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Fresnel diffraction and fractal patterns from
polygonal apertures
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Two compact analytical descriptions of Fresnel diffraction patterns from polygonal apertures under uniform
illumination are detailed. In particular, a simple expression for the diffracted field from constituent edges is
derived. These results have fundamental importance as well as specific applications, and they promise new
physical insights into diffraction-related phenomena. The usefulness of the formulations is illuminated in the
context of a virtual source theory that accounts for two transverse dimensions. This application permits cal-
culation of fractal unstable-resonator modes of arbitrary order and unprecedented accuracy. © 2006 Optical
Society of America
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. INTRODUCTION
n scalar diffraction theory, the semi-infinite space beyond
n aperture contains two paraxial regions—the near field
nd the far field—where Fresnel and Fraunhofer theories
re valid, respectively. While analytical descriptions of
raunhofer patterns from regular-polygon apertures have
een known for many years,1–3 there appears to be almost
o published material on the corresponding Fresnel pat-
erns. The lack of development in this area is reflected in
tandard textbooks,4–7 where near-field treatments tend
o be restricted to considerations of infinite straight edges
nd of closed apertures with rectangular and circular
hapes. In each of these cases, the Fresnel patterns are
ssentially one-dimensional in character.

In this paper, we present two complementary analytical
echniques for calculating the Fresnel diffraction patterns
rom hard-edged polygonal apertures illuminated by a
lane wave. These frameworks are exact, in that they do
ot involve any further approximation beyond the
paraxial) Fresnel diffraction integral. We consider regu-
ar polygonal apertures, but the approaches can be
eadily extended to describe near-field diffraction from
losed apertures of arbitrary shape. Our results are of
undamental importance and have specific applications
here standard methods, such as fast Fourier transform

FFT) techniques, fail. For example, in unstable-
esonator-mode calculations, both (paraxial beam) ABCD
atrix modeling and existing semi-analytical methods

an give accurate results only in limited parameter re-
imes in which the Fresnel number of the resonator is
ow. Consequently, a complete and detailed study of the
ractal laser modes arising from unstable cavities8–13 has
ot previously been possible. A specific advantage of our
ormalisms over, for example, FFT-based methods is their
bility to calculate the fine details of only a small portion
f one, or many, complex diffraction patterns. It is this
roperty that allows us to apply our results in the calcu-
ation of fractal laser modes of unprecedented accuracy.
1084-7529/06/112768-7/$15.00 © 2
The explicit mathematical form of our results may also
end physical insight into other diffraction-related phe-
omena in physics; for example, the origins of excess
uantum noise in lasers, where the transverse symmetry
f the aperturing element has been shown to play a cen-
ral role in the observed phenomena.14–17 In Fraunhofer
heory, the far-field approximation allows diffraction pat-
erns and derivative concepts (for example, holography,
ltering, convolution, and coherence) to be expressed in
erms of simple Fourier integrals and transform theo-
ems, respectively. Our main results describe the physical
nd mathematical character of near-field diffraction pat-
erns in terms of their elemental spatial structures (edge
aves). It is also plausible that our results could open fu-

ure doors in the development of derivative concepts in
resnel optics.

. THEORY
hen a plane monochromatic wave of complex amplitude
0 illuminates a hard-edged aperture, the field U�x ,y� in
plane at distance L beyond the aperture can be ex-

ressed as the area integral4,5

U�x,y� =
kU0

2�iL��
�

d�d� exp�i
k

2L
��x − ��2 + �y − ��2�� ,

�1�

here k is the wavenumber of the incident plane wave
nd � denotes the aperture area (see Fig. 1). �x ,y� and
� ,�� are the observation- and aperture-plane coordinate
xes, respectively. The paraxial approximation, employed
n the derivation of the Fresnel diffraction integral (1),
trictly requires the inequality L3�kb4 /8 to be satisfied,
here b is the largest characteristic length associated
ith the aperture.
006 Optical Society of America
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Within an edge-wave representation of diffraction pat-
erns, the field in the observation plane is regarded as the
uperposition of the transmitted plane wave and an edge-
ave field E�x ,y� arising from the boundary of the
perture:4

U�x,y� = �U0 + E�x,y�. �2�

ere, � is equal to unity if the point �x ,y�, lies within the
right geometrical shadow of the aperture, and is zero if it
s outside this region. We now express the edge-wave field
n terms of two different formulations to obtain two meth-
ds for calculating the resulting Fresnel diffraction pat-
erns. Results are then presented and a brief comparison
f the two methods is made.

