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Spontaneous Optical Fractal Pattern Formation
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We report, for the first time, spontaneous nonlinear optical spatial fractals. The proposed generic
mechanism employs intrinsic nonlinear dynamics both to generate an initial pattern seed and to fill out
structure across decades of spatial scale. We demonstrate this in one of the simplest of nonlinear optical
systems, composed of a Kerr slice and a single-feedback mirror. In this case, the smallest pattern scales are
limited by either the optical wavelength or the diffusion length of the medium photoexcitation. The
dimension characteristics of these particular fractals are also derived.
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Complexity focuses on commonality across subject
areas and forms a natural platform for multidisciplinary
activities. Typical generic signatures of complexity in-
clude: (1) spontaneous occurrence of simple pattern (e.g.,
stripes, hexagons) emerging as a dominant nonlinear mode
and (2) the formation of a highly complex pattern in the
form of a fractal (with structure spanning decades of scale).
However, to our knowledge, the following firm connection
between these two signatures has not previously been
established. This is perhaps not surprising since system
nonlinearity tends to impose a specific scale, while fractals
are defined by their scaleless character. Here we report a
generic mechanism for spontaneous fractal spatial pattern
formation; this mechanism has independence with respect
to both the particular form of nonlinearity and the particu-
lar context of the nonlinear system.

In the photonics domain, Berry [1] established that
fractal light may be generated in simple linear optical
systems. More recently, the highly-structured (linear)
modes of unstable-cavity lasers were discovered to be
fractal in character [2], and optical fractal generators based
upon introducing electronic feedback or nonlinearity have
also been developed [3].

In this Letter, we propose intrinsic nonlinear dynamics
providing both the necessary feedback mechanism and the
pattern seed for building fractals. We demonstrate this
generic mechanism by considering one of the simplest
optical pattern-forming systems.

The system, shown in Fig. 1, is composed of a thin slice
of Kerr medium, illuminated from one side by a spatially
smooth beam, and a feedback mirror (with reflectivity R) a
distance d away (note: all variables are dimensionless) [4].
The photoexcitation density » in the medium has a relaxa-
tion time 7 and a diffusion length /. The thickness L of the
Kerr medium is sufficiently small that diffraction of light
over this distance can be neglected. The evolution of fields
over distance z and the development of #, in time ¢, is then
described by

0031-9007/05/94(17)/174101(4)$23.00

174101-1

PACS numbers: 05.45.Df, 42.65.Hw, 42.65.Sf

oF

— =iynF (1a)

0z

B

— = —iynB (1b)

0z

d

~BVintrsotn=IFE+BE (o)

where y parametrizes the Kerr effect (positive for self-
focusing, negative for self-defocusing), Vzl is the trans-
verse Laplacian, and F and B are the transverse profiles of
the forward and backward fields, respectively. The Fourier
transforms of these profiles, F(K, t — Tg) and B(K, 1), are
related through

B(K, 1) = VRexp(—iO)F(K, t — Tg) (2a)
2d K?
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where kj is the free space wave number and T, is the cavity
transit time. Note that in Eq. (2a) there is a time delay
between B(K) and F(K), arising from diffractive propaga-
tion. Equations (1) and (2) thus constitute a delay-
differential system.

Linear stability analysis [4] yields a threshold condition
for growth of spontaneous spatial pattern:
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FIG. 1. Schematic diagram of the Kerr slice with single-
feedback mirror system. Spatial fluctuations in the carrier den-
sity modulate the phase of the field (dashed line) and diffraction
changes this into an amplitude modulation (solid line).
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when K? < k2 and where, for a focusing medium (y > 0),
sin(K?d/ky) > 0. 4)

Figure 2(a) shows that the curves for threshold intensity
1,;, actually divide frequency space into an infinite number
of bands, whose widths and separations decrease with
increasing K. The minimum thresholds of the bands gen-
erally increase smoothly with increasing K.

If one assumed independent growth of Fourier modes,
then one could estimate the transverse power spectrum to
be proportional to Iy — I,,, when I, > I,,, for incident
plane-wave intensity /,. The power spectrum would then
have a shape similar to that shown in Fig. 2(b). Comparing
this spectrum with known spectra of fractal laser modes
[5], we note that both are composed of discrete frequency
bands. In fractal laser modes, a fine detail (diffraction)
pattern seed has larger scale patterns superimposed and
this defines a power spectrum that gives a (generally) scale-
dependent fractal dimension [5]. Here, an initial sponta-
neous pattern seed is expected to form at the largest scale,
whereby nonlinear processes may also generate patterns at
successively smaller scales. Thus, it is plausible that fractal
pattern formation could result here and, in fact, in any
nonlinear system that has characteristics similar to those
in Fig. 2.

