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A different spatial soliton-bearing wave equation is introduced, the Helmholtz-Manakov �HM� equation, for
describing the evolution of broad multicomponent self-trapped beams in Kerr-type media. By omitting the
slowly varying envelope approximation, the HM equation can describe accurately vector solitons propagating
and interacting at arbitrarily large angles with respect to the reference direction. The HM equation is solved
using Hirota’s method, yielding four different classes of Helmholtz soliton that are vector generalizations of
their scalar counterparts. General and particular forms of the three invariants of the HM system are also
reported.
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I. INTRODUCTION

Vector solitons are well known in optics �1,2�. They are
multicomponent, localized structures that can become domi-
nant modes of a system when linear broadening effects are
offset by nonlinearity. During pulse propagation, on the one
hand, vector solitons can arise when dispersion is balanced
by self- and cross-phase modulation. Spatial soliton beams,
on the other, can result if diffractive spreading is opposed by
medium self- and mutual focusing. Many years ago, Mana-
kov �3� proposed a vector extension of the scalar nonlinear
Schrödinger �NLS� equation �4� to describe multicomponent
pulse-beam evolution in the presence of positive Kerr non-
linearity. Using inverse-scattering theory, he was able to de-
rive an exact analytical two-component sech-type soliton
solution.

In birefringent optical fibers, vector solitons play a central
role in describing polarization-division multiplexing �PDM�
configurations, where light coupled into the fiber is polarized
along two transverse orthogonal axes �5�. Over sufficiently
long distances, birefringence can average out stochastically
to zero, and the model capturing evolution is the �temporal�
Manakov equation �6�. In spatial contexts, multicomponent
solutions for a defocusing �negative� Kerr nonlinearity have
been reported �7�. These new solutions have a more compli-
cated �topological� structure than their more familiar sech-
type counterparts in the focusing regime �3�. Manakov-like
solitons, comprising two orthogonal transverse field compo-
nents, have been observed in birefringent Kerr-type planar
waveguides �8�. Multicomponent spatial solitons in ��2� �9�
and ��3�-like �10� photorefractive media have also received
attention, and new types of structures such as multihump
�11� and holographic �12� solitons have been predicted.

Recently, it has been shown that collisions between Mana-
kov solitons are inelastic, and that there is a redistribution of
energy between the interacting components �13�. Such an
intrinsic effect has no analog in scalar �i.e., NLS� theory,
where the energy and momentum of each constituent soliton
is preserved �4�. It has been suggested �14� that this unique

property of the Manakov system could provide the basis for
optical computing with solitons �15�. The energy-exchange
process was found to depend critically upon the angle be-
tween the interacting beams. It is therefore desirable to have
a model capable of capturing arbitrary angles.

The main interest in this paper lies with the oblique
propagation of multicomponent spatial solitons in Kerr pla-
nar waveguides. In this geometry, there is a longitudinal �ref-
erence� and a single effective transverse dimension that, in
uniform media, are physically equivalent. We propose the
Helmholtz-Manakov equation as a two-component generali-
zation of the scalar nonlinear Helmholtz �NLH� equation
�16�. This model is appropriate for capturing the propagation
�17� and interaction �18� of broad vector-soliton beams at
arbitrary angles with respect to the reference direction. Here,
we present four different families of exact analytical soliton
solution to the Helmholtz-Manakov �HM� equation, and
derive the corresponding conservation laws.

II. HELMHOLTZ NON-PARAXIALITY

The NLH and HM equations provide a full description of
oblique �off-axis� evolution for broad optical beams of mod-
erate intensity �16–18�. Under these conditions, the
polarization-scrambling term in Maxwell’s equations can be
neglected �19–21� and this leads to two important simplifi-
cations: �i� in uniform media, the associated refractive-index
distributions may be treated within the scalar approximation,
and �ii� the electric field may be regarded as being purely
transverse �we can ignore the longitudinal component�. For
NLH solitons, one typically considers a TE mode polarized
in the plane of the waveguide �18�. For vector solitons, the
electric field can have two orthogonal polarization compo-
nents �3�. In this particular context, the HM equation is a
valid model when birefrigence can be neglected �22�. Alter-
natively, the HM model can describe the interplay between
two incoherently coupled fields sharing the same polarization
state where, typically, both are TE modes �18�. This latter
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consideration could be extended to the case of N components
�23�.