. S-Function Method
ur first approach is based upon exploiting the math-
matical framework introduced by Silverman and
trange.18 We define the dimensionless relative spatial
oordinates u=�2/�L�x−�� and v=�2/�L�y−�� that sim-
lify the Fresnel diffraction integral (1) to

U�x,y� =
U0

�1 + i�2��
�

dudv exp	i
�

2
�u2 + v2�
 . �3�

o facilitate the analytical evaluation of the area integral
3), we introduce the following S-function:

S��1,�2� = − 1 +
1

�1 + i��
�2

�1

dv exp�i
�

2
v2� . �4�

he �j�j=1,2� limits denote the boundary of an infinite
lit aperture in one direction. Physically, S represents the
dge-wave pattern from this slit when the slit is illumi-
ated by a unit plane wave, and this can be written as a
uperposition of two components (from the constituent
dges):

S��1,�2� = D��1� + D�− �2�, �5�

here

D��j� = −
i

1 + i
�*��j�exp�i

�

2
�j

2� , �6a�

nd

���j�  f��j� + ig��j�. �6b�

he auxiliary Fresnel functions, f and g, and defined
hrough

ig. 1. Schematic diagram illustrating the coordinate system
sed to describe diffraction patterns from an aperture � illumi-
ated by a plane wave of amplitude U0.
c��j� =
1

2
+ f��j�sin��

2
�j

2� − g��j�cos��

2
�j

2� , �7a�

s��j� =
1

2
− f��j�cos��

2
�j

2� − g��j�sin��

2
�j

2� , �7b�

here c��j�=�0
�j cos��	2 /2�d	 and s��j�=�0

�j sin��	2 /2�d	
re the familiar Fresnel cosine and sine integrals, respec-
ively. The auxiliary Fresnel functions can be evaluated
fficiently using rational approximations of the required
ccuracy.19 When �j is nonnegative, one may choose

f��j� =
1 + 0.926�j

2 + 1.792�j + 3.104�j
2 , �8a�

g��j� =
1

2 + 4.142�j + 3.492�j
2 + 6.67�j

3 . �8b�

hen �j
0, the auxiliary functions are evaluated using

f�− ��j�� = f���j�� − 2	c���j��sin��

2
�j

2� − s���j��cos��

2
�j

2�
 ,

�9a�

g�− ��j�� = g���j�� + 2	c���j��cos��

2
�j

2� + s���j��sin��

2
�j

2�
 ,

�9b�

hese relations follow from consideration of the symme-
ry of the Fresnel integrals. By substituting Eq. (4) into
q. (3), one obtains

U�x,y� = U0	1 + S�u2,u1�

+
1

1 + i�u1

u2

duS�v1�u�,v2�u��exp�i
�

2
u2�
 ,

�10�

here v1�u� and v2�u� are parametric expressions describ-
ng the shape of the aperture in the relative coordinate
ystem (see Fig. 2). The edge-wave field E�x ,y� is then
iven by Eq. (2). In many cases it proves to be more effi-
ient to consider a specific aperture shape as broken down
nto an assembly of subapertures. Babinet’s principle can
hen be employed to generate diffraction patterns. Here
e focus our attention on apertures that are regular poly-
ons. For a polygon with N sides, the most obvious decom-

ig. 2. Schematic diagram of an aperture of arbitrary shape in
he relative coordinates �u ,v�.
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osition is that involving N congruent isosceles triangles
Fig. 3(a)], each of which has a diffraction pattern that
an be calculated with Eq. (10). Babinet’s principle can
hen be stated as

