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We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media
with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some
semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe
self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially
symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived.
Accompanying conservation laws �both integral and particular forms� are also reported. Numerical simulations
investigate the stability of the solitons, which appear to be remarkably robust against perturbations.
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I. INTRODUCTION

Solitons are universal, self-localizing, and self-stabilizing
waves that may exist in systems where linear effects are
opposed by nonlinearity �1�. In optics, spatial solitons can
become dominant electromagnetic modes if the diffraction of
a beam propagating through a nonlinear medium is balanced
by locally induced refractive-index changes �2–4�. Investiga-
tions of spatial solitons often involve planar waveguiding
structures that comprise a longitudinal dimension and a
single effective transverse dimension. In uniform media,
these two directions are physically equivalent. The robust-
ness of spatial solitons against perturbations means that they
could be used as elementary information units, or “bits” in
future Information Communication and Technology �ICT�
all-optical devices. Applications as diverse as induced
waveguiding �5�, switching in scalar �6� and vector �7� re-
gimes, optical memory �8�, and computing with solitons �9�
have been proposed. The bistable operation of such devices
is likely to be a key consideration.

In his seminal paper, Kaplan showed that generic evolu-
tion equations sometimes support bistable solitons �10�.
Bistable �multistable� solutions are possible when the beam
power becomes a double-valued �multivalued� function of an
internal parameter, such as the propagation constant. This
type of bistability is intrinsic, meaning that it arises solely
from the interplay between light and the host medium. Cru-
cially, no feedback mechanism, e.g., from cavity mirrors or
interfaces �see Ref. �11�, and references therein�, is required.
According to Kaplan’s framework, multistability requires the
nonlinear refractive-index function nNL�I�, where I is the lo-
cal beam intensity, to have either a change in sign, or a
sufficiently sharp peak in its derivative dnNL /dI. These con-
ditions rule out Kerr-type media, where nNL�I�� I, for sup-
porting intrinsically multistable states. Optical devices that
specifically exploit instrinsically bistable solitons therefore
require host materials with appreciable higher-order nonlin-
ear susceptibilities �12–14�.

Gatz and Herrmann have studied a type of intrinsic bista-
bility �15–17� that is distinct from Kaplan’s bistability
�10–14�. They considered a bright soliton of an evolution
equation where the peak intensity �as opposed to the beam
power� may be a double-valued function of a �normalized�
control parameter that characterizes the material nonlinearity.
The result is a pair of coexisting solutions with different
peak intensities, but the same full-width-at-half-maximum
�FWHM� values.

An extensive body of research on bistable solitons has
developed in the literature over recent years. The few works
cited above, for example, have provided a huge amount of
insight into optical systems where the governing equation is
of the nonlinear Schrödinger �NLS� class �8,10–18�. Diffrac-
tion in these models is paraxial, occurring in one dimension
only �transversely to a single reference direction�. Here, we
consider regimes involving bistability where the governing
equation is of the nonlinear Helmholtz �NLH� class, and dif-
fraction is thus fully two dimensional. By folding the phe-
nomenon and formalism of multistability into Helmholtz
soliton theory, one can model bistable spatial solitons in a
wide range of angular contexts.

We consider a medium with a cubic-quintic nonlinear re-
fractive index nNL�I�=n2I+n4I2, where n2 is the Kerr coeffi-
cient and n4 parametrizes a quintic correction term. This
classic model �19� is advantageous for two main reasons.
First, it is a relatively simple generalization of the Kerr re-
sponse and permits exact analytical soliton solutions to be
derived. Second, cubic-quintic media are readily available,
so we expect our predictions to be directly observable in the
laboratory. Many different optical materials have a refractive
index that can be well described by a cubic-quintic nonlin-
earity. Examples include some semiconductors and doped
glasses, such as AlGaAs �20� and CdSxSe1−x �21,22�, respec-
tively, the polydiacetylene para-toluene sulfonate �or “PTS”�
�-conjugated polymer �23–25�, chalcogenide glasses �e.g.,
Ag-As-Se systems� �26–28�, and some transparent organic
materials �29�. A nonlinearity with competing cubic and
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quintic contributions also provides a generic model for satu-
ration �30� in, for instance, double-doped materials �31,32�.