The oblique evolution of broad beams context defines the
Helmholtz nonparaxial scenario �16–18�, which is physically
and mathematically distinct from the narrow-beam regime
considered by other authors. Perturbative narrow-beam cor-
rections to the governing equation �19–21,24�, derived from
single-parameter order-of-magnitude analyses of Maxwell’s
equations, are both unnecessary �we consider only broad
beams� and invalid �off-axis effects are not quantified solely
by a single small parameter� in Helmholtz nonparaxality. The
accurate description of obliquely propagating and interacting
beams, relative to the reference direction, requires one to
respect the equivalence of the transverse and longitudinal
dimensions in uniform media. This is achieved by avoiding
the slowly varying envelope approximation �SVEA�; NLH
and HM models then arise as natural governing equations
�17,18�.

In a normalized form, the HM equation is given by

�
�2U

��2 + i
�U

��
+

1

2

�2U

��2 ± �U†U�U = 0 , �1�

where the � sign flags a focusing ��� or a defocusing ���
Kerr nonlinearity. �=�2x /w0 and �=z /LD are the scaled
transverse and longitudinal coordinates, normalized to the
waist w0 and diffraction length LD=kw0

2 /2 of a reference
Gaussian beam, respectively. The column vector U is the
dimensionless electric field in E�x ,z�=E0U�x ,z�exp�ikz�,
where k=2�n0 /	, 	 is the optical wavelength, n0 is the lin-
ear refractive index at the optical frequency, E0
= �n0 /k�n2�LD�1/2, and n2 is the Kerr coefficient. �
=1/ �kw0�2= �	 /w0�2 /4�2n0

2 is the inverse beam-width pa-
rameter. In the case of two field components, one has that
U= �A ,B�T, where T denotes the transpose, and U† is the
Hermitian adjoint of U. A further generalization to N
components then involves including further entries in U.

The restoration of spatial symmetry in the governing
equation �17� leads to several interesting features absent
from paraxial theory. First, there is no physical distinction
between transverse �x� and longitudinal �z� coordinates and
light is allowed to diffract in both these dimensions. Second,
inclusion of ���� leads to a dispersion relation that supports
both traveling- and standing-wave solutions �18�. This is in
contrast to the NLS �4� and Manakov �3� equations, where
the SVEA breaks the symmetry between not only x and z, but
also between +z and −z �backward-traveling waves are not
supported�. Thus paraxial wave equations are subjected to
the physical limitation of describing beams that are either
axial or very nearly axial.

The inherent bidirectionality of NLH-based models leads
to angular beam broadening �see Fig. 1�. This effect arises
from considering two descriptions of the same beam from
different frames of reference, and is a requirement based on
geometry �16�. The Helmholtz nonparaxial formalism also
allows for a well-defined connection between the soliton ve-
locity V in the �� ,�� frame and the propagation angle 
 �rela-
tive to the z axis� in the unscaled �x ,z� frame through
�16–18�

tan 
 = �2�V . �2�

Equation �2� verifies that the �purely geometrical� Helmholtz
correction 2�V2 may assume an arbitrarily large value, even
for beams with ��0. During off-axis evolution, one can
have a regime where 2�V2�O�1�, while simultaneously re-
specting ��O�1� because the beam is always broad.
This possibility demonstrates that descriptions based solely
upon �-type expansions of Maxwell’s equations are inappro-
priate for capturing the angular type of nonparaxiality
�19–21,24�. Indeed, the dominant Helmholtz correction to
paraxial theory, embodied in Eq. �2�, is determined solely by
the beam’s propagation angle and can be of any order
irrespective of the size of �.