U�x,y� = U0� + E�x,y�, �11a�

here

E�x,y�  �
j=1

N

Ej�x,y�, �11b�

or an isosceles triangle [e.g., triangle 1 in Fig. 3(a)] of
alf-angle �=� /N, whose vertex is at the origin and
hose perpendicular length a is aligned along the �-axis,

he edge-wave contributions are given by

E�x�,y�� = U0	�1 − � + S�x�,x� − A��

+
1

1 + i�x�−A

x�
duS�w1,w2�exp�i

�

2
u2�
 ,

�12a�

here

w1�u,x�,y�,�� = y� − �u − x��tan �, �12b�

w2�u,x�,y�,�� = y� + �u − x��tan �, �12c�

nd A=a�2/�L. An intuitive way of generating the edge-
ave pattern of each of the other component triangles

e.g., triangles 2, 3, . . ., and 8 in Fig. 3(a)] is through rota-
ional transformation. A rotational transform of an angle

in the aperture plane is equivalent to considering the
ystem with new observation-plane coordinates x�
x cos �+y sin � and y�=y sin �−x cos �.
However, we find that a more efficient approach to the
-sided polygonal aperture problem is to replace triangle

nsembles with combinations of triangles and trapezoids
see Fig. 3(b)]. In cases with an even number of sides, one
an also exploit the presence of a central rectangle. For
xample, calculations for an octagonal aperture require
ust two integrations—one for each trapezoid on either
ide of this rectangle. In contrast, adding together eight
riangles, each with half-angle �=� /8 and with a diffrac-
ive contribution resembling Eq. (12), could require eight
ntegrations (one per triangle). Triangle ensembles are
herefore not necessarily efficient computational con-
tructs, though the physical symmetry of the problem is
ore explicitly preserved when they are used.

ig. 3. Two schemes for dividing a regular polygon into subap-
rtures: (a) a triangle ensemble, and (b) a combination of other
hapes.
. Line-Integral Method
n this formulation, we define two vectors in complex-
umber notation, p=x+ iy and q=�+ i�, and recast the
resnel diffraction integral (1) as

U�p� =
kU0

2�iL��
�

d2q exp�i
k

2L
�p − q�2� . �13�

y applying a low-dimensional divergence theorem, Eq.
13) can be transformed from an integral over the planar
rea of the aperture to one around its simple closed-curve
oundary.20,21 The diffraction integral (13) is then given
y the circulation,

U�p� = U0	� −
1

2�
�

�

exp�i
k

2L
�q − p�2� q − p

�q − p�2
· ndl
 ,

�14�

here n is the unit outward normal vector to the edge
within the aperture plane), dl is the line element along
he edge, and � denotes the aperture boundary. The pa-
ameter � is equal to unity if point p lies within the bright
eometric projection of this aperture, and it is zero if p is
utside this region.

For a polygonal aperture (see Fig. 4), the position of a
ertex Aj is given by the position vector qj. It is also con-
enient to define vectors Lj=qj+1−qj, tj=Lj /Lj, and nj (de-
oting the unit outward normal of side Lj). The position
ector of a general point on the side of length Lj can then
e represented as q=qj+tjl, where l is the distance from
he vertex Aj. Using these constructs, it is possible to re-
rite Eq. (14) in a form more suitable for describing the
iffraction pattern from an N-sided regular polygon:

U�p� = U0	� −
1

2��
j=1

N

Ij�qj,tj�
 , �15�

here

Ij�qj,tj� =�
0

Lj

exp�i
k

2L
�qj + tjl − p�2� qj + tjl − p

�qj + tjl − p�2
• njdl.

�16a�

fter some manipulation, Eq. (16a) can be simplified to

ig. 4. Geometrical constructs used in the formulation of the
ine-integral method.
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Ij�qj,tj� = �qj − p� · nj exp�i
k

2L
��qj − p� · nj�2�

�
�qj−p�·tj

Lj+�qj−p�·tj dl

l2 + ��qj − p� · nj�2
exp�i

k

2L
l2� .