The layout of this paper is as follows. In Sec. II, we
review the limitations of modeling optical beams within the
paraxial approximation. Ultranarrow-beam and Helmholtz
nonparaxial scenarios are defined, and their key physical and
mathematical differences are detailed. In Sec. III, the exact
analytical bistable Helmholtz solitons are presented and their
geometrical properties are explored in detail. We also give a
complete account of the regime and character of both
paraxial and Helmholtz bistable solutions, generalizing pre-
vious analyses �17� to much wider parameter ranges. General
and particular forms for three conservation laws are also re-
ported. In a multiple limit, well-known paraxial solitons are
shown to emerge from the Helmholtz generalizations. In Sec.
IV, the stability of the solutions is tested using numerical
perturbative methods. We conclude, in Sec. V, with some
remarks about the usefulness of Helmholtz soliton theory in
relation to modeling future optical devices.

II. NONPARAXIAL MODELS

Paraxial propagation models remain valid so long as the
beams they describe are �i� broad compared to their carrier
wavelength, �ii� moderately intense, and �iii� evolving along
�or at negligible angles with respect to� the reference direc-
tion. If all three of these criteria are not met simultaneously,
then propagation is, by definition, nonparaxial.

Since the groundbreaking work of Lax et al. �33�, many
authors have considered ultranarrow-beam �or subwave-
length� nonparaxiality, where only condition �i� is violated
�34–44�. It is now well known that the vector nature of the
electric field plays a central role when the waist w0 of an
optical beam becomes comparable to its �free-space� carrier
wavelength �. This particular nonparaxial context is relevant
to the miniaturization aspect of ICT applications, where the
physical size of the device tends toward �. Descriptions of
ultranarrow beams are routinely based upon the assumption
of a single parameter of smallness, ��� /w0. When �
�O�1�, strong coupling between the transverse and longitu-
dinal field components leads to appreciable divergence in the
nonlinear polarization. An order-of-magnitude analysis of
Maxwell’s equations, up to O��2�, can then yield a wave
equation for the dominant �transverse� component. The basic
structure of this equation is typically of the NLS type,
supplemented by a range of higher-order and nonlinear dif-
fractive terms.

The Helmholtz nonparaxial scenario is defined by the re-
laxation of condition �iii� alone, so that only broad beams of
moderate intensity are considered �45�. In this regime,
ultranarrow-beam modifications are unimportant because �
�O�1� is always rigorously satisfied. The electric field may
be taken as being purely transverse �typically TE polarized�,
and the refractive-index distribution can be described within
the scalar approximation. The angular restriction of paraxial
models can be avoided if one omits the slowly varying en-
velope approximation �46,47�, thereby preserving the full
generality of the bidirectional governing equation. Bidirec-
tionality permits both forward and backward propagation,

hence beams are allowed to evolve and interact at any angle
with respect to the reference direction �48�.

A physical subtlety overlooked by paraxial theory is that
the properties of a system must not depend upon the orien-
tation of the observer’s coordinate axes. For instance, if a
beam is stable when it propagates in the reference direction,
then the same beam must also be stable when the coordinate
axes are rotated through an arbitrary angle. It is also clear
that, in uniform media, instability cannot arise from a rota-
tional transformation because all such frames are physically
indistinguishable. Helmholtz diffraction �49� respects this
spatial symmetry.

Off-axis effects can be eliminated for a single isolated
beam through a convenient alignment of the coordinate axes.
However, even the simplest experimental configurations can
generally preclude the existence of a unique reference direc-
tion. Optical arrangements involving, for example, multi-
plexing �50� and the oblique incidence of beams at material
interfaces �51� have intrinsically angular characters that can-
not be accessed by paraxial models. We have recently reana-
lyzed these two elementary geometries for Kerr nonlineari-
ties using Helmholtz soliton theory �52,53�. New qualitative
phenomena were predicted, and corrections to paraxial
theory easily exceeding 100% were uncovered.

