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Abstract
We report, to the best of our knowledge, the first exact analytical algebraic
solitons of a generalized cubic-quintic Helmholtz equation. This class of
governing equation plays a key role in photonics modelling, allowing a full
description of the propagation and interaction of broad scalar beams. New
conservation laws are presented, and the recovery of paraxial results is discussed
in detail. The stability properties of the new solitons are investigated by
combining semi-analytical methods and computer simulations. In particular,
new general stability regimes are reported for algebraic bright solitons.

PACS numbers: 42.65.−k, 42.65.Tg, 42.65.Wi, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solitons are robust, self-localizing waves that can exist in a system when linear spreading
effects are opposed by nonlinearity [1]. Their prevalence in mathematical physics is largely
due to a relatively small set of universal equations governing a wide range of systems [2].
Solitons tend to be constructed from hyperbolic functions (such as sech and tanh) of the
space and/or time coordinates, and are thus exponentially localized wavepackets. However,
universal equations can often also support algebraic solitons—particular solutions that are
constructed from rational functions. Such solutions are less tightly localized than their
hyperbolic counterparts [3]; their tails fall off with a power-law distribution, i.e. algebraically.

Perhaps the simplest universal equations with algebraic soliton solutions are of the
modified Korteweg–de Vries (KdV) type [4]. KdV-type models, for example, underpin
Fermi–Pasta–Ulam descriptions of lattice dynamics [5]. Algebraic solitons are encountered
in fluid mechanics as solutions to the Davey–Stewartson [6] and Benjamin–Ono [7] equations.
Deep water waves and ion-acoustic waves in plasmas can be described by algebraic
solitons of the derivative-nonlinear Schrödinger (NLS) [8] and the Kadomtsev–Petviashvili
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equations [2, 3, 9]. In photonics, algebraic solitons occur in such contexts as Raman scattering
[10], self-induced transparency [11] (Maxwell–Bloch-type systems), pulse propagation in
dispersive fibres [12] (derivative-NLS), electromagnetic modes of planar waveguides [13]
(dual power-law NLS) and solitary-wave polaritons [14] (Boussinesq equation). Coupled
modes and periodic systems can also support KdV- and NLS-type algebraic ‘gap solitons’,
respectively [15]. Finally, the Klein–Gordon models in φ4–φ6 theories of particle physics also
admit algebraic solutions [16]. This brief summary aims to illustrate that algebraic solitons
are fundamental excitations in nonlinear science.

In this paper, we are especially interested in the seminal works by Hayata and Koshiba
(who derived the first dual power-law NLS algebraic solitons) [13], and Micallef et al (who
later showed that these solitons arise mathematically from a particular limit of a hyperbolic
solution family) [17]. We report what we believe to be the first algebraic solitons for a nonlinear
Helmholtz (NLH) equation. NLH-type models are also universal, appearing whenever the
Laplacian is present, e.g. in fluidic, plasma, acoustic and optical nonlinear contexts. Here we
consider spatial solitons in uniform two-dimensional planar waveguides, though our general
results also have a wider mathematical appeal. A spatial soliton is a stationary beam that can
emerge as a dominant electromagnetic mode when diffractive broadening (linear spreading)
is exactly balanced by self-lensing (a nonlinear change in the local refractive index of the host
medium) [18].

2. Helmholtz soliton theory

2.1. The role of Helmholtz equations

Helmholtz equations play a fundamental role in photonics modelling. They provide a platform
for describing any experimental arrangement that exploits broad beams in off-axis contexts. It
turns out that even the most fundamental ‘building block’ optical geometries have intrinsically
angular characters. A pertinent example is the multiplexing of two or more beams at
arbitrary angles (with respect to the reference direction) and orientations (with respect to each
other). Another example is material interface effects, where beam incidence, transmission and
reflection angles at the boundary between dissimilar media may be of arbitrary magnitude.

While paraxial theory well describes the small-angle limit of scalar multiplexing [19]
and interface [20] configurations, only recently have their arbitrary-angle properties been
explored in detail [21, 22]. These recent analyses relied upon detailed knowledge of the exact
analytical soliton solutions to the governing Helmholtz equations. Such models are suitable
for addressing the issue of oblique-propagation effects because they respect a fundamental
symmetry: in uniform media, there is no distinction between the spatial dimensions. For
example, in two-dimensional planar waveguides, the transverse and longitudinal directions
are physically equivalent. This spatial symmetry is absent from paraxial theory, and Helmholtz
angular corrections to key predictions may exceed 100%.