�16b�

he edge-wave field, in the line-integral representation, is
hen expressed as

E�p� =
U0

2��
j=1

N

Ij�qj,tj�. �17�

The physical meaning of Eq. (17) is obvious—the total
dge wave from the aperture is a sum of the edge-wave
ontributions arising from each of the straight edges, of
nite length, that make up the aperture. These individual
ontributions, each represented by a line integral, are of a
ore involved and general character than the relatively

rivial, but more familiar, contributions that arise from
traight edges of infinite length. Equation (15), combined
ith Eq. (16b), can be used to calculate Fresnel diffraction
atterns from a polygonal aperture of nonregular shape
nd with an arbitrary number of sides. The formulation of
he diffractive wave contribution from each straight edge
f a closed aperture, Eq. (16), is a key result of this paper
hat invites geometrical interpretation. The relative
ransverse displacement and orientation of the observa-
ion point p and the jth edge of the aperture are found to
e expressed in terms of new orthogonal coordinates that
ap perpendicular distance, �qj−p� ·nj, to the line of the

dge and the displacement of apex Aj from p along a di-
ection parallel to this edge, �qj−p� ·tj.

For an N-sided regular polygonal aperture, one can set

qj = R cos��0 + 2�j/N� + iR sin��0 + 2�j/N�, �18a�

pm = r cos��0 + 2�m/N� + ir sin��0 + 2�m/N�, �18b�

here �0 and �0 are arbitrary constants. Then,

�qj − pm� · nj = �qj+1 − pm+1� · nj+1, �19c�

nd

�qj − pm� · tj = �qj+1 − pm+1� · tj+1, �19d�

ubstitution of these results into Eq. (15) yields

U�pm� = U�pm+1�, �20�

emonstrating mathematically that the diffraction pat-
ern of an N-sided regular polygonal aperture has N-fold
otational symmetry. Finally, we note that the integrand
n Eq. (16b) oscillates more rapidly as L is decreased. As
xpected, an accurate computation of the integrals thus
equires the number of sampling points to be increased as
he observation plane approaches the aperture.

. Fresnel Diffraction Patterns
he S-function and line-integral approaches have been
sed to calculate the diffraction patterns for N-sided
egular-polygonal apertures with N=3 to N=10. The nu-
erical integrations are calculated using an extended

rapezoidal rule. When denoting x ,x , . . . ,x as a se-
0 1 N
uence of equally-spaced positions, separated by a con-
tant step h (xi=x0+ ih and i=1, . . . ,N), the integration of

function f�x� in the interval �x0 ,xN�, �x0

xNf�x�dx, is ap-
roximated as h �f0 /2+ f1+ ¯ + fN−1+ fN /2�, where fi f�xi�
s the value of the function at position xi. For brevity, we
resent only a selection of patterns: those for the isosceles
riangle �N=3�, the pentagon �N=5�,the hexagon �N=6�,
nd the decahedron �N=10�. These are shown in Fig. 5.
he optical wavelength was chosen to be �=0.5 �m, cor-
esponding to illumination with green light that is readily
btainable from a green laser pointer. It is thus straight-
orward to reproduce these patterns experimentally. The
adial distance R from the center of the polygon to a circle
nclosing the aperture (upon whose circumference all api-
es lie) is taken as R=1 mm, and the distance between ap-
rture and image planes is set to L=100 mm (satisfying
he paraxiality condition). Figure 5 shows that the pat-
ern acquires an increasing degree of fine structure as N
ncreases. As predicted by Eq. (20), patterns from N-sided
egular polygonal apertures have N-fold rotation symme-
ry. Also, corners with smaller angles tend to contribute
ore widely diffracted light.
Figure 6 demonstrates typical variation in the Fresnel

attern as the observation plane moves toward the aper-
ure plane. A definition of the Fresnel number Feff for
olygons given in Ref. 22

Feff =
a2

�L
+

1

f�N�
, �21�

here, as earlier, a is the radius of the inscribed circle of
he polygon. Equation (21) contains two terms; the first is
he conventional Fresnel number for a circular aperture,
nd the second has been proposed to account for addi-
ional pattern detail arising from the geometrical nature
f the aperture, where

ig. 5. (Color online) Fresnel patterns (normalized intensity
istribution, defined by �U�x ,y��2 /U0

2) from (a) triangle, (b) penta-
on, (c) hexagon, and (d) decahedron apertures.
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f�N� = 0.30618N2 − 0.10533N − 0.68095. �22�

or example, Feff can vary with either a change in the
umber of aperture sides (see Fig. 5) or a change in L for
fixed aperture (see Fig. 6).

