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Abstract
The behaviour of optical solitons at planar nonlinear boundaries is a problem rich in
intrinsically nonparaxial regimes that cannot be fully addressed by theories based on the
nonlinear Schrödinger equation. For instance, large propagation angles are typically involved in
external refraction at interfaces. Using a recently proposed generalized Snell’s law for
Helmholtz solitons, we analyse two such effects: nonlinear external refraction and total internal
reflection at interfaces where internal and external refraction, respectively, would be found in
the absence of nonlinearity. The solutions obtained from the full numerical integration of the
nonlinear Helmholtz equation show excellent agreement with the theoretical predictions.
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1. Introduction

Interfaces have played a crucial role within electromagnetic
theory, since they constitute one of the most common problems
in the description of propagation phenomena. The field of
nonlinear optics is not an exception, and during the last
few decades there have been various contributions to the
understanding of the evolution of wavepackets or beams at a
planar boundary separating nonlinear media. The first studies
of nonlinear interfaces are dated between the late 1970s and
the early 1980s and were restricted to Gaussian beams at
the boundary between a linear and a nonlinear (Kerr-type)
medium [1–4]. In the transition from the 1980s to the 1990s,
a second approach focused on interfaces between two Kerr-
type nonlinear media [5–10]. The particle-like model [6–9]
was then introduced, in which a soliton is represented as a
quasi-particle which evolves according a potential defined by
the nature of the nonlinear interface. Soliton characteristics,
such as transverse velocity and amplitude, were related to
interface parameters to establish criteria for soliton evolution
at the interface. In the middle 1990s, an alternative approach
to the problem was introduced in the form of an adiabatic
theory [11, 12]. This was applied to the study of the boundary
between two media of quite dissimilar properties, such as

linear/nonlinear interfaces. In recent years, other types of
nonlinear interface, such as in photorefractive crystals [13] and
in quadratic media [14], have also been analysed.

All these earlier works have in common the description
of the evolution of optical beams in terms of the
nonlinear Schrödinger (NLS) equation, in which the slowly
varying envelope approximation (SVEA) is assumed [15].
Nevertheless, the behaviour of solitons at nonlinear interfaces
may lie beyond the limits of the paraxial approximation, for
instance, when external refraction occurs at the interface.
In such scenarios, a full nonparaxial analysis is needed
to retain the full angular extent of the problem and thus
overcome the limitations of paraxial analyses. Nonparaxiality
is often a misunderstood term, because it can refer to different
contexts of distinct nonparaxial character: high intensity and,
separately, large angles of propagation.

The first type of nonparaxiality arises in the evolution
of ultra-narrow beams in nonlinear media. The suitability
of the NLS for describing the evolution of such beams
was questioned by Akhmediev et al [16], who uncovered
limitations of the NLS in scenarios of strong focusing. For
ultra-narrow beams, a full vectorial analysis starting from
the Maxwell equations can also be necessary [17–19] to
include the tensorial refractive index dependence. Solutions
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to these equations in the form of bright [20] and
dark [21, 22] nonparaxial solitons have been reported and
analysed.

The second type of nonparaxiality occurs in the rapid
evolution of the field envelope of a broad (when compared
to the wavelength) beam propagating at a large angle to the
longitudinal axis. This nonparaxiality is well described by the
scalar nonlinear Helmholtz (NLH) equation [23, 24], which
has been proposed to overcome the limitations of the NLS,
for instance, by arresting soliton collapse in a focusing Kerr-
type medium [23], and for which exact analytical soliton
solutions have been found [24–26]. Substantial differences
with paraxial theory are not only revealed by the exact bright
Kerr soliton solutions of the NLH equation but are also found
in dark Kerr [27], two-component [28], boundary [29], and
bistable [30] Helmholtz soliton solutions. When the full
Helmholtz approach is used, significant differences with the
predictions of NLS theory are also found at a fundamental
level, for example, when analysing soliton collisions [31].