2.2. Field and envelope equations

In Helmholtz modelling [23, 24], one tends to adopt the scalar approximation whereby the
beam waist w0 is assumed to be much larger than the free-space carrier wavelength λ. Order-of-
magnitude corrections to the governing equation, which arise from the polarization-scrambling
term ∇(∇ · E) in Maxwell’s equations [25–27], are thus unnecessary. Such corrections are
routinely based upon a single parameter-of-smallness, ε ≡ λ/w0, and are necessary when
ε ∼ O(1). Here, we consider only those contexts where the inequality ε � O(1) is always
rigorously satisfied.
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For a continuous-wave scalar electric field Ẽ(x, z, t) = E(x, z) exp(−iωt) + c.c. with
angular frequency ω, and where E(x, z) satisfies the Maxwell field equation [23, 24], one has(

∂2

∂z2
+

∂2

∂x2

)
E(x, z) +

ω2n2

c2
E(x, z) = 0. (1)

The spatial coordinates, x and z, appear with equal status so that diffraction is fully two
dimensional (i.e. occurring in the transverse and longitudinal directions). The refractive index
is taken to be n(|E|) = n0 + nNL(|E|), where n0 is the linear index at frequency ω, nNL(|E|) =
−nσ |E|σ + n2σ |E|2σ is the field-dependent part, nσ and n2σ are small positive constants and
the exponent σ > 0. This classic type of dual power-law distribution appears frequently in
photonics; for instance, one might interpret it as an approximation of a quite general model for
saturation, namely nNL(|E|) = −nσ |E|σ/[1 + (n2σ/nσ)|E|σ]. Various choices of the parameter
set (nσ , n2σ , σ ) capture Kerr [18, 19], single power-law [28], cubic-quintic [29] and quadratic-
cubic [14] nonlinearities. Many authors have studied this model in its most general form
[13, 17, 30–32]. With advances in materials science and fabrication, it may one day be
possible to tailor dielectric media with arbitrary values of σ for a whole range of information
communication and technology applications.

For a weak optical nonlinearity, where |nNL(|E|)| � n0, one has that n2(|E|) � n0
2 +

2n0nNL(|E|). To facilitate comparison with paraxial theory, z is chosen to be the longitudinal
(reference) direction, and E(x, z) is expressed as E(x, z) = E0u(x, z) exp(ikz). Without further
approximation, one can derive the envelope equation:

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ 2
− α |u|σ u + γ |u|2σ u = 0. (2)

Here, ζ = z/LD and ξ = 21/2x/w0, where LD = kw0
2/2 is the diffraction length of a reference

Gaussian beam, k = n0k0 is the wavenumber of the carrier wave and k0 = ω/c = 2π/λ.
The inverse beam width is quantified by κ ≡ 1/(kw0)2 = ε2/4π2n0

2 � O(1). Finally, the
parameters α and γ are related to the constant E0. A convenient normalization that could
be adopted is E0 ≡ (n0/nσLDk)1/σ , so that α = 1 and γ = E0

σ(n2σ/nσ). For mathematical
completeness, however, both α and γ will be retained in the presented solutions. The
corresponding paraxial model [13, 17] can be recovered by neglecting the first term in
equation (2), which is just the slowly varying envelope approximation (SVEA).

3. Helmholtz bright solitons

The full generality of the ∂zz operator has been preserved in equations (1) and (2). For
instance, both models are bidirectional and thus support forward- and backward-propagating
fields. It is important to note that forward and backward beams are distinguishable only by
their propagation direction with respect to the reference axis. In all other respects, the solutions
are physically identical to each other since they are related through a 180◦ rotation. We now
show that equation (2) possesses a variety of exact analytical solutions.

3.1. Hyperbolic solitons

Equation (2) admits two families of exact analytical hyperbolic bright soliton:

u(ξ, ζ ) = ηh

[
Ah cosh

(
σ
√

2β
ξ + V ζ√
1 + 2κV 2

)
− 1

]−1/σ

× exp

[
±i

√
1 + 4κβ

1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i

ζ

2κ

)
, (3a)
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(a) (b) (c)

Figure 1. Schematic diagram illustrating the geometry of a forward-propagating Helmholtz soliton.
(a) The on-axis beam whose width in the (x, z) frame is �θ = �0. (b) During oblique propagation
at angle θ , the projected beam width is given by �θ = �0sec θ = 2�0 when |θ | = 60◦ (to scale).
(c) In the extreme case of |θ | = 90◦, the beam appears to be infinitely broad when observed from
the (x, z) frame.

Ah ≡
[

1 +
(2 + σ)2

1 + σ

( γ

α2

)
β

]1/2

, (3b)

ηh ≡
(

2 + σ

α
β

)1/σ

. (3c)

The beam width measured by an observer in the (x, z) frame is � = (1 + 2κV 2)1/2�0, where
�0 ≡ (1/σ )(2β)−1/2 and V is the conventional transverse velocity parameter. The forward
solution (upper sign) describes an exponentially localized beam propagating at an angle
θ = tan−1[(2κ)1/2V] with respect to the +z direction, where −∞ � V � +∞ corresponds
to −90◦ � θ � +90◦ (this beam is shown schematically in figure 1); the backward solution
(lower sign) describes a similar beam evolving in the opposite direction. Solution (3) is
characterized by the internal parameter β whose physical significance will shortly become
clear.