III. HELMHOLTZ-MANAKOV SOLITONS

A. Solitons in self-focusing Kerr media

For a focusing Kerr medium, the simplest case to consider
is that of a vector beam with two forward-propagating
constituent components, each with a symmetric sech-type
profile. The most straightforward method of obtaining such
solutions is to use an ansatz approach to seek the on-axis
solution, and then apply a rotational transformation �25�
to seek the more general off-axis beam. The resulting
bright-bright HM solution is

FIG. 1. �Color online� Characteristic angular beam-broadening
effects associated with Helmholtz solitons for �a� bright-dark, and
�b� dark-bright cases. Solid line: �A�� ,0��; dashed line: �B�� ,0��.
Dotted lines correspond to paraxial solutions. For a nonparaxial
parameter �=10−4, a transverse velocity of V	70.71 yields a
physical propagation angle 
=45° so that 2�V2=O�1� and one has
a strongly nonparaxial regime. Other solution parameters are a
=0.5, �=� /6, B0=1 �in �a�� and A0=1 �in �b��.
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U��,�� = C
 sech
 
�� + V��
�1 + 2�V2�exp�i�1 + 2�
2

1 + 2�V2

�
− V� +
�

2�
�
exp
− i

�

2�
� , �3a�

where C = �ei�1 cos���
ei�2 sin��� 
 . �3b�

C is a complex column vector obeying C†C=1, while 

defines the amplitude and V the transverse velocity. The free
parameter � determines the strength of the excitation in each
component, and � j �j=1,2� are the component phases. The
choice of values of � and the � j’s allows a wide variety of
soliton states to be constructed.

The second class of vector beam that a focusing Kerr
medium can support is the bright-dark soliton, for which the
forward-propagating solution is

A��,�� = 
 sech
 a�� + W��
�1 + 2�W2�exp�i�1 + 2��a2 + 2�2�

1 + 2�W2

�
− W� +
�

2�
�
exp
− i

�

2�
� , �4a�

B��,�� = B0�cos � tanh
 a�� + W��
�1 + 2�W2� + i sin �


� exp�i�1 + 4��2

1 + 2�V2
− V� +
�

2�
�
exp
− i

�

2�
� ,

�4b�

where 
2=B0
2 cos2 �+a2. This structure comprises a Helm-

holtz bright soliton �25� in one component, and a dark-type
topological excitation in the other. The tanh component �4b�
is generally grey, and has an intrinsic velocity,

V0 =
a tan �

�1 + 2��2�2 − a2 tan2 ��
. �5�

This velocity depends upon both the nonparaxial parameter �
and the plane-wave background intensity �2�B0

2. When B0
→0, the dark component is null and one recovers the Helm-
holtz Kerr scalar bright soliton �25�. The net velocity W of
the vector beam �4� is then given by

W =
V − V0

1 + 2�VV0
. �6�

As in the case of the scalar Helmholtz dark soliton �26�, W
has the physical interpretation of velocity summation in the
unscaled reference frame.

B. Solitons in defocusing Kerr media

When seeking a general dark soliton of the defocusing
NLH equation �26�, an ansatz approach cannot determine the
full solution �geometrical considerations also have be to
made�. Similar difficulties arise in the vector case. Thus

Hirota’s method �27� has been used to solve the defocusing
HM equation. The forward-propagating dark-bright vector
soliton solution is given by

A��,�� = A0�cos � tanh
 a�� + W��
�1 + 2�W2� + i sin �


� exp�i�1 − 4��2

1 + 2�V2
− V� +
�

2�
�
exp
− i

�

2�
� ,

�7a�

B��,�� = 
 sech
 a�� + W��
�1 + 2�W2�exp�i�1 + 2��a2 − 2�2�

1 + 2�W2

�
− W� +
�

2�
�
exp
− i

�

2�
� , �7b�

where 
2=A0
2 cos2 �−a2. The grey component �7a� has an

intrinsic velocity

V0 =
a tan �

�1 − 2��2�2 + a2 tan2 ���1/2 , �8�

where ��A0
2, and the net velocity W is given by Eq. �6�. The

dark-bright soliton is constrained by the condition
A0

2 cos2 ��a2. When the equality is satisfied, the bright
component vanishes and the remaining component �i.e., the
primary component� recovers an exact nonparaxial dark
soliton �26�.