As regards numerical investigations, novel methods have
been developed to understand nonlinear phenomena governed
by the NLH equation, in which backscattered waves can
accompany a forward propagating beam. Leaving aside
the general framework proposed by Ferrando et al [32]
for studying the propagation of electromagnetic fields with
backscattered components, two different numerical strategies
for treating backward waves arising in the NLH are proposed.
Fibich and Tsynkov have introduced a two-way arbitrary
boundary conditions model [33, 34] that can suppress
the reflection of backscattered waves without affecting the
propagation conditions for the forward propagating beam.
With this method, the arrest of three-dimensional (3D)
soliton collapse and the formation of 2D nonparaxial solitons
have been numerically demonstrated [35]. A different
numerical approach to solving the NLH is the nonparaxial
beam propagation method (NBPM) [36], which combines
both finite difference and spectral methods. Backscattered
waves are filtered out, thus avoiding an evanescent backward
field, that can appear to grow in the forward direction and
hence mask the contribution of the forward propagating field.
This scheme has been applied to the phenomena studied
in [27–31].

In this paper, the NBPM is used to study the behaviour
of Helmholtz solitons at nonlinear interfaces. In a previous
work [37], a generalized Snell’s law was introduced, and its
validity was assessed for interfaces exhibiting linear internal
refraction, where beams crossing an interface undergo small
angular deviations. The results presented in this paper
extend the analysis of this generalized Snell’s law (section 2).
Moreover, we also explore highly nonparaxial contexts, not
previously addressed in [37] and found at interfaces exhibiting
nonlinear and linear external refraction. Nonlinear external
refraction is demonstrated to exist at interfaces where internal
refraction would be found for linear plane waves (section 3).
For the case of interfaces admitting linear external refraction,
we show that critical angles are also allowed according to the
generalized Snell’s law (section 4).

2. Generalized Snell’s law for Helmholtz solitons

The time-independent complex 2D field envelope E(x, z) of
a continuous wave TE-polarized beam evolves according to a
two-dimensional Helmholtz equation
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+ ω2

c2
n2 E = 0, (1)

where n is the nonlinear refractive index. If we consider a
forward propagating beam E(x, z) = A(x, z) eikz and employ
the normalizations ζ = z/LD and ξ = 21/2x/w0, w0 being
a transverse scale parameter equal to the waist of a reference
Gaussian beam of diffraction length LD = kw2
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In (2), κ = 1/k2w2
0 is a nonparaxiality parameter [23, 24] and

n01 is the linear refractive index of a first Kerr-type nonlinear
material whose total refractive index is n01 + α1|E |2, where
α1 � n01. If we now include in our analysis a second Kerr-type
medium with n = n02 +α2|E |2 and consider the normalization
A(ξ, ζ ) = (n2

01/kα1 LDn02)
1/2u(ξ, ζ ), (2) can be rewritten as
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where interface parameters relating the linear and nonlinear
refractive indices of the adjoining media, separated by a planar
boundary,

� ≡ 1 −
(

n02

n01

)2

(4)

and
α ≡ α2

α1
, (5)

respectively, have been introduced. In absence of discontinuity,
� = 0 and α = 1, one recovers the NLH for a homogeneous
medium [24] from (3), which can be written as [37]
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where the Heaviside function H (ξ), with H (ξ) = 0 for ξ < 0
and H (ξ) = 1 for ξ � 0, has been used to represent a planar
boundary at ξ = 0.

By phase-matching of exact soliton solutions [26] for ξ <

0 and ξ � 0, one obtains a generalized Snell’s law [37] that
governs the evolution of beams at a boundary separating two
Kerr focusing media,

γ n01 cos(θi) = n02 cos(θt). (7)

θi and θt are the angles of incidence and refraction (between
the beam and the interface), respectively,

γ =
(

1 + 2κη2
0
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)1/2

(8)
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(a) (b)

Figure 1. Constant γ contours as a function of � and α for (a) κ = 10−4 and (b) κ = 2.5 × 10−3. In both cases, η0 = 1.