3.2. Algebraic solitons

Two families of algebraic soliton can be obtained by taking the limit β → 0 in the hyperbolic
solutions (3):

u(ξ, ζ ) = ηa

[
a2

(
ξ + V ζ√
1 + 2κV 2

)2

+ 1

]−1/σ

exp

[
±i

1√
1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i

ζ

2κ

)
,

(4a)

ηa ≡
[(

2α

γ

) (
1 + σ

2 + σ

)]1/σ

, (4b)

a2 ≡
(

2α2

γ

)
σ 2(1 + σ)

(2 + σ)2
. (4c)

Solution (4) is determined uniquely for any choice of material parameters (α, γ , σ ); its
amplitude profile is classified as ‘Lorentzian’ when σ = 1, ‘sub-Lorentzian’ when σ < 1 and
‘super-Lorentzian’ when σ > 1. The algebraic bright soliton (4) is weakly localized, with
relatively slow power-law asymptotics, |u(ξ , ζ )| ∼ |ξ + Vζ |−2/σ as |ξ + Vζ | → ∞. The beam
becomes more localized as σ decreases, and such narrowing is off-set by an increase in the
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peak amplitude. This relationship follows directly from the nature of a solitary wave: any
increase in diffraction must be balanced by an increase in self-focusing.

Theoretical modelling is ultimately concerned with physical phenomena in the laboratory
(i.e. the (x, z)) frame. To this end, it is desirable to be able to move easily from scaled to
unscaled quantities and coordinates. Such transformations between Helmholtz equations (1)
and (2) are fully self-consistent—i.e. exact in their handling of the phase and propagation angle
of the beam—since the generality of the (in-plane) Laplacian, ∇2 ≡ ∂zz + ∂xx , is maintained.
In contrast, such transformations can be hindered by the SVEA, where the longitudinal phase
shift is always implicitly approximated.

In the (x, z) frame, the longitudinal phase shift �φ accrued by the hyperbolic soliton (3)
during propagation from z = z1 to z = z2 is

�φ = k0n0 cos θ(1 + 4κβ)1/2�z, (5)

where �z ≡ z2 − z1. When β → 0, one has that �φ ∼ k0n0 cos θ�z, and the phase shift
is then identical to that picked up by a plane wave propagating in a purely linear medium
with the refractive index n0. It is in this sense that algebraic solitons have been interpreted as
the threshold for linear wave propagation (i.e. where the carrier wave of the soliton does not
‘see’ the nonlinearity) [17]. The relationship between the algebraic soliton (4) and the linear
wave threshold clearly involves the phase in the laboratory reference frame, so an exact
transition from hyperbolic to algebraic solutions, valid across the entire range of propagation
angles, requires a Helmholtz description.

Analytic continuation of β into the domain β < 0 can yield delocalized waves whose
amplitude profiles are periodic in the transverse direction (since cosh(i�) = cos �). The
forward and backward periodic waves are given by

u(ξ, ζ ) = ηp

[
Ap cos

(
σ
√

2 |β| ξ + V ζ√
1 + 2κV 2

)
− 1

]−1/σ

× exp

[
±i

√
1 − 4κ |β|
1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i

ζ

2κ

)
, (6)

where Ap ≡ (1 − |β|/|β|max)1/2, |β|max ≡ (1 + σ )(α2/γ )/(2 + σ )2 and ηp≡ [−(2 + σ )|β|/α]1/σ .
These solutions exist provided 0 < |β| < |β|max. Propagation (as opposed to evanescence)
of the periodic wave requires |β| < 1/4κ . This condition places a physical limit on the
smallest transverse period of nonlinear wavetrains in relation to the optical wavelength; such
considerations are absent from paraxial theory [17]. In parameter regimes of interest, for
example, α = 1, γ � O(1), σ = O(1) and κ � O(1), one finds that the first of these two
conditions is nearly always satisfied before the second comes into play (we also note that the
second inequality has no analogue in paraxial theory). The connection between hyperbolic,
algebraic and periodic waves is illustrated in figure 2.

3.3. Spatial symmetry properties

The symmetry between a forward beam and its backward counterpart can be made explicit
by combining the two beams into a single solution. The trigonometric relations cosθ =
1/(1 + 2κV 2)1/2 and sinθ = (2κ)1/2V/(1 + 2κV 2)1/2 allow one to eliminate V so that the
hyperbolic soliton (3) can be written as
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Figure 2. Peak amplitude |u|m of solution (3) as a function of β for σ = 1.4 (within the conditionally
stable regime, as discussed in section 4). β > 0 corresponds to hyperbolic soliton (3), and β = 0 to
algebraic soliton (4). The hyperbolic soliton is unstable against small perturbations when 0 < β <

β min � 0.42 (blue shaded area). The domain β < 0 (red shaded area) is accessed through analytic
continuation, where one finds a transversely periodic wave. Other parameters: α = γ = 1.