III. HELMHOLTZ SOLITONS

A. Model equation

We consider a continuous-wave TE-polarized electric
field with angular frequency �,

Ẽ�x,z,t� = E�x,z�exp�− i�t� + E*�x,z�exp�+ i�t� . �1�

If the complex envelope modulating the carrier oscillations
varies on a scale length much larger than �, then E�x ,z�
satisfies

� �2

�z2 +
�2

�x2�E�x,z� +
�2

c2 n2�	E	2�E�x,z� = 0. �2�

The spatial coordinates appear symmetrically in Eq. �2� so
that diffraction occurs in both x and z directions �45,46�. A
cubic-quintic nonlinearity is introduced through the scalar
refractive index distribution n�	E	2�=n0+nNL�	E	2�, where n0

is the linear index and nNL�	E	2�=n2	E	2+n4	E	4 is the field-
dependent part. The Kerr coefficient is taken to be positive
�i.e., n2�0�, but n4 may assume positive or negative values.
For weak optical nonlinearities, one has that 	nNL	�n0 so, to
an excellent approximation, n2�	E	2�
n0

2+2n0nNL�	E	2�. To
facilitate a comparison between Helmholtz and conventional
�paraxial� models, the z axis is chosen as the reference direc-
tion and the spatial part of the electric field is expressed
as E�x ,z�=E0u�x ,z�exp�ikz�, where k=n0k0 and k0�� /c
=2� /�. By substituting this into Eq. �2�, one may derive,
without further approximation, a governing equation for the
dimensionless envelope u,
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�2u

�
2 + i
�u

�

+

1

2

�2u

��2 + 	u	2u + �	u	4u = 0. �3�

�=�2x /w0 and 
=z /LD are the dimensionless spatial coordi-
nates, normalized with respect to a reference Gaussian beam
of waist w0 and diffraction length LD=kw0

2 /2. The electric
field is measured in units of E0��n0 /kn2LD�1/2, while 	
=1/k2w0

2��2 /4�2n0
2�O�1� quantifies the �inverse� beam

width and ��E0
2n4 /n2 parametrizes the ratio of the quintic

to the cubic nonlinear phases for the input beam. ��0 when
n4�0 �focusing quintic nonlinearity� and �
0 when n4

0 �defocusing quintic nonlinearity�.

B. Exact bright solitons

We have derived the following exact analytical bright
solitons of Eq. �3�:

u��,
� = �1/2��,
�exp�i� 1 + 4	�

1 + 2	V2��V� ±



2	
�


�exp�− i



2	
� , �4a�

���,
� =
4�

1 + �1 +
4

3
��0�cosh����,
��

, �4b�

���,
� = 2�2��1/2 � ± V


�1 + 2	V2
, �4c�

� � ���,�0� =
�0

2
�1 +

2

3
��0� , �4d�

and �0 is the peak intensity. The forward �backward� solution
in Eqs. �4� corresponds to the upper �lower� choice of
signs. Equations �4� describe an exponentially localized
beam propagating at an angle �=tan−1��2	V� relative to the
+z �−z� axis, where V is the transverse velocity parameter
and −90° ��� +90° �see Fig. 1�. It is important to note that

there is no physical distinction between the forward and
backward beams. This follows from the fact that the “for-
ward” and “backward” designations are only meaningful
once the �x ,z� coordinate axes have been defined. The
equivalence of the two solutions in Eqs. �4� can be estab-
lished mathematically by combining them, through trigono-
metric identity, into

u��,
� = �1/2��,
�exp�i�1 + 4	�

2	
�− � sin �

+



�2	
cos ��
exp�− i




2	
� , �5a�

���,
� = 2�2��1/2�� cos � +



�2	
sin �� . �5b�

Thus, by eliminating the transverse velocity parameter, it can
be seen that there is really just a single beam that may propa-
gate at any angle, −180° ��� +180°, with respect to the +z
direction.

Solutions �4� include all the generic features of Helmholtz
solitons �45–48,54–57�, including the longitudinal phase fac-
tor exp�−ikz�, and angular and intensity-dependent modifica-
tions to the beam wave vector. Spatial symmetry also leads
to geometrical beam broadening. During oblique evolution,
an observer in the �x ,z� coordinate frame perceives the beam
width to be increased by a factor of �1+2	V2�1/2=sec � rela-
tive to its on-axis value �see Fig. 2�. This effect is negligible
for paraxial angles �which are implicitly tiny�, but it becomes
entirely nontrivial at moderate and large angles. For ex-
ample, when �= ±60°, one finds that 2	V2=3, irrespective of
	, and the beam width is increased by a factor of 2. In the
extreme cases of �= ±90°, where propagation is along the
�x axis, one has that 2	V2→� and the Helmholtz soliton
�4� becomes,

u��,
� = �1/2�
�exp��i�1 + 4	�

2	
�
exp�− i




2	
� ,

�6a�

FIG. 1. Schematic diagram illustrating the forward �FWD� and
backward �BWD� solitons of Eqs. �4�. The FWD and BWD solu-
tions are essentially indistinguishable, as they must be, since
whether evolution occurs in the “forward” or ‘backward’ direction
depends solely upon the relative orientation of the observer’s coor-
dinate axes with respect to the beam. x and z are the laboratory or
physical coordinates �schematically represented in the same un-
scaled units�. The angles marked in the figure denote the sense of
the propagation angle ��0.