For simplicity, we first consider a local Kerr effect (I, =
0) and an effectively instantaneous response (7 = 0). The
resulting threshold characteristic [Fig. 2(c)] exhibits mini-
mum thresholds, from each frequency band, that are equal.
If the incident plane-wave intensity is slightly higher than
this (global) minimum /,,;,, spatial frequencies defined by
the minima of the bands will all have the same growth rate.
One then expects the resultant intensity distribution across
the two (transverse) dimensional plane to be an extremely
complicated (volume-filling) pattern with fractal dimen-
sion 3.

To permit visualization and verification of results for this
configuration, we propose introduction of spatial filtering
in the free space path, whereby bandwidth-limiting control
can be freely adjusted. Patterns generated for a range of
control setting can be illustrated in the dynamic evolution
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FIG. 2. (a) Instability threshold and (b) qualitative sketch of

power spectrum (/, = 50) for the Kerr slice with single-feedback
mirror system (Ip = 1, d/kg =1, R = 0.9, yL = 1, K> < kJ).
(c) as (a), but [p = 0.

of a single simulation of the model equations. Within the
framework of the current model, we introduce a filtering
function f(K; k.) = 6(K; kq) so that components with K >
k. are attenuated. Conventional (single-K) pattern forma-
tion [6] is demonstrated by setting k. so that only frequen-
cies in the first instability band propagate freely.

For a given plane-wave input field, we initiate the photo-
excitation density with the corresponding steady-state pro-
file and add a small (1%) level of white noise. After 100
Ty, the transverse profile of the backward field intensity
becomes the static hexagonal pattern shown in Fig. 3(a).
We then instantaneously remove the filter (k. — ©0) and
monitor the subsequent evolution. Three of the resulting
patterns are shown in Figs. 3(b)—3(d). Evolution is from
simple hexagon to patterns with increasing level of details.
This evolution continues with development of details as
small as the scale of the optical wavelength.

We also simulate the system with just one transverse
dimension (x). Pattern and power spectrum evolution in the
backward field intensity, from a simple pattern to a fractal
one, is shown for this case in Fig. 4. Figure 4(a) shows the
pattern formed under the same conditions as in Fig. 3(a).
Its power spectrum shows that this pattern is composed of a
single frequency plus harmonic contributions [6]. After the
filter is removed, the spatial patterns become progressively
more complicated. Sets of harmonic frequencies, associ-
ated with each instability band, grow very rapidly and lead
the growth of the high frequency edge of the power spectra.
After 150 T, all frequency components plotted have
reached an intensity of the same order of magnitude. The
system then continues to evolve, but the statistical distri-
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FIG. 3 (color online). Transverse pattern evolution of the
system for I, =0, 7=0,d/ky =1, yL = 1, Iy/1;, = 2, and
R = 0.9. (a) Hexagonal pattern formed by introducing a one-
band-pass frequency filter (¢ = 1007, k. = 2). (b), (¢), and (d)
are patterns after the filter is removed: (b) ¢ = 103Tk,
(c) t = 106T%, (d) t = 109Tk.
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FIG. 4. Spatial pattern evolution in time (upper row) and the
corresponding power spectra (lower row): I, =0, 7=0,
d/ky=1, xL =1, Iy/I 4, =2, and R = 0.9. (a) With a one-
band-pass frequency filter (+ = 1007, k. = 2). (b), (c), and (d)
are patterns after the filter is removed. (b) ¢ = 102Tk,
(c) t = 113Tg, (d) t = 150T%.

bution of power across the frequencies remains invariant.
Thus, subsequent patterns have the same fractal dimension
of 2.

One could consider the fractal patterns of this system as
constructed with an infinite number of simple patterns of
different sizes, as in [7]. But here, both the initiation and
prefractal generation stages arise from nonlinear optical
processes. The fractal formation process is thus quite dis-
tinct from simple multiplication or summation of different-
size patterns, such as in image processing or in unstable-
cavity lasers [5].

Figure 5 shows dynamic evolution of the optical power
spectrum when medium diffusion is included (/, # 0) and
no spatial filtering is employed. The rate of bandwidth
growth does depend on system parameters, such as the
intensity of the incident field, but fractal formation is
nonetheless very fast (typically less than 50 Ty). After
that time, the system enters a dynamic equilibrium state
in which the average power spectrum remains unchanged,
even though the pattern in real space continues to evolve.
Figures 5(c) and 5(d) demonstrate this statistical invariance
in frequency space and that an appreciable portion of the
dynamic state is well described by a linear relationship.