u(ξ, ζ ) = ηh

{
Ah cosh

[
σ
√

2β

(
ξ cos θ +

ζ√
2κ

sin θ

)]
− 1

}−1/σ

× exp

[
i

√
1 + 4κβ

2κ

(
−ξ sin θ +

ζ√
2κ

cos θ

)]
exp

(
−i

ζ

2κ

)
. (7a)

In a similar way, the algebraic soliton (4) becomes

u(ξ, ζ ) = ηa

[
a2

(
ξ cos θ +

ζ√
2κ

sin θ

)2

+ 1

]−1/σ

× exp

[
i

1√
2κ

(
−ξ sin θ +

ζ√
2κ

cos θ

)]
exp

(
−i

ζ

2κ

)
. (7b)

The propagation angle appearing in solutions (7a) and (7b) now satisfies −180◦ � θ � +180◦,
while the remaining parameters are unchanged. One can also re-express the pair of periodic
solutions (6) in this type of symmetric form.

Oblique evolution is a potentially dominant Helmholtz contribution since the beam
broadening factor (1 + 2κV 2)1/2 = sec θ is unbounded: it may be of any order irrespective
of κ and the system nonlinearity. For example, the moderate angle |θ | = 60◦ implies that
2κV 2 = 3, and an observer in the (x, z) frame thus perceives the beam width to have doubled
relative to its on-axis value (see figure 3). As |θ | → 90◦, one has that 2κV 2 → ∞ and the beam
appears to be infinitely broad when viewed from the (x, z) frame (where propagation takes
place perpendicularly to the reference direction). This geometrical property of Helmholtz
solutions appears in the delocalized wave (6) as an increase in the spatial period �, where
� = (1 + 2κV 2)1/2 �0 and �0 ≡ 2π/[σ (2|β|)1/2]. Off-axis effects alone can thus define a
scenario in which the angular nonparaxial correction can assume any order 0 < 2κV 2 � ∞
(equivalent to 0 < |θ | � 90◦) while the broad beam inequality κ � ε2 � O(1) is always fully
satisfied.

3.4. Conservation laws

Using quite general field-theoretic techniques [33], one can derive three conserved quantities
associated with equation (2) that represent the energy-flow, momentum and Hamiltonian,
respectively:
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(a) (b)

Figure 3. Angular beam broadening effect. (a) Hyperbolic soliton (3) with β = 1. (b) Algebraic
bright soliton (4), obtained in the limit that β → 0. Solid line (black): θ = 0◦ (the paraxial profile);
dashed line (blue): |θ | = 30◦; dotted line (green): |θ | = 45◦; dot-dashed line (red): |θ | = 60◦
(where the beam width appears to have doubled, relative to its on-axis value). Other parameters:
σ = 1.4 and α = γ = 1.

W =
∫ +∞

−∞
dξ

[
|u|2 − iκ

(
u∗ ∂u

∂ζ
− u

∂u∗

∂ζ

)]
, (8a)

M =
∫ +∞

−∞
dξ

[
i

2

(
u∗ ∂u

∂ξ
− u

∂u∗

∂ξ

)
− κ

(
∂u∗

∂ζ

∂u

∂ξ
+

∂u∗

∂ξ

∂u

∂ζ

)]
, (8b)

H =
∫ +∞

−∞
dξ

[
1

2

∂u∗

∂ξ

∂u

∂ξ
− κ

∂u∗

∂ζ

∂u

∂ζ
+ α

|u|2+σ

1 + 1
2σ

− γ
|u|2(1+σ)

1 + σ

]
. (8c)

By writing solution (3) as u(ξ , ζ ) = F(s) exp[iφ(ξ , ζ )], where F is the (real) amplitude
distribution and s ≡ (ξ + Vζ )/(1 + 2κV 2)1/2, the integrals in equations (8a)–(8c) can be
expressed more compactly:

W = ±(1 + 4κβ)1/2P, (9a)

M = V√
1 + 2κV 2

[(1 + 4κβ)P − 2κQ] , (9b)

H = W

2κ
− 1√

1 + 2κV 2

(
1

2κ

)
[(1 + 4κβ)P − 2κQ] . (9c)

The quantities P and Q are given by

P ≡
∫ +∞

−∞
dsF 2(s) = 2√

2β

(
η2

h

σ

) ∫ +∞

0
dy [Ah cosh(y) − 1]−2/σ , (9d)

Q ≡
∫ +∞

−∞
ds

[
d

ds
F (s)

]2

= 2
√

2β

(
η2

hA
2
h

σ

)∫ +∞

0
dy sinh2(y) [Ah cosh(y) − 1]−(2+2/σ).

(9e)

The upper (lower) sign in equation (9a) denotes the energy-flow invariant for the forward
(backward) beam. By taking the limit β → 0 and substituting for the algebraic soliton (4), it
can be shown that

P = √
π

(
η2

a

a

)
� (2/σ − 1/2)

� (2/σ)
(10a)

and

Q = √
π

(
2η2

aa

σ (2 + σ)

)
� (2/σ + 1/2)

� (2/σ + 1)
, (10b)
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where � denotes the Gamma function and 0 < σ < 4. Interestingly, Helmholtz bright solitons
are also found to satisfy the free-particle relationship ∂H/∂M = ∂V H/∂V M = V , where
∂V ≡ ∂/∂V . Aside from their physical importance, the integrals in equations (8a)–(8c) allow
one to monitor the integrity of the algorithm used to solve equation (2) numerically [34].