FIG. 2. Schematic diagram �to scale� illustrating the angular
beam broadening effect. Beams are plotted in the laboratory or un-
scaled �x ,z� frame, and the coordinates are in the same units �de-
termined by the choice of the beam widths�. Part �a� shows a qua-
siparaxial ��=6° � configuration, and part �b� shows a typical
Helmholtz ��=60° � regime. In �a�, propagation is constrained to be
very nearly along the z axis, in which case geometrical broadening
is negligible. In �b�, evolution at a finite angle can lead to an arbi-
trarily large increase in the beam width as �→ ±90°.
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��
� = 2�2��1/2 


�2	
. �6b�

The beam thus appears to be infinitely broad when viewed
from the �x ,z� frame since it is evolving perpendicularly to
the z axis.

	�

 is a fundamental part of the linear wave operator in
Eq. �3�. Its geometrical contribution 2	V2 is unbounded,
even when 	
0, and is independent of system nonlinearity.
These results demonstrate that potentially dominant Helm-
holtz angular effects cannot be quantified by the single-
parameter �i.e., 	-based� expansions routinely deployed in
ultranarrow-beam analyses �34–44�. They also suggest that
	�

 should not generally be regarded as a small, e.g., O�	�,
perturbation �1,58–60� to a paraxial governing equation �17�.

C. Bistable solutions

Insight into the bistable character of solution �4� can be
gained by considering a half-width intensity distribution,
which is defined by the condition 	u�s�	2= 1

2�0. Here, s
= 	�±V
	�1+2	V2�−1/2��� denotes the half-width, �
�sech−1�2−1/2��0.88, and the parameter ��0 is introduced
to determine the half-width of the beam in units of �. This
condition leads to the transcendental equation for �0,

�0
1/2 = � 1

2��
� 1

�1 +
2

3
��0

cosh−1� 3 +
8

3
��0

1 +
4

3
��0
� . �7�

Gatz and Herrmann �17� studied the canonical solutions of
Eq. �7�, defined by �=1. Solitons in this solution subset have

half-widths of s=�. When 	�	→0, one then recovers the
unit-amplitude Kerr bright soliton, where �0

1/2=1. We now
show that there exist much broader classes of bistable solu-
tion families that are characterized by a continuum of values
of �.

When ��0, there is a unique value of �0 that satisfies Eq.
�7�, for each soliton width. The situation is more interesting
when �
0. The curves in Fig. 3�a� reveal that for each
choice of �, there are generally two distinct values of �0 that
satisfy Eq. �7� within some finite interval 0
 	�	
 	�	crit,
where 	�	crit is a cutoff. These roots characterize a pair of
beams with different peak intensities but that, by definition,
possess the same FWHM, given by 2��. As 	�	→0, the
upper branch diverges toward infinity while the lower branch
tends to �0

1/2�1/�.
Inspection of the general solution �4� shows that when

�
0, the peak intensity is constrained by 	�	�0max=3/4. The
divergence of the upper branches in Fig. 3�a� occurs as this
limit is approached. Each pair of particular bistable solitons
�for fixed 	�	� shown in Fig. 3�a� corresponds to a pair of
points on the curves given in Fig. 3�b�. Note also that since
there is a maximum allowed peak intensity for each 	�	, there
is a corresponding maximum allowed �, which is given by
�max=�0max/4. Beam profiles for canonical solitons, includ-
ing the angular broadening effect, are shown in Fig. 4.

The bistability properties of Helmholtz solitons do not
depend upon the propagation angle, even though other beam
parameters depend strongly on this angle. Such an intuitive
result could have been predicted a priori on the grounds of
rotational symmetry. The independence of �0 with respect to
� follows directly from the fact that the FWHM is measured

FIG. 3. �a� Bistable solution families for several values of �,
obtained by solving Eq. �7�. For fixed 	�	 and �, solitons residing on
the two branches have different peak intensities �0, but the same
full-width-half-maximum values. The dashed line, corresponding to
�=1, was presented in Ref. �17�. �b� Dependence of the parameter
� on �0 �see Eq. �4d��.