Figure 6 highlights how this linear relationship changes
with the value of diffusion length. For each set of parame-
ters, linear regression has been used to quantify the dy-
namic equilibrium state and a summary of these
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FIG. 5. Power spectrum evolution in time: (a) ¢ = 2T,
(b) t = 5Tk, (c) t = 50T, (d) t = 20007, (Ip = 0.1, d/ky =
100, 7=1,R=109, xL =1, I, = 3.0).
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FIG. 6 (color online). Variation of equilibrium power spectra
with diffusion length Ip: (a) [, = 0.8, (b) [p = 0.4, (c) Ip = 0.2,
@) Ip =0.1 (d/ky =100, =1, R=0.9, yL =1, I, = 3.0,
t = 1500T%).

characteristics is presented in Fig. 7. The slope b is found
to vary linearly with [j,. Figure 7(b) shows the relation
between the slope and intensity of the input wave I; the
line fitted has equation b = b,/I,, where b; denotes a
constant. The experimental points agree with the fitted
lines very well. These results support our claim that the
dependence of the slope b on [ and I is given by

b = bylp/I, &)
where b is a constant dictated by system parameters.
The average trend of each equilibrium power spectrum
can be represented as

InP(K) = a + bK, (6)

where a and b are constants dictated by system parameters.
Using [5]
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an expression for the power spectrum fractal dimension is
obtained:

D(K) = % + %K. )

For the above calculations using one transverse dimension,
D must be between 1 and 2. So the equation for the fractal
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FIG. 7 (color online). Variation of the slope b of the equilib-
rium power spectrum vs (a) diffusion length /, and (b) intensity
of the incident plane wave I,. Parameters are d/k, = 100, 7 =
1,R=10.9, yL = 1. (a) has I, = 3.0; (b) has [, = 0.1.
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FIG. 8 (color online).

Variation of fractal dimension vs space
frequency K for different values of: (a) diffusion length [/, when
Iy = 3.0; (b) intensity of the incident wave I, when [ = 0.01
(d/ky =100, R = 0.9, yL = 1).

dimension should be written as

2 K<-1/b
D(K)={§+§K, when —1/b=K=-3/b. (9)
1 K> —-3/b

Figure 8 shows the variation of this fractal dimension
with spatial frequency K as a function of diffusion length
Ip and intensity of the incident wave I;. Each pattern has a
fractal dimension of 2 within the low frequency regime and
this value changes linearly to 1 in the midfrequency range.
In the high frequency section, each pattern has a dimension
of 1. We thus classify the patterns generated by this system
as scale-dependent fractals [5]. We note that both the low
frequency range and the midfrequency range increase in
size with either a decrease in [, or an increase in I, and
that K < —1/b for all K when [, — 0.

To verify our results, we have also used the software
package BENOIT 1.3 [8] to calculate the variogram dimen-
sion of the output patterns:

. 1d(nv)
Y 2 d(InW)’

10

where the variogram V is defined as the expected value of
the squared difference of intensities at two points separated
by distance W (the window interval length).

Considering typical patterns, the log-log plot of V versus
W (Fig. 9) has a tangent gradient S that decreases smoothly
from 2 to O when W increases from small scales (W = 1 in
Fig. 9) to larger scales (W = 100 in Fig. 9). The average
slope remains O when W > 100. From the definition D, =
2 — §/2, this fractal dimension increases from 1 to 2 when
W increases from 1 to 100, and D,, = 2 for larger W. The
fractal dimension of the pattern is thus found to decrease
smoothly from 2 to 1 with increase in spatial frequency.
These results are consistent with those found by using the
power spectrum method, and hence substantiate our claims
regarding the fractal dimension of the patterns generated.
When two transverse dimensions are considered, the above
fractal dimensions each increase by 1.

In conclusion, the first prediction of spontaneous fractal
pattern formation in an all-optical nonlinear system has
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FIG. 9 (color online). Variogram of the intensity of the back-
ward field vs window interval length W (I, =3.0, Ip =1,
d/ky =100, 7=1,R=09, yL=1). (8 W= 1, § = 1.996,
D, = 1.002; (b) W = 27, § = 1.002, D,, = 1.499; (c) W = 46,
S =049, D, =1.755;(d) W =100, S =0, D, = 2.

been presented. We believe that this is a generic mecha-
nism that can arise in a wide variety of nonlinear systems.
The particularly simple system studied here generates
optical fractals whose smallest scale is limited by either:
(a) the optical wavelength or (b) diffusion of the medium
photoexcitation. Inclusion of a spatial filter has allowed us
to demonstrate both conventional (single frequency) pat-
tern formation and fractal formation in the same system. In
the diffusion-limited system, we discovered that the de-
pendence of spectral characteristics on the carrier diffusion
length and the input pump intensity is given by a rather
simple law. An analytical form was thus derived for this
(scale-dependent) fractal dimension, and predictions were
confirmed by variogram analysis.
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