3.5. The paraxial limit

The corresponding paraxial model [13, 17] can be obtained from equation (2) by invoking the
SVEA, whereby the operator κ∂ζζ is neglected. It is therefore intuitive that when κ∂ζζ → 0,
all Helmholtz contributions to beam evolution are negligible, and one should uncover the
predictions of paraxial theory. This type of recovery procedure is more subtle than simply
setting κ = 0. Instead, one is obliged to consider a simultaneous multiple limit [35].

To recover the paraxial solution of Micallef et al [17] from the hyperbolic soliton (3), one
must allow κ → 0 (broad beam), κβ → 0 (moderate nonlinear phase shift) and κV 2 → 0
(negligible propagation angle). We first consider the asymptotic behaviour of the forward
solutions, where θ → 0◦. When applied to the hyperbolic soliton, the triple limit leads to

u(ξ, ζ ) ∼ ηh{Ah cosh[σ
√

2β(ξ + V ζ)] − 1}−1/σ exp

[
−iV ξ + i

(
β − V 2

2

)
ζ

]
. (11a)

The β parameter can thus be identified with the on-axis longitudinal phase shift in the
corresponding paraxial solution. A similar convergence of the Helmholtz algebraic soliton (4)
to its paraxial counterpart requires κ → 0 and κV 2 → 0, so that

u(ξ, ζ ) ∼ ηa[a2(ξ + V ζ)2 + 1]−1/σ exp

(
−iV ξ − i

V 2

2
ζ

)
. (11b)

By applying the multiple limit to the conserved quantities in equations (9a)–(9c), one obtains
the familiar paraxial invariants W ∼ P , M ∼ V P and H ∼ 1

2V 2P −βP +Q for the hyperbolic
soliton (the algebraic solution requires β → 0 in the expression for H) [31]. For the backward
beams, where |θ | → 180◦, application of the same multiple limit yields

u(ξ, ζ ) ∼ ηh{Ah cosh[σ
√

2β(ξ + V ζ)] − 1}−1/σ exp

[
iV ξ − i

(
β − V 2

2

)
ζ

]
exp

(
−i2

ζ

2κ

)
(11c)

and

u(ξ, ζ ) ∼ ηa[a2(ξ + V ζ)2 + 1]−1/σ exp

(
iV ξ + i

V 2

2
ζ

)
exp

(
−i2

ζ

2κ

)
, (11d)

respectively, while the invariants become W ∼ −P , M ∼ V P and H ∼ 1
2V 2P − 3βP + Q−

P/κ . Since the latter set of results retain κ-dependent contributions, it is clear that backward
fields have no analogue in paraxial theory. This confirms the fact that paraxial models can
support wave propagation in a single longitudinal direction only.

4. Stability of Helmholtz bright solitons

Linear analysis has predicted that plane-wave solutions to NLH equations with arbitrary
dispersive nonlinearity functions are modulationally stable in the same parameter regions as
their paraxial counterparts [36]. However, the stability of localized solutions against arbitrary
perturbations is a much more interesting problem: such stability is a key property of solitons.
Without loss of generality, we set α = γ = 1 throughout this section.
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(a) (b)

Figure 4. Stability characteristics of hyperbolic solitons. (a) Variation of the beam power P with β

(solid line (black): σ = 0.9; dashed line (blue): σ = 1.0; dotted line (green): σ = 1.2; dot-dashed
line (red): σ = 1.4). For 0 < σ � 1, the solutions are unconditionally stable (dP/dβ > 0 for all
β � 0). For 1 < σ < 2, the solutions are conditionally stable, so that dP/dβ > 0 only when β >

βmin(σ ). (b) The boundary between stable and unstable solutions in the (σ , β) plane is determined
(numerically) by the curve βmin(σ ).

4.1. Analysis

The stability of paraxial bright solitons (11a) has been studied by Micallef et al [17] using the
well-known Vakhitov–Kolokolov (VK) criterion [30, 37]. Spatial symmetry allows the same
criterion to predict the stability properties of Helmholtz solitons [36, 38]. This is because an
isolated off-axis beam can always be observed from the ‘on-axis’ frame of reference by means
of a rotation of the coordinate axes. In the on-axis frame, where V = κV2 = 0, beams with
κ � O(1) and κβ � O(1) are quasi-paraxial since the forward solution (3) exhibits only an
O(κ) correction to the longitudinal phase shift.

