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A general dark-soliton solution of the Helmholtz equation (with defocusing Kerr nonlinearity) that has on- and
off-axis, gray and black, paraxial and Helmholtz solitons as particular solutions, is reported. Modifications
to soliton transverse velocity, width, phase period, and existence conditions are derived and explained in

geometrical terms.

Helmholtz solitons and transparency of their interactions.
000.2690, 190.0190, 190.3270, 190.4420, 190.5530, 190.5940.
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Spatial optical solitons play a fundamental role in the
dynamics of nonlinear beams,' and an accurate de-
scription of properties such as oblique propagation and
mutual interactions is essential. Solitons that propa-
gate at modest or large angles relative to the reference
longitudinal direction, or to each other, experience a
type of nonparaxiality that can be accurately described
by a nonlinear Helmholtz equation (NHE). For a
single soliton beam that coincides with longitudinal
axis /, off-axis propagation results if only the axis is
rotated, whereby d,; is no longer negligible. More-
over, the resultant NHE can describe the total electric
field of both forward- and backward-propagating
components and thus of soliton interactions at arbi-
trary angles.

Some optical contexts, such as intense self-focusing,
give rise to a more general type of nonparaxiality.?—*
Paraxiality is commonly defined through a small pa-
rameter, k = wo2/4Lp2, where wy is the beam width,?~°
Lp = kwo?/2, and k = npw/c. Order-of-magnitude
analysis,?® based on «, then yields leading corrections
to a paraxial wave equation. A near-paraxial beam,
well described by scalar electric-field and refractive-in-
dex distributions, if it is considered in a reference
frame rotated by 0, acquires an effective transverse
velocity V, but the beam itself remains intrinsically
scalar in character. The usual paraxial condition,
k =~ 0, is still preserved, but now 2«xV?2 = tan? ¢
can assume arbitrarily large values. In this Letter,
the presence of this type of potentially dominant
nonparaxial correction is demonstrated through exact
solution of the NHE. Helmholtz-type nonparaxiality
alone is shown to result in nontrivial modifications to
soliton propagation characteristics.

The equivalence of the nonparaxial nonlinear
Schrodinger equation and the appropriate NHE
was recently noted.” It permits identification of
nonparaxial generalizations of conventional soliton
theory as exact analytical Helmholtz bright soliton
solutions.® Physical interpretations® and analytical
properties” of Helmholtz bright solitons have been
described; they permit the development and testing of
new nonparaxial beam propagation techniques.®
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Simulations verify analytical predictions and also demonstrate spontaneous formation of
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Here we report, for the first time to our knowledge,
a general Helmholtz dark-soliton solution for a defo-
cusing Kerr nonlinearity. The conditions for experi-
mental achievement of optical dark solitons are well
known,*!® and our theoretical predictions are expected
to be directly observable. To highlight the modifica-
tions to paraxial theory, we solve the equivalent defo-
cusing nonparaxial nonlinear Schrodinger equation®~®:
P2u  ou 1 0%u 9
Ka§2+la§+2a§2 lul*u=0, (D
where ¢ = z/Lp, & = 2x/wy, and u(¢,0) =
(klns|Lp/no)Y2A(¢, ¢) are longitudinal and transverse
coordinates and the field amplitude, respectively,
in terms of Kerr coefficient ny, unscaled variables
z and x, and field envelope A defined by E(x,z) =
A(x,z)exp(ikz). For simplicity, a uniform-background
field ug is assumed. A general dark solution of Eq. (1)
is then found to be

u(é,!) = ug(A tanh ® + iF)

(1- 4Ku02>1/2<_ A)}
X eXp[l( 1+ 2xV?2 Vet e

L),
X exp( i o (2)
where
_ uAE+ WY
0= (1 + 26W2)1/2 ®
and
V=V
W=17 2kVVy @

is a net transverse velocity involving V (from the choice

of reference direction) and V, (a gray-soliton compo-

nent), given by

— UOF .
[1—(2+ F2)2kuy2]V/2

F and A are real constants, where F = +(1 — A%)1/2,

F = 0 corresponds to Helmholtz black solitons,

Vo

(5)
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whereas |F'| > 0 yields gray solitons. In the paraxial
limit,? the nonlinear Schrédinger equation (NLS) dark
soliton™ %3 is obtained:

u(é¢,?) = up(A tanh ® + iF)exp(—iV¥¢)
X exp(—iu02§ -1 %V2§> ) (6)
where
0 = qu[§ +(V - Fuo){] (7

A particular Helmholtz dark-soliton solution for
which V. = 0 and F = 0 was reported earlier.!*®
Interestingly, a simple ansatz approach!® is insuffi-
cient for determining the complete general solution
presented here. Instead, we have also used geo-
metrical considerations and invariance relations for
Helmholtz solutions when the axes are rotated:

g+ vy —2xV¢ + ¢
(1 + 2kV?2)1/2 (1 + 2xV2)1/2

. \’Z3
u(é,l) = eXp(l{m

! i [1 - m}g'})u’(g',m, ®)

where rotation angle 0 in the unscaled coordinate sys-
tem is given by sec 8 = (1 + 2«xV2)1/2,

The phase period of Helmholtz dark solitons is gov-
erned by the longitudinal wave number that is given by
two factors: exp(—i{/2k), which is due to the forward
reference frame, and projection of the nonlinear correc-
tion factor (1 — 4xuo?)'/? onto the ¢ axis. The trans-
verse velocity of paraxial dark solitons is V — Fuy.
However, a more accurate description involves velocity
summation in the unscaled coordinate system, Eq. (4),
and modifications of the intrinsic gray-soliton velocity,
Eq. (5).