. Comparison of Methods
he diffraction patterns calculated using the S-function
nd line-integral approaches have been checked indepen-
ently using the standard FFT method.23 The three meth-
ds have their own distinct advantages and disadvan-
ages.

For a single, complete, and low Feff pattern that is
ampled with a uniform transverse grid, the FFT ap-
roach is most efficient. This is because the other meth-
ds can require many numerical integrations. For ex-
mple, a decahedron aperture many involve four
ntegrations using the S-function method (assuming ap-
ropriate aperture decomposition), while the line-integral
ethod could involve one integration per polygon side.
owever, FFT methods involve computation of complete
iffraction patterns and further require the use of spatial
rids that sample a sufficient amount of the dark back-
round surrounding each pattern. When one requires ac-
urate knowledge of the detailed structure of one or many
igher Feff patterns or sections of high resolution patterns
e.g., dense and/or nonuniform sampling of a small area),
r simply calculation of the optical field at a single trans-
erse point, then the efficiency of the other two methods
ends to be far greater.

Implementation of the FFT approach in such contexts
an also lead to reduced accuracy in the data acquired.
eployment of rational approximations in the S-function
ethod introduces some truncation errors, but high-

ccuracy approximations24,25 can be used without entail-
ng great computational overhead. Finally, the numerical

ig. 6. (Color online) Fresnel patterns from a triangular aper-
ure with different Fresnel number Feff. (a) Feff=3.06, L
200 mm; (b) Feff=3.89, L=150 mm; (c) Feff=7.23, L=75 mm; (d)
eff=10.56, L=50 mm. (In each case, R=1 mm and �=0.5 �m).
ccuracy of the line-integral approach, which can be the
ost time-consuming, is essentially limited only by ma-

hine precision.
Our original motivation for the reformulations of the

resnel diffraction problem was the complete failure of
FT approaches in two-dimensional (2D) transverse
nstable-resonator mode calculations when moderate-to-
igh cavity Fresnel numbers were considered.26 The reso-

ution of this problem, which involves the superposition of
ections from very many distinct diffraction patterns of
idely varying size, is detailed in the following section.

. EXAMPLE OF APPLICATION
he virtual source (VS) method26–30 is a semi-analytical

echnique that unfolds an unstable cavity into a sequence
f equivalent virtual apertures. Accurate approximations
f the cavity mode profiles can be obtained using a
eighted summation of edge waves diffracted from these
pertures. In particular, computation of 2D unstable-
avity eigenmodes using this approach requires knowl-
dge of only sections of the patterns from these apertur-
ng elements. Moreover, the sampling density of the final

ode pattern dictates the resolution of each of these pat-
ern sections. FFT methods can be used for calculating
dge-wave patterns (as an alternative to Fresnel integral
pproximations). This works well in one-dimensional VS
odes. However, the FFT approach becomes impractical
hen fully 2D virtual apertures are involved (due to the
emands placed on computer memory and processing
ime). A distinct advantage over existing (fully numerical)
ox–Li techniques31 for calculating unstable-cavity laser
odes is that virtual source approaches enable the simul-

aneous calculation of a whole family of modes. In con-
rast, the Fox–Li algorithm needs to be manipulated non-
rivially when dealing with different higher-order modes,
nd in each application only a single pattern can be
btained.30

We consider a geometrically unstable resonator with a
ingle polygonal aperturing element whose edge is repre-
ented by the equation h�� ,��=0. After the cavity is un-
olded, the edge of the kth virtual aperture of the system
an be described by the equation

hk  h��M−k,�M−k� = 0, �23�

here M is the magnification of the resonator. This vir-
ual source of diffracted waves is located at a longitudinal
osition Zk relative to the center of the aperture, where