The VK criterion states that bright solitons can be stable against small perturbations if
dP/dβ > 0, where

P(β; σ) ≡
∫ +∞

−∞
dξ |u(ξ, ζ ;β; σ)|2 (12)

(we note, in passing, that equations (12) and (9d) are formally identical for paraxial solitons).
Satisfaction of the VK criterion is a necessary but not sufficient condition for stability [36];
simulations are essential to establish the robustness of solutions against arbitrarily large
perturbations. Hyperbolic solitons are predicted to be unconditionally stable when 0 < σ

� 1 since, for that range of σ , the VK inequality dP/dβ > 0 is satisfied for any β � 0.
However, figure 4(a) reveals that when 1 < σ < 2, the slope dP/dβ > 0 only when β exceeds
a minimum value, denoted by βmin. Regions of stability in the (σ , β) plane are thus separated
by a boundary represented by the curve βmin(σ ) (see figure 4(b)). When σ � 2, the VK
criterion predicts that the soliton is always unstable since dP/dβ < 0 for β � 0.

4.2. Hyperbolic solitons

The stability of hyperbolic solitons is considered through the perturbed input beam

u(ξ, 0) = ηh

[
Ah cosh(σ

√
2βξ) − 1

]−1/σ

exp

(
−iV

√
1 + 4κβ

1 + 2κV 2
ξ

)
, (13)

whose launching angle is θ = tan−1[(2κ)1/2V]. By applying a rotational transformation [39],
one can see that the initial condition (13) is equivalent to an on-axis Helmholtz soliton
whose width has been reduced by a factor of (1 + 2κV 2)1/2 = sec θ . For κ = 10−3 (κ =
10−4), launching angles of |θ | = 10◦, 20◦, 30◦ and 40◦ correspond to transverse velocities of
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(a) (b)

(c) (d )

Figure 5. Evolution of the peak amplitude |u|m of a perturbed hyperbolic soliton with β = 1 when
(a) σ = 0.5, (b) σ = 0.6, (c) σ = 0.7 and (d) σ = 0.8. Solid lines (black): |θ | = 10◦; dashed lines
(blue): |θ | = 20◦; dotted lines (green): |θ | = 30◦; dot-dash lines (red): |θ | = 40◦.

|V| � 3.94, 8.14, 12.91 and 18.76 (|V| � 12.47, 25.74, 40.82 and 59.33), respectively. These
angles are clearly non-trivial and lie outside the scope of paraxial theory.

In the unconditionally stable domain (0 < σ � 1), evolution is generally characterized
by monotonically decreasing oscillations in the beam parameters (amplitude, width, and
area = amplitude × width). These oscillations are accompanied by a small amount of radiation,
and they disappear as ζ → ∞ to leave a stationary state (see figure 5). Solitons with 0 < σ �
1 can thus generally be interpreted as stable fixed-point attractors: the emission of radiation
throughout reshaping provides a mechanism for local dissipation while the system remains
globally conservative [36, 38]. As discussed in the preceding subsection, there should be no
instability in the range 0 < σ � 1 (as prescribed by the VK inequality). However, simulations
have revealed that as σ → 1, sufficiently large perturbations can induce a diffractive instability
whereby the amplitude of the beam tends to zero as ζ → ∞.

To gain insight into the propagation properties of conditionally stable hyperbolic solitons
(where 1 < σ < 2), it is instructive to recognize that the power Pin(β, σ , V) of the perturbed
input beam (13) is related to the power P(β, σ ) of the unperturbed beam by

Pin(β, σ ;V ) = P(β, σ )√
1 + 2κV 2

≡ P(β, σ ) cos θ, (14)

where P is given by equation (12). That is, |θ | > 0 decreases the power of the input beam
relative to its unperturbed value (i.e. relative to the power of the exact solution with the same
parameters). Figure 4(a) suggests that there is a minimum power Pmin that can sustain a
propagating soliton; when Pin < Pmin, one expects that no stationary states exist and that the
input beam will transform into radiation modes [30]. Thus, (βmin, Pmin) are the coordinates
of the local minimum in the P(β) curve (see figure 6(a)). One can then expect to encounter a
maximum perturbation, against which the soliton is stable, through the following condition:
Pin = Pmin when |θ | = |θ |max. It can then be shown that for any input beam with β > βmin,

tan (|θ |max) =
[(

P

Pmin

)2

− 1

]1/2

. (15)
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(a) (b)

Figure 6. (a) Beam power calculated from equation (12) for hyperbolic soliton (3) with σ = 1.4,
where (βmin, Pmin) � (0.42, 3.46). The criterion dP/dβ > 0 is met when β > βmin (unshaded
region). (b) Theoretical prediction from equation (15) for the maximum launching angle of input
beam (13) before the onset of instability, where Pin � Pmin.

Figure 7. Long-lived self-persistent reshaping oscillations in the peak amplitude |u|m of a perturbed
(conditionally stable) hyperbolic soliton (3) with σ = 1.4. For β = 1, equation (15) predicts that
|θ |max � 10.7◦. Instability sets in when |θ | is slightly less than the theoretical value of |θ |max.