FIG. 4. Helmholtz soliton profiles for �a� upper-, and �b� lower-
branch solutions with �=1 and �=−0.15. From Fig. 3�b�, the peak
amplitudes are ��0�2.03 and ��0�1.14, respectively. Propagation
angles are �=0° �solid line�, �=30° �dashed line�, �=45° �dotted
line�, and �=60° �dot-dashed line�. Solid lines coincide with exact
paraxial solution �12�, where no broadening is present.
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in the direction transverse to the propagation axis, and is
therefore uniquely determined for a given beam. It is for this
reason that 	 and 2	V2 corrections do not appear in Eq. �7�.

D. Conservation laws

Noether’s theorem connects the conservation laws of a
continuous system to its symmetries through a quite general
field-theoretic prescription �61�. Model �3� and its complex
conjugate can be regarded as Euler-Lagrange equations for a
Lagrangian density L �i.e., �”L /�”u*=0 and �”L /�”u=0, respec-
tively, where �” /�”u and �” /�”u* denote variational derivatives�.
With L given by

L =
i

2
�u*�u

�

− u

�u*

�

� − 	

�u

�


�u*

�

−

1

2

�u

��

�u*

��
+

1

2
	u	4 +

1

3
�	u	6,

�8�

one may define a pair of canonically conjugate momentum
variables,

� �
�L

�u


= − � i

2
+ 	

�

�

�u* �9a�

and

�̃ �
�L

�u

* = � i

2
− 	

�

�

�u . �9b�

Here, u
��
u, etc., and � and 
 play the roles of “space” and
“time” coordinates, respectively. Three conserved quantities,
identified as the energy flow W, the linear momentum M, and
the Hamiltonian H, may then be derived as follows:

W = �
−�

+�

d��	u	2 − i	�u*�u

�

− u

�u*

�

�
 , �10a�

M = �
−�

+�

d�� i

2
�u*�u

��
−

�u*

��
u� − 	� �u*

�


�u

��
+

�u*

��

�u

�

�
 ,

�10b�

and

H = �
−�

+�

d��1

2

�u

��

�u*

��
− 	

�u

�


�u*

�

−

1

2
	u	4 −

1

3
�	u	6
 .

�10c�

These integrals arise from the invariance of the field equa-
tions under a set of one-parameter infinitesimal transforma-
tions �a global phase transformation, and translations in �
and 
, respectively�. Conservation laws are of fundamental
physical and mathematical importance and, in this instance,
they are also useful for monitoring the integrity of the nu-
merical scheme �62� used to solve Eq. �3�.

Exact algebraic expressions for the invariants can be ob-
tained by substituting solution �4� into integrals �10�, where-
upon one finds, for the forward soliton,

W = �1 + 4	��1/2P , �11a�

M =
V

�1 + 2	V2
��1 + 4	��P − 2	Q� , �11b�

H =
�1 + 4	��1/2

2	
P −

M

2	V
. �11c�

When ��0, the functions P and Q are given by

P � � 3

2�
�1/2

tan−1��16��

3
� , �11d�

and

Q �
1

2
� 3

8�
���1 +

16��

3
�P − �8�
 . �11e�

One can obtain expressions for P and Q when �
0 by mak-
ing the transformation �→−	�	 in Eqs. �11d� and �11e�, in
which case

P � � 3

2	�	�
1/2

tanh−1��16	�	�
3

� , �11f�

and

Q �
1

2
� 3

8	�	���8� − �1 −
16	�	�

3
�P
 . �11g�

From Eqs. �11b� and �11c�, it can be shown that �H /�M
=�VH /�VM =V, where �V denotes differentiation with respect
to the velocity V. Further analysis has revealed that such a
connection between H and M is an intrinsic property of for-
ward Helmholtz bright solitons.