0

(a) (b)

Figure 2. (a) Generalized Snell’s law, and (b) critical angle, for different values of κ and η0 = 1.

is a nonlinear correction term, and η0 is the incident soliton
amplitude. Since γ is responsible for all nonlinear beam
corrections to the familiar linear plane-wave relationship, one
can analyse (8) in terms of constant γ lines, as shown in
figure 1. Solid lines represent combinations of � and α which
preserve γ constant. The �–α plane has been divided into four
regions by means of two perpendicular dashed lines, � = 0
and α = 1, corresponding to the absence of discontinuity in
the linear and nonlinear refractive indices, respectively.

Two completely different scenarios are found as κ changes
from 10−4 to 2.5×10−3. In the first case, figure 1(a), significant
nonlinear corrections appear only at � ∼ η0, since the constant
γ lines are concentrated in the � → 1 region. This condition
is equivalent to the one obtained in previous paraxial analysis
based on the NLS [6], where nonlinear corrections arose when
the soliton amplitude was of the same order as �. In contrast
to this, for κ = 2.5 × 10−3 and figure 1(b), constant γ

lines are widespread over the entire �–α plane and nonlinear
corrections affect all kinds of interfaces.

From (7) and (8) one obtains an expression for the critical
angle, θc, defined as the smallest angle of incidence for which
a transmitted soliton is found in the second medium. Setting

θt = 0 in (7), one obtains

tan(θc) =
(

� + 2κη2
0(1 − α)

1 − � + 2κη2
0α

)1/2

. (9)

Figure 2(a) displays the angle of refraction of a Helmholtz
soliton transmitted through a nonlinear interface with � =
0.005 and α = 2. When � � 2κη2

0, θt (solid line) has a value
very close to that expected for a plane wave in the absence of
nonlinearity (dashed–dotted line). As 2κη2

0 ∼ �, the nonlinear
contribution to the refractive index produces a significant
modification to the angle of refraction and the generalized
Snell’s law predicts that nonlinear external refraction can be
found even when � > 0. This effect will be analysed in detail
in section 3.

The nonlinear correction can also strongly affect the size
of the critical angle. When � � 2κη2

0, (9) gives tan(θc) ≈
(�/(1 − �))1/2, which is the value corresponding to a linear
plane wave at the interface. This is plotted with a dashed–
dotted line in figure 2(b) that lies very close to the results
for optical solitons in the � � 2κη2

0 regime (solid line).
Nevertheless, as � ∼ 2κη2

0, θc undergoes large changes, as
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(a) (b)

Figure 3. (a) Nonlinear external refraction (δ = −0.003) for � > 0 interfaces. (b) A Helmholtz soliton undergoes nonlinear external
refraction at the same interface described in (a) when δ = −0.003.

is shown by the dashed line of figure 2(b). The generalized
Snell’s law predicts that interfaces showing linear external
refraction (� < 0) can also exhibit total internal reflection.
This phenomenon is studied in section 4.

The parameters in figures 2(a) and (b) are chosen
to illustrate the Helmholtz type of nonparaxiality we are
addressing in this work. Thus, we restrict our analyses to broad
beams of low or moderate intensity κη2

0 � 1 and values of
� ∼ 2κη2

0 for which nonlinearity significantly affects soliton
refraction. Even though the results shown in figures 2(a)
and (b) are restricted to angles smaller than 20◦, for which the
values of � used do introduce significant changes, the validity
of the generalized Snell’s law extends to arbitrary angles.

3. Nonlinear external refraction

We have seen how the refraction of optical solitons at an
interface can be substantially affected by the nonlinear terms
in the refractive indices. These effects can be quantified by a
mismatch parameter

δ = � + 2κη2
0(1 − α), (10)

which captures both the linear and nonlinear contributions to
the refractive index step across the boundary. Parameter δ

alone can be used to predict how the soliton refracts at the
interface: θt > θi (external refraction) for δ < 0, θt < θi

(internal refraction) for δ > 0 and θt = θi for δ = 0. This last
case is a total transparency condition [37], obtained when the
linear and nonlinear refractive index mismatches cancel each
other. Under this condition, the soliton crosses the interface at
a constant angle.