Equation (15) assumes that the energy of the input and asymptotic beams are identical,
and that radiation shed during reshaping can be neglected. Regions of predicted stability are
illustrated in figure 6(b) for σ = 1.4. The simulations shown in figure 7 are in good agreement
with equation (15), though instability sets in when |θ | is slightly less than the theoretical
|θ |max. This difference indicates that, as might be expected, stronger radiation shedding can
come into play when the perturbed soliton approaches the instability threshold (the fraction
of energy transferred to radiation modes will depend upon system parameters). Below the
instability threshold (i.e. |θ | < |θ |max so that Pin > Pmin), perturbed solitons undergo long-lived
self-sustained oscillations in their parameters; we classify such solitons as stable limit-cycle
attractors [36, 38]. These quasi-periodic orbits are effectively internal modes, and they have
been analysed by Pelinovsky et al [30]. As the threshold is approached (i.e. |θ | → |θ |max, or
Pin → Pmin), one finds that the evolving soliton diffracts towards a zero-amplitude state (see
figure 7).

4.3. Algebraic solitons

Analysing the stability of algebraic solitons is a notoriously difficult task. Conventional
nonlinear-perturbative techniques tend to become frustrated in all but the simplest cases
because of their relatively slow asymptotics (i.e. power-law instead of exponential) [30].
Some insight can be gained from inspection of figure 4(a). For example, in the region where
the hyperbolic solutions are unconditionally stable (0 < σ � 1), the beam power has a positive
slope (i.e. dP/dβ > 0) at β = 0. However, when σ > 1, one finds that dP/dβ < 0 at β =
0. Thus, algebraic solitons are expected to be always unstable when σ > 1. Micallef et al
[17] suggested that paraxial algebraic solitons (11b) are inherently unstable due to the absence
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(a) (b)

(c) (d )

Figure 8. Evolution of the peak amplitude |u|m of a perturbed algebraic bright soliton when
(a) σ = 0.5, (b) σ = 0.6, (c) σ = 0.7 and (d) σ = 0.8. Solid lines: |θ | = 10◦; dashed lines: |θ | =
20◦; dotted lines: |θ | = 30◦; dot-dashed lines: |θ | = 40◦.

of an arbitrary internal parameter. Their simulations confirmed that, even when 0 < σ � 1,
algebraic solitons are weakly unstable. Pelinovsky et al attributed this instability to resonant
interactions with infinitely long linear waves [30].

We now undertake a fully nonlinear (i.e. numerical) stability analysis of Helmholtz
algebraic solitons through consideration of the input beam:

u(ξ, 0) = ηa(a
2ξ 2 + 1)−1/σ exp

(
−i

V√
1 + 2κV 2

ξ

)
. (16)

The initial condition (16) corresponds to launching solution (4) without the beam-broadening
factor (1 + 2κV 2)1/2. Analysis predicts that when Pin < P (i.e. |θ | > 0), any perturbed
algebraic soliton with 0 < σ < 4 will transform into radiation modes [30]. However,
our simulations have shown that when σ is sufficiently less than 1, this collapse may be
suppressed. The reshaping properties of algebraic solitons can thus be reminiscent of those of
their hyperbolic counterparts. Figure 8 shows that as σ → 1, the stability of algebraic solitons
gradually diminishes. For instance, the solution in media characterized by σ = 0.5 is robust
against all four increasingly strong angular perturbations (see figure 8(a)); the solution with
σ = 0.8 is robust only against the weakest perturbation (see figure 8(d)).

5. Helmholtz algebraic dark solitons

5.1. Exact analytical solutions

Equation (2) permits the existence of algebraic dark solitons in the particular case of a cubic-
quintic nonlinearity (i.e. when σ = 2). In symmetric form,

u(ξ, ζ ) = ν

(
ξ cos θ +

ζ√
2κ

sin θ

) [
a2

(
ξ cos θ +

ζ√
2κ

sin θ

)2

+ 1

]−1/2

× exp

[
i

√
1 + 4κμ

2κ

(
−ξ sin θ +

ζ√
2κ

cos θ

)]
exp

(
−i

ζ

2κ

)
, (17)
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(a) (b)

Figure 9. Comparison of the angular beam broadening effect for the algebraic dark soliton (17)
(a) with that of the corresponding (i.e. σ = 2) bright soliton (4) (b). As ξ → ±∞, one finds that
the dark solution behaves as u ∼ ± ν/a (reflecting the π phase shift). Solid line (black): θ = 0◦
(the paraxial profile); dashed line (blue): |θ | = 30◦; dotted line (green): |θ | = 45◦; dot-dashed line
(red): |θ | = 60◦. Other parameters: α = γ = 1.

where a2 ≡ α2/6γ , ν ≡ (3/α)1/2a2 and μ ≡ −α2/4γ . Like its bright counterpart
(solution (4)), the dark solution is specified uniquely by the choice of α and γ . There is
a phase shift of π radians across the transverse extent of the field, and an absolute zero in
the field at the beam centre (see figure 9). However, the solution is structurally distinct from
the more familiar phase-topological dark solitons [40, 41]. In passing, we note an asymmetry
between algebraic solutions (17) and (4) (in the case of σ = 2)—while the intensity profiles
of canonical bright and black Kerr solitons, Ib = sech2(s) and Id = tanh2(s), are related by Id =
1 − Ib, the same type of relationship does not hold for bright and dark algebraic beams.