The bright-dark and dark-bright solutions are character-
ized by three velocities, V, V0, and W, which are associated
with the propagation angles tan 
=�2�V, tan 
0=�2�V0, and
tan�
−
0�=�2�W �20� �note that any two velocities can be
chosen independently�. However, it is important to note that
these solutions are not equivalent. When the dark compo-
nents have the same parameters �i.e., background intensities
and values of �, a, and ��, the soliton intensity profiles differ
slightly from one another due to their different intrinsic ve-
locities, given by Eqs. �5� and �8�, respectively �see Fig. 1�.
Another distinction between dark-bright and bright-dark so-
lutions is that the primary component �that which can propa-
gate stably when the other component is not excited� is a
dark soliton in the former, and a bright soliton in the latter.

The secondary component of these mixed-pair �that is,
bright-dark and dark-bright� beams possesses antiguiding
properties, a phenomenon seen also with Manakov solitons
�7�. For the dark-bright soliton, the bright �secondary� com-
ponent, propagating in the waveguide induced by the dark
�primary� component, has an intensity maximum at its cen-
ter. The presence of such a maximum in a defocusing me-
dium leads to a lowering of the refractive index at the beam
center, thus weakening the overall guiding effect. The subse-
quent propagation can be thought of as a competitive process
between the nonlinear refractive index changes brought
about by the individual dark and bright components. When
these processes are balanced precisely, an equilibrium state is
formed and a vector soliton may propagate. These refractive

HELMHOLTZ-MANAKOV SOLITONS PHYSICAL REVIEW E 74, 066612 �2006�

066612-3



index changes are reversed for the bright-dark soliton in a
focusing medium, but the underlying physics remains the
same.

The �forward-propagating� dark-dark vector soliton of the
defocusing HM equation has also been found using Hirota’s
method,

A��,�� = A0�cos �1 tanh
 a�� + W��
�1 + 2�W2� + i sin �1


� exp�i�1 − 4��2

1 + 2�V1
2
− V1� +

�

2�
�
exp
− i

�

2�
� ,

�9a�

B��,�� = B0�cos �2 tanh
 a�� + W��
�1 + 2�W2� + i sin �2


� exp�i�1 − 4��2

1 + 2�V2
2
− V2� +

�

2�
�
exp
− i

�

2�
� ,

�9b�

where �2�A0
2+B0

2 is the total �incoherent� intensity of the
vector beam. The expressions for the intrinsic velocities are

V0j =
a tan � j

�1 − 2��2�2 + a2 tan2 � j��1/2 , �10�

where j=1,2, and there is a dependence not only on the
nonparaxial parameter � but also on �2. The soliton param-
eters are connected by the implicit relationship A0

2 cos2 �1
+B0

2 cos2 �2=a2 that removes a degree of freedom from the
system. The two components necessarily have the same net
velocity W, but their plane-wave backgrounds may travel in
different directions. Note that Eq. �9� for the dark-dark soli-
ton is formally identical to Eq. �8� for the dark-bright
solution.

Paraxial solitons of the NLS �4� and Manakov �3� equa-
tions can have arbitrarily large values of phase angle
��� /2. In contrast, HM solitons possess a maximum
“greyness” denoted by �max. For the defocusing nonlinearity,
�max is defined by

tan �max =�1 − 4��2

2�a2 , �11�

where �2�A0
2 for the dark-bright soliton, and �2�A0

2+B0
2 in

the dark-dark case. A similar expression can be derived for
the bright-dark solution �4�. This limit corresponds to a
physical constraint on the largest intrinsic velocity that a
dark soliton may possess, depending on the background in-
tensity. When �→�max, the intrinsic velocity diverges and
the dark component propagates in a direction perpendicular
to that of the background plane wave, 
0→ ±� /2 �26�.