E. Paraxial limit of Helmholtz solitons

Any Helmholtz soliton should converge to its paraxial
counterpart whenever the beam behaves paraxially
�45–48,54–57�. However, this type of recovery is subtle and
cannot be achieved by setting 	=0. Inspection of Eqs. �4�
and �5� shows that such a simple approach would be prob-
lematic; one actually requires all contributions from 	�

 to
be negligible simultaneously. A paraxial solution emerges if
and only if 	→0 �broad beam�, 	�0→0 �moderate inten-
sity�, and 	V2→0 �negligible propagation angle, and thus
strictly �→0°�. By applying this multiple limit to the for-
ward beam in Eqs. �4�, one finds that

u��,
� 
 �1/2��,
�exp�− iV� + i�� −
V2

2
�

 , �12a�

and

���,
� 
 2�2��1/2�� + V
� , �12b�

which is Herrmann’s paraxial soliton �17�. It is interesting to
note that 	V2→0 can also be satisfied when �→ ±180°,
where propagation coincides with the −z axis. Such a regime
is outside the scope of �unidirectional� paraxial theory, which
has no analog of Helmholtz backward waves. Finally, by
applying the paraxial limit to the forward conserved quanti-
ties, Eqs. �11�, one obtains W
 P and M 
VP, and

H 

1

2
V2P − �P + Q . �13�

These approximate expressions correspond to the three in-
variants reported by Gatz and Herrmann �17�. Akhmediev et
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al. �63� have also considered the paraxial beam power P and
the on-axis �i.e., V=0� Hamiltonian in Eq. �13� for �
0. We
stress that solitons lying on the two branches are associated
with different values of � and thus, from Eq. �11f�, have
different beam powers. This confirms that the type of intrin-
sic bistability discussed in Sec. III C is physically distinct
from that discovered by Kaplan �10–14�.

IV. SOLITON STABILITY

The stable propagation of beam solutions in elliptic mod-
els has been known for several years. For example, a spatial
symmetry-preserving algorithm was derived to integrate Eq.
�3� numerically �62�. Several previous works have reported
that Helmholtz solitons are generally robust entities that are
surrounded by wide basins of attraction �48,52–57�. Linear
analysis has also established the modulational stability prop-
erties of plane-wave solutions to generic NLH equations
�55�. Finally, we have found excellent agreement between
the predictions of models such as Eq. �3�, and direct integra-
tion of the fully nonlinear Maxwell equations �64�.

Exact solitons �4� have been found to evolve stably over
arbitrarily long distances. However, a defining physical prop-
erty of a soliton is its robustness against perturbations. Re-
sults from numerical simulations are now presented that es-
tablish the stability of cubic-quintic Helmholtz solitons. For
beams with 	�O�1� and 	�0�O�1�, solution �4� has the
transverse phase slope,

S = V� 1 + 4	�

1 + 2	V2 

V

�1 + 2	V2
=

sin �

�2	
.

We chose the initial condition

u��,0� = � 4�

1 + �1 +
4

3
��0�cosh�2�2����

1/2

exp�− iS0�� ,

�14�

which is an exact solution �12� of the corresponding paraxial
equation with transverse velocity S0. By applying a rotational
transformation and examining the beam along its propaga-
tion axis �46�, it can be seen that the initial condition
�14� is equivalent to an on-axis paraxial soliton �17�
whose width has been reduced by the Helmholtz factor
�1+2	V2�1/2, where V=S0�1−2	S0

2�−1/2. For a typical value
of 	=10−3 �	=10−4�, propagation angles of �=15°, 30°, and
45° occur for S0�5.79 �S0�18.30�, S0�11.18 �35.36�, and
S0�15.81 �=50.00�.

Figure 5 shows a typical set of reshaping results for
beams with �=−0.15. When �=1, the upper and lower
branches on the bistable curve �see Fig. 3�a�� correspond to
intensities �0
4.14 and �0
1.30, respectively, while the
monostable solution �where �= +0.15� has �0
0.87. In all
three cases, the parameters �amplitude, width, and area� of
the reshaping beam undergo monotonically decreasing oscil-
lations. This type of evolution has been reported for other
similarly perturbed Helmholtz solitons, where, typically, the
oscillations vanish as 
→� to leave a stationary state

�48,55–57�. It is interesting to note that for a given 	�	, the
three soliton families �upper branch, lower branch, and
monostable� evolve at distinct rates toward their stationary
states. Upper-branch solitons have been found to reshape
most “rapidly” �with the oscillations occurring over the
shortest 
 scale lengths�, while the monostable soliton re-
quires the longest distance for the stationary beam to emerge.
The same qualitative features have been observed for a wide
range of values of 	�	. By fixing the perturbation S0 and
varying 	�	, it has been found that increasing 	�	 leads to
slightly “faster” reshaping oscillations.