We now consider the particular case of � > 0. For linear
interfaces, one would find internally refracting plane waves. If
the nonlinear correction is such that δ < 0, nonlinear external
refraction of optical solitons is found, as shown by the results
for κ = 0.005 in figure 2(a). Figure 3 illustrates this effect.
In figure 3(a), lines correspond to the predictions from the
generalized Snell’s law (7) and points are from the numerical
integration of the NLH equation [36]. For κ = 10−4, one

obtains δ ∼ �, and the angle of refraction (solid line) remains
close to that expected for linear interfaces. However, as the
nonparaxiality parameter is increased to κ = 2.5×10−3 (giving
δ = −0.003), nonlinear external refraction is found (dashed
line). In both cases, the numerical results show very good
agreement with the predictions of the generalized Snell’s law.

The NBPM [36] has been used to obtain the intensity plot
of figure 3(b), which displays the evolution of a Helmholtz
soliton impinging on the interface described in figure 3(a) when
δ = −3×10−3. After entering the second medium, the angle of
refraction exceeds the angle of incidence since the conditions
for nonlinear external refraction are satisfied. The soliton width
decreases when entering the second medium due to the larger
Kerr nonlinearity.

4. Total internal reflection for � < 0 interfaces

Interfaces exhibiting linear external refraction, � < 0, are
most likely to pose intrinsically nonparaxial regimes due to the
large angles of refraction typically found. Not surprisingly,
previous NLS analyses have avoided this type of nonlinear
boundary. The nonlinear Helmholtz generalization of Snell’s
law predicts the new effect of total internal reflection for � < 0
interfaces.

The condition for total internal reflection at interfaces
exhibiting linear external refraction requires that α < 1. This
relationship between the Kerr coefficients of two adjoining
media can inhibit soliton formation in the second medium if
beam diffraction is not fully compensated by self-focusing. In
that case, the beam in the second medium undergoes diffractive
spreading. Nonlinear–linear interfaces characterized by α = 0
constitute an extreme limit of α < 1 and are the most suitable
to exhibit total internal reflection whenever � < 0. For these
cases,

tan(θc)|α=0 =
(

� + 2κη2
0

1 − �

)1/2

. (11)

In figure 4(a), the critical angle is shown for two different
values of 2κη2

0. The dashed line represents θc when 2κη2
0 =

2 × 10−2, showing that critical angles are obtained whenever
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(a) (b)

(c)

Figure 4. (a) Critical angle for � < 0 interfaces. Evolution of a Helmholtz soliton (η0 = 2) at a nonlinear–linear interface (� = −0.005) for
(b) θi > θc and (c) θi < θc.

the nonlinear index mismatch prevails over �. In that case, the
minimum value of � accommodating total internal reflection
is �min = −2κη2

0. When κ = 2 × 10−4, the nonlinearity
barely compensates the negative value of � (solid line) and the
existence region for the critical angle is greatly reduced.

The two points marked as (b) and (c) in figure 4(a)
correspond to the two surface plots on the right. These plots
have been obtained from the numerical integration of the
NLH [36] and show the behaviour of a soliton with 2κη2

0 =
2 × 10−2 impinging on a nonlinear–linear interface with � =
−0.005. As confirmed in figure 4(b), a soliton propagating
with an angle θi > θc experiences diffractive spreading when it
crosses the interface and enters the linear medium. On the other
hand, for θi < θc the soliton undergoes total internal reflection
at the interface and is directed back into the nonlinear medium,
as is shown in figure 4(c).

5. Conclusions

We have presented a study of nonlinear interfaces, separating
two Kerr focusing media, based on the NLH equation. Our
analyses preserve the full angular content of the problem,
and hence overcome the limitations embedded in the paraxial
approximation.

Two effects taking place within intrinsically nonparaxial
regimes have been reported and analysed. These are nonlinear
external refraction and total internal reflection for interfaces
exhibiting linear internal and external refraction, respectively.
Both effects have been predicted using a generalized Snell’s
law for Helmholtz solitons and numerically investigated by full
integration of the NLH equation. Excellent agreement has been
found between analytical predictions and numerical results.
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