IV. CONSERVED QUANTITIES

Knowledge of the invariants is of fundamental impor-
tance. They are also useful tools for testing the integrity of
any numerical scheme used in computer simulations �28�.

The HM equation �1� may be regarded as the Euler-Lagrange
equation of motion corresponding to a Lagrangian density L,
from which one defines a pair of canonically conjugate mo-
mentum variables, � and �̄

L�U,U†� =
i

2

U†�U

��
−

�U†

��
U� − �

�U†

��

�U

��
−

1

2

�U†

��

�U

��

+
1

2
�U†U�2, �12a�

whereby

� �
�L

�U�

= − 
 i

2
+ �

�

��
�U†, �̃ �

�L

�U�
† = 
 i

2
− �

�

��
�U ,

�12b�

and U����U. It is then straightforward to calculate the con-
served quantities �29�. The fundamental quantity is the en-
ergy flow E, which arises from invariance of L under a global
phase transformation. The second conserved quantity is the
linear momentum M of the system, found from invariance
under an infinitesimal translation in �. The third conserved
quantity is the Hamiltonian H, derived from consideration of
translations in the evolution variable �.

E = �
−�

+�

d��U†U − i�
U†�U

��
−

�U†

��
U�
 , �13�

M = �
−�

+�

d�� i

2

U†�U

��
−

�U†

��
U� − �
 �U†

��

�U

��
+

�U†

��

�U

��
�
 ,

�14�

H = �
−�

+�

d��1

2

�U†

��

�U

��
− �

�U†

��

�U

��
−

1

2
�U†U�2
 . �15�

Equations �13�–�15� also apply to the scalar NLH equation,
by allowing one of the field components to be null. For
bright-bright HM solitons, it is found that

E = 2
�1 + 2�
2, �16a�

M =
2

3

V

3 + 4�
2

�1 + 2�V2
, �16b�

H =



�
�1 + 2�
2 −




3�

3 + 4�
2

�1 + 2�V2
. �16c�

These results are exactly the same as for the scalar bright
Helmholtz soliton �25�. As expected they reduce to their
paraxial counterparts in the multiple limit �→0, �
2→0,
and �V2→0 �1,2�. It is interesting to note that �H /�M =V �as
in the paraxial case�. For other classes of HM soliton, pos-
sessing at least one dark component, the invariant integrals
�13�–�15� can be strongly divergent. A renormalization
procedure is thus necessary to remove such infinities.
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V. CONCLUSION

In this paper, we have considered broad multicomponent
spatial beams in uniform planar waveguides, placing particu-
lar emphasis on the inherent spatial symmetry of such sys-
tems. The Helmholtz-Manakov equation, which generalizes
our earlier work on scalar beams �16–18,25,26,30�, has been
introduced and its two-component solutions �localized, mu-
tually trapped structures� have been derived using Hirota’s
method. The solutions uncover explicit physical dependen-
cies of interesting quantitative and qualitative features. In a
following publication, we will present the results of a pertur-
bative analysis, which has tested and verified the stability
properties of each soliton family.

We expect the HM equation and its soliton solutions to be
relevant in other optical contexts, such as photorefractives
�9,10�, multihump �11�, and holographic �12� solitons. It is

also likely to provide a key analytical platform in the under-
standing of vector-soliton interactions �both co- and counter-
propagating scenarios� at arbitrarily large angles �18�. We
expect new doors of investigation to be opened by lifting the
angular restrictions of current paraxial models. This has par-
ticular importance, for example, in the field of optical com-
puting �14,15�; it may also find application in optical
contexts involving feedback �31�. Helmholtz generalizations
offer broad physical insight into a wide variety of angular
geometries by taking full account of the role spatial
symmetry plays in diffraction and self-focusing processes.
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