The evolution of a perturbed soliton in �	u	m ,�
	u	m ,
�
space is plotted in Fig. 6�a�. The trajectory winds towards an
axis that is parallel to the 
 axis, and that passes through
�
	u	m=0. In Fig. 6�b�, the orbit is projected onto the
�	u	m ,�
	u	m� plane. In this two-dimensional representation, it
can be seen that the trajectory is strongly attracted toward a
single fixed point. One of the coordinates of this fixed point
is always �
	u	m=0, but the precise location of the other co-
ordinate, along the 	u	m axis, depends upon the initial pertur-
bation. In this sense, one can interpret the stationary Helm-
holtz beam that emerges asymptotically from Eq. �14� as a

FIG. 5. Reshaping oscillations in the peak amplitude ��0

�	u	m of perturbed bistable solitons �4� with �=−0.15, lying on �a�
upper, and �b� lower branches of the curve shown in Fig. 3�b�.
Reshaping of the corresponding monostable soliton �where �=
+0.15� is shown in part �c�. Solid lines: �=15°; dashed lines: �
=30°; dot-dashed lines: �=45°.
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fixed-point attractor of the system, in whose basin of attrac-
tion the input beam resides. In Fig. 6�c�, the orbit is projected
onto the �
 , 	u	m� plane, revealing the monotonically decreas-
ing oscillations in the peak amplitude. This particular plot
also illustrates the character of the curves shown in Fig. 5.

The “fixed-point” classification is based upon a qualita-
tive comparison with classic phase portraits that arise in dis-
sipative dynamical systems �61,65�. Mathematically, Eq. �3�
is conservative, and so, strictly, fixed points cannot exist.
However, the small amount of radiation that is shed during
reshaping can be regarded as a source of local dissipation,
while energy flow, momentum, and energy �i.e., the integrals
in Eqs. �10�� are conserved globally. The notion of systems

that are locally dissipative and �simultaneously� globally
conservative has been discussed in more detail elsewhere
�55–57�.

V. CONCLUSIONS

We have presented the exact analytical bistable soliton
solutions to a nonlinear-Helmholtz governing equation. The
structure of the spatially symmetric, cubic-quintic solitons
has been explored in detail. It has been shown that geometri-
cal corrections to off-axis beam evolution may be of arbi-
trary magnitude, and that they are independent of both the
system nonlinearity and the inverse beamwidth parameter 	.
Well-known paraxial solutions �17� emerge from the more
general Helmholtz solitons when a simultaneous multiple
limit is enforced. Finally, well-tested numerical analyses
have confirmed the robustness of the Helmholtz solitons
against perturbations.

The results reported in this work have innate mathemati-
cal appeal in the context of generic nonlinear partial differ-
ential equations. A generalized analysis has revealed that
bistable regimes can always be accessed, irrespective of 	�	,
by varying � �i.e., by changing the soliton FWHM�. We have
found that broader beams allow a larger region of bistability,
and this finding has particular physical importance. It dem-
onstrates that the character of the bistability depends on the
properties of the optical beam itself, rather than on the ma-
terial parameters. The type of intrinsic bistability that we
have studied in this paper is therefore possible �at least in
principle� in all cubic-quintic materials with n2�0 and n4

0, regardless of the relative magnitude of these coeffi-
cients.

We propose that Helmholtz soliton theory provides the
ideal platform for the design and modeling of any future
optical ICT devices that exploit arbitrary-angle effects with
bistable and/or multistable operation. For example, the solu-
tions reported here provide the basis functions for generaliz-
ing our recent work on Kerr interface geometries �53� to
include cubic-quintic and saturable materials �66� and
bistable multibeam contexts �67�. We have also started to
analyze how bistable solitons interact in arbitrary-angle re-
gimes �52,57�. These investigations are directly relevant to
other areas of very active research, including spatial-soliton
dragging �68�, logic �69�, switching �70,71�, and coupled
waveguide arrays �72�. Helmholtz solitons offer countless
exciting new theoretical challenges and experimental pros-
pects. We expect that new qualitative and quantitative phe-
nomena will be discovered once full account is taken of spa-
tial symmetry in nonlinear optical systems.
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