One can now consider the multiple limit κ → 0, κμ → 0 and κV 2 → 0. From the
forward solution, one can recover the paraxial soliton of Hayata and Koshiba [13], namely

u(ξ, ζ ) ∼ ν(ξ + V ζ)[a2(ξ + V ζ)2 + 1]−1/2 exp

[
−iV ξ + i

(
μ − V 2

2

)
ζ

]
. (18a)

The backward solution tends to

u(ξ, ζ ) ∼ ν(ξ + V ζ)[a2(ξ + V ζ)2 + 1]−1/2 exp

[
iV ξ − i

(
μ − V 2

2

)
ζ

]
exp

(
−i2

ζ

2κ

)
,

(18b)

which has no counterpart in paraxial theory due to the rapid-phase κ-dependent term that
survives the limit. It is interesting to note that equation (2) supports both bright and dark
algebraic solitons without needing to reverse the relative signs of the nonlinear terms.

5.2. Numerical stability analysis

The apparent absence of a suitable stability criterion has so far rendered an in-depth analysis
of solution (17) problematic. For instance, one cannot apply the renormalized-momentum
integral [42] since there is no intrinsic-velocity parameter [41]. One also encounters
divergences in the integral conserved quantities (equations (8a)–(8c)) because the solution does
not break up in the way the renormalization method demands (i.e. a plane-wave background
modulated by an obliquely propagating grey ‘dip’).

Here, we investigate the stability properties of Helmholtz algebraic dark solitons
numerically using the input beam

u(ξ, 0) = νξ(a2ξ 2 + 1)−1/2 exp

(
−iV

√
1 + 4κβ

1 + 2κV 2
ξ

)
. (19)
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Figure 10. Evolution of the beam full-width of a perturbed algebraic dark soliton. The width
tends asymptotically towards the value �∞ ∼ (1+2κV 2)1/2�0, where �0 ≡ 2/a (horizontal bars).
Solid line (black): |θ | = 10◦; dashed line (blue): |θ | = 15◦; dotted line (green): |θ | = 20◦;
dot-dashed line (red): |θ | = 25◦. The widths have been calculated by fitting the numerical data to
the nonlinear refractive-index function nNL = −α|u|2 + γ |u|4 in combination with solution (17).
For larger values of |θ |, the evolving beam radiates more strongly and suffers fluctuations to its
shape that can complicate interpolation. Other parameters: α = γ = 1.

This initial condition corresponds to launching an exact paraxial soliton (that does not account
for the beam-broadening factor). The full width of the beam is found to tend towards an
asymptotic value �∞ = (2/a)(1+2κV 2)1/2 as ζ → ∞, eventually leaving a stationary beam
(see figure 10). Simulations show that the dark beam can be robust against perturbations,
even though its bright counterpart (solution (4) with σ = 2) is always unstable. Thus, one
can interpret the dark solitons as fixed-point attractors. Similar qualitative behaviour has been
uncovered in the propagation properties of Helmholtz Kerr dark solitons [41].

6. Conclusions

We have presented a variety of new exact analytical solutions to a generalized cubic-quintic
nonlinear Helmholtz equation, including hyperbolic and algebraic solitons, and transversely
periodic waves. The mathematical origin of the bright algebraic family lies in taking a
particular limit of the hyperbolic family. We have shown that a fully self-consistent transition
from a hyperbolic soliton into an algebraic soliton can be achieved using the Helmholtz
formalism. New conservation laws have been reported. The conserved quantities have been
evaluated exactly for algebraic solitons, and a classical particle energy–momentum relationship
has been uncovered for Helmholtz solitons. Well-known paraxial results [13, 17] have also
emerged from a quite general limit process. The stability of Helmholtz bright solitons has
been investigated by combining conventional semi-analytical techniques [30, 37] with beam
geometry in the (x, z) frame [35, 39], and simulations have generally supported our predictions.
In particular, new regimes (within 0 < σ < 1) have been uncovered in which algebraic solitons
demonstrate stable-attractor properties when subject to large angular perturbations. Numerical
analysis has also provided evidence of algebraic dark-soliton stability.

The new solitons reported here have innate mathematical appeal as exact solutions to
generic non-integrable elliptic equations. Our results are also of physical interest, particularly
in photonics, where we propose that Helmholtz soliton theory will play a central role in the
design of future integrated-optic devices that exploit non-trivial angular geometries. Indeed,
the coexistence of many different solution families (plane waves, hyperbolic and algebraic
solitons) could open up the possibility of exciting new multiplexing [21] and interface [22]
applications within Helmholtz-nonparaxial configurations.
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