Nonzero W corresponds to off-axis propagation.
Geometrical considerations then imply that the beam
width projected onto the transverse axis should in-
crease® (a feature absent from paraxial theory, in
which this width is constant). In fact, the inverse
soliton width is given by

&= {=

qu .
(1 + 2xW2)1/2

The beam width enlargement factor can also be written
as (1 + 2«W2)1/2 = gec(6 — 6,), where 6y = sec 1[(1 +
2kV2)1/2] is the angle associated with Vy and 6 =
sec I[(1 + 2kV?)1/2] is defined by choice of reference
frame (see Fig. 1).

Paraxial dark solitons exist for arbitrary values
of background intensity.!!"!* Helmholtz black soli-
tons exist only'* for 4xuy? < 1, which corresponds to
|2noI| < ng, where I = |Ey|? is the unscaled back-
ground intensity, and when the size of the nonlinear
phase shift is less than the linear contribution. The
refractive index thus remains positive (a condition
implicit in the paraxial NLS that appears explicitly

&= 9

in the NHE solution). Paraxial gray solitons exist
for any nonzero |F| < 1, whereas Helmholtz gray
solitons have a more limited range of F, given by
0 < |F| < |Flmax = (1 — 4kuo?®)2/(2xuo?)Y2, where
0o = *m /2 for |F| = |F|ma, revealing the physical limit
imposed on the largest possible transverse velocity.

Helmholtz dark solitons can be studied by use of
recently developed numerical techniques®; analysis®
uncovered intrinsic limitations of traditional ap-
proaches.’* To explore whether Helmholtz dark
solitons are spontaneously created from an initial field
profile that does not correspond to an exact soliton, we
first consider the initial condition

u(£,0) = ug tanh(upaé). (10)

Parameter a controls the inverse width of the initial
profile. The generation of 2N, + 1 paraxial solitons
is expected during evolution governed by the NLS!!2
(Ny is the largest integer that satisfies Ny < 1/a).
NLS and NHE simulations have been carried out
for 1 =uy=5,0<a=1, and « = 0.001. Figure 2
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Fig. 1. Comparison of transverse profiles and geometries
of paraxial and Helmholtz solitons (x = 0.001): black soli-
tons (top) with V = 25 and up = 1. F = 0.8 gray solitons
(bottom) with V' = 10 and uy = 10. wy and wy_4, are the
unscaled x widths.

(@ ®)

0 : ! 0 A, :
=25 20 -15 -10 -5 0 =25 =20 -15 -10 -5 0
g 2

Fig. 2. Spontaneous generation and subsequent interac-
tions of paraxial (left) and Helmholtz (right) dark solitons.
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Fig. 3. Normalized transverse velocities of simulated gray
solitons (symbols) and the corresponding analytical predic-
tions (curves).
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Fig. 4. Evolution of normalized beam widths (toward &)
for initially perturbed off-axis Helmholtz black solitons
(horizontal lines denote analytical predictions for their
asymptotic values).

shows results for a = 0.26 and uy = 5. In general,
solitons and radiation modes are created.!® Here,
1/a is close to, and just exceeds, an integer value, so
radiation modes are of sufficiently low amplitude that
only solitons are visible. Clear differences appear in
the transverse velocities of the gray beams generated.
In each simulation, two pairs of gray solitons are well
defined, whereas the third pair has a much smaller
amplitude and is almost indistinguishable from the
flat background. Helmholtz dark solitons are dis-
covered to be stable robust attractors and to possess
the key property of transparent mutual interaction.
Spectacular agreement is found between NHE simu-
lations and exact analytical results. Figure 3 shows
transverse velocities derived from both NLS and NHE
simulations (symbols) and compares these data with
the corresponding analytical predictions (solid and
dashed curves).
We also consider the initial condition

u(£,0) = ug tanh(ugé)exp(—iSpé) . (11)

In a paraxial framework, a single black soliton results
that has transverse velocity Sy. For xug? < 1, the
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NHE evolution can be shown to be equivalent to
the propagation of an initially perturbed (reduced
width) on-axis NLS black soliton. Inverse scattering
techniques,' ~*® then, implies the generation of only
one Helmholtz soliton. Figure 4 shows the evolving
beam widths for uo = 1, k = 0.001, and three val-
ues of Sy that correspond to propagation angles of
6 = tan"1(v/2« V) = 12.9°, 26.6°, 42.1°, respectively.
The predicted asymptotic values of the Helmholtz
beam width are given by (1 + 2«V?)Y2  where
V = So/(1 — 2x802)Y2 when ku¢? <« 1. Whereas
similarly perturbed Helmholtz bright solitons undergo
large oscillations over long propagation distances
(¢ > 50),% dark beams are found to exhibit a surpris-
ingly fast convergence to the asymptotic solutions.

The Helmholtz solitons discussed here are likely to
lead to a new class of soliton solution, modified by the
same Helmholtz-type correction, appropriate to gener-
alized nonlinearities, higher dimensions (e.g., stripes,
rings, vortices), coupled modes (e.g., interactions, vec-
tor solitons) and other soliton wave equations.>*3
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