0E-4 3

b 2Ly

i
i\

\
!

!

intensity
>
m
&

Lo LU
—

\

'\ 1H
Il
| V“ ‘ nm

1.0E-6

1.0E-7

M

10 100 1000 10000
spatial frequency

1.0E-8 T

Fig. 5. Computed spatial power spectrum for the fourth-order
even mode in Fig. 3. The broken line has a gradient of —2.5.

(as referenced by the broken line) is maintained
across a significant dynamic range. On the other

hand, for mode 4 (eigenvalue o = 0.73), the higher
frequency bands (lower j) are proportionately
attenuated, and the effect is to tilt the entire spec-
trum, a feature that is apparent in Fig. 5 in which
the gradient of the broken line is now —2.5.

As noted earlier, the expected relationship be-
tween the fractal dimension D and the slope of the
power spectrum (—b) is D = (5—5)/2. By con-
sidering the effect of o on b, it can be deduced that
for two modes p and ¢, the difference in their di-
mensions is

) glogocp—logocq (©6)
2logM

For oy = 1.01, oy = 0.73, and M = 1.9, this yields
D; — Dy = 0.25. Direct verification of the relation
D = (5—5)/2 is complicated by the fact that, al-
though numerous methods for measuring the ab-
solute value of D are available, different methods
tend to give significantly different results when
applied to real data [9]. For our profiles, for
example, Hurst analysis gives D; = 1.84 and
D4 =1.56, while the corresponding values obtained
by box counting are 1.64 and 1.41. Fortunately,
changes in D across different data sets are much
less dependent on the particular dimension algo-
rithm employed [9]; indeed the values of (D; — Ds)
are 0.28 and 0.23 for Hurst and box counting re-
spectively, in fairly good agreement with each
other and in good agreement with the value of 0.25
predicted by Eq. (6).

In conclusion, we have shown semi-analytically
how the spatial frequency spectra of unstable reso-
nator modes acquire the characteristics that cor-
respond to fractal structure. A formula linking
mode eigenvalues to the fractal dimensions of their
intensity profiles has been obtained, and its pre-
dictions confirmed in a numerical demonstration.
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