Zk = BM
M2k − 1

M2 − 1
, �24�

nd B is the second element of its ABCD matrix.23 The
ode profile V�x ,y� of the unstable resonator is then rep-

esented by the weighted superposition27–30

V�x,y� = e0	ENs+1�xc,yc�

�Ns�� − 1�
+ �

k=1

Ns

�−kEk�x,y�
 , �25�

here Ns is the number of virtual sources and Ek�x ,y� is
he edge wave generated at the kth aperture; Ek�x ,y� can
e calculated by using either the S-function or line-
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ntegral method, and �xc ,yc� represents the coordinates of
n arbitrary point on the boundary of the system aper-
ure. For polygonal apertures, we choose this to be the
oint farthest from the center of the aperture. e0 is the
lanar field amplitude at the point �xc ,yc� in the output
lane. In Eq. (25), � is the mode eigenvalue satisfying the
olynomial equation27–29

�Ns+1 + �
k=0

Ns

�Ek�xc,yc� − Ek+1�xc,yc���Ns−k = 0, �26�

here E0�xc ,yc�=−1. The accuracy of the 2DVS calcula-
ion increases as Ns→�. Southwell suggested that to en-
ure a reliable result, the number of virtual sources must
e chosen so that Ns� log�250Neq� / log�M�, where the
quivalent Fresnel number Neq of an unstable resonator
s given by23

Neq = � a2

�B��M2 − 1

2M � �27�

nd � is the wavelength of the intracavity field. An alter-
ative expression for the required number of virtual ap-

ig. 7. (Color online) Lowest-order mode of an unstable resona-
or with triangular aperture (M=4, Neq=7.4604, R=1 mm).

ig. 8. (Color online) Lowest-order modes of unstable resonat
Neq=32.725�, (c) hexagonal �Neq=37.5�, and (d) decahedral �Neq=
ircumcircle of each polygon yields a value of 50 for N in each
eq
rtures is given in Ref. 30.
To demonstrate our 2DVS method, first we calculate

he lowest order mode of an unstable resonator with the
ame (low Fresnel number) parameters used by Berry
see Fig. 4(a) of Ref. 32]. Our result, shown in Fig. 7, is
ompletely consistent with Berry’s asymptotic prediction
hat employs trigonometric approximations of the Fresnel
ntegrals. Second, we apply our method to calculate the
owest-order modes of resonators with higher Fresnel
umbers and with triangular, pentagonal, hexagonal, and
ecahedral apertures. These results are shown in the up-
er row of Fig. 8. The lower row of panels in Fig. 8 shows
magnification of the central region of each pattern. For

ach configuration, the generic fractal signature of a high
egree of fine structure within larger scale structure is
learly evident. To the best of our knowledge, these fractal
igenmodes are the most detailed and accurate patterns
hat have so far been obtained from theoretical calcula-
ion. Opportunities are thus opened up for detailed com-
arisons with more recent experiment results33 and for
odeling novel applications of such fractal light.

. CONCLUSIONS
e have presented two complementary analytical de-

criptions of Fresnel diffraction patterns from polygonal
pertures. Two different, but entirely equivalent, math-
matical routes have been taken to formulate this prob-
em, and supporting numerical work has verified that
hey produce identical results.

The two analytical forms for the edge waves concerned
rovide a potential physical framework for interpreting
iffraction-related phenomena in the Fresnel regime.
hey also make possible an accurate generalization of
outhwell’s virtual source method to include two trans-
erse dimensions.26,32 This can allow calculation of 2D
igenmode patterns with arbitrary order and to unprec-
dented accuracy. Further applications may, for example,
e possible in the area of understanding excess quantum
oise,34,35 where the transverse symmetry of a resonator

s known to have a significant effect.14–16

=1.5, R=1 mm) with (a) triangular �Neq=12.5�, (b) pentagonal
� apertures. Note that a redefinition of a to be the radius of the

e four configurations.
ors (M
45.225
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