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Dark solitons at nonlinear interfaces
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The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and
analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is
thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one
describing bright soliton refraction to yield a generalized Snell’s law whose validity is verified numerically.
The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to in-
ternal refraction on varying the soliton contrast parameter. © 2010 Optical Society of America
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Solitons are universal nonlinear waves, and material
interfaces play a fundamental role as boundary con-
ditions. In particular, spatial solitons are predicted to
become key elements of emerging photonic technolo-
gies [1,2]. The behavior of soliton beams at nonlinear
interfaces has been extensively treated in the litera-
ture, where Kerr-type, and also saturable-Kerr [3],
photorefractive [4], and quadratic soliton [5,6], re-
fraction properties have been reviewed and proposed
for the design of all-optical devices [7–10]. Most pre-
vious works on nonlinear interfaces have two fea-
tures in common. First, analysis has been performed
assuming the paraxial approximation, and using the
nonlinear Schrödinger (NLS) equation as the soliton
propagation model [11]. Second, previous studies
analyzed only refraction properties of bright spatial
solitons. In fact, only a few investigations have stud-
ied the behavior of dark solitons at nonlinear inter-
faces in a paraxial context, where attention was re-
stricted to nonlinear surface waves at Kerr-type
media [12,13] or to kink solitons arising at surfaces of
optical lattices imprinted in defocusing media [14]. To
the authors’ knowledge, the refraction of dark soli-
tons at nonlinear interfaces has not previously been
studied.

Nonparaxial theory based on the nonlinear Helm-
holtz (NLH) equation [15,16] permits one to over-
come intrinsic angular limitations of NLS descrip-
tions. In contrast to other nonparaxial regimes
[17,18], where effects have their origin in the strong
focusing of high-intensity beams, we consider broad
(compared to the optical wavelength) beams of mod-
erate power. Nonparaxiality then arises solely from
angular effects. Exact analytical solutions of NLH
equations have been found in the form of bright Kerr
[16], dark Kerr [19], two-component [20], and
bistable [21] Helmholtz solitons and have allowed ex-
tension of paraxial soliton theory to arbitrary-angle
regimes. Soliton refraction effects have a strong in-
herent angular character and constitute an excellent
testbed for nonparaxial Helmholtz theory [22,23].
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Spatial dark solitons present localized intensity
dips on modulationally stable plane waves [24]. In
the physical realization of such nonlinear waves, the
infinite background is replaced with a beam [25–27].
As with their bright counterparts, dark solitons have
also been proposed for all-optical signal processing
devices [27,28].

In this Letter, the laws governing the refraction of
Helmholtz dark solitons [19] at interfaces separating
two defocusing Kerr media are presented. Figure 1(a)
illustrates the geometry of soliton refraction, where a
black soliton is incident at angle �i on an interface
separating two defocusing Kerr media and refracts at
angle �t. The total refractive index of medium i is
n0i−�iI, where �i�0 is the Kerr coefficient and I is
the optical intensity. Assuming a relatively low value

Fig. 1. (Color online) (a) Refraction geometry: a black soli-
ton experiencing (b) internal refraction, (c) transparency,
and (d) external refraction. Here, u0=1 and �=10−3, giving
�t=24.851°, 25°, and 25.147°, respectively. In scaled units,

one obtains W=10.356, 10.427, and 10.497.
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of �i, the approximation n2�n0i
2 −2n0i�iI is used.

For a TE optical field, the complex envelope u of a
forward-propagating beam evolves according to
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A derivation from the Helmholtz equation is detailed
in [23]. Here, the focusing Kerr nonlinearity is re-
placed by a defocusing one. H��� is the Heaviside
function; �=21/2x /w0 and �=z /LD are the normalized
transverse and longitudinal coordinates, respec-
tively; and w0 is the waist of a reference Gaussian
beam with diffraction length LD=kw0

2 /2. �=1/k2w0
2 is

a nonparaxiality parameter, while �=1−n02
2 /n01

2 and
�=�2 /�1 account for the linear and nonlinear refrac-
tive index mismatch at the interface, respectively.

The general Helmholtz dark soliton in the second
medium is [19]
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V is a transverse velocity arising from an arbitrary
rotation angle � of the laboratory coordinates, V
=tan����2��−1/2 [15], and W is the net transverse ve-
locity of the dark soliton resulting from the combina-
tion of V and the intrinsic transverse velocity

V0 = u0F�1/2
1 − � − �2 + F2�2�u0
2��−1/2. �4�

F= �1−A2�1/2 is the soliton grayness/contrast param-
eter and u0 is the background amplitude. The dark
soliton solution in medium 1 [19] is recovered from
Eqs. (2)–(4) by setting �=1 and �=0. Our study ad-
dresses only dark soliton refraction, since significant
reflection of the supporting beam may destroy the
plane background required for stable dark-soliton
propagation. Our analysis is thus necessarily re-
stricted to cases with negligible beam reflection at
the interface.

First, we consider black solitons. The law govern-
ing their refraction is derived from ensuring continu-
ity of the phase of the supporting beam across the in-
terface. Using Eq. (2), and tan2���=2�V2, we find a
generalized Snell’s law for black and bright [22,23]
soliton refraction,


±n01 cos��i� = n02 cos��t�, �5�

where 
±= �1+4��±�1/2
1+4��±��1−��−1�−1/2 is a non-
linear correction term. The subscript identifies the

result for bright (�) and black (
) Helmholtz soli-
tons. In the case of bright solitons, one has [22,23]
�+=�0

2 /2, whereas for black solitons �−=−u0
2; the non-

linear role played by bright soliton amplitude ��0� is
thus replaced by the amplitude of the black soliton
background. In physical terms, bright solitons are
perfectly collimated nonlinear beams and behave at
interfaces in a fashion similar to plane waves, but it
is the nonlinear plane wave that determines the re-
fraction of black solitons (which are linear at their
core).

The value of 
− is real, from an assumed condition
of Helmholtz type of nonparaxiality: 4�u0

2�1, which
in turn implies that �+4�u0

2��1. While the former
condition establishes the physical restriction that the
total refractive index in the first medium must re-
main positive [19], 2��1�E0

2�n01, the latter deter-
mines an analogous restriction for the second me-
dium, 2��2�E0

2�n02.
The total (linear plus nonlinear) refractive index

mismatch across the interface is given by �±=�
+4��±�1−��. In the same way that �+ determines
how bright solitons refract [23], �− can be used to in-
terpret Snell’s law for black soliton refraction at self-
defocusing interfaces. In Fig. 1, three different cases
of a black soliton impinging on an interface at 25° are
studied. Figure 1(b) shows how a black soliton under-
goes internal refraction for an interface with discon-
tinuity only in the linear refractive index (�=0.0024
and �−�0). The case of an interface with exclusively
nonlinear index mismatch, where one expects exter-
nal refraction, is illustrated in Fig. 1(d) (�=0.4 and
�−�0). With both mismatch contributions present,
they may cancel when the transparency/
nonrefracting condition ��−=0� is met. This is verified
in Fig. 1(c), where the dip position does not deviate
from the initial propagation direction.

The value of � not only affects the soliton angle of
refraction but can also induce significant change in
soliton width. The input field distribution for the sec-
ond medium generally presents a perturbed-soliton
initial condition [19,29]. After crossing the interface,
the soliton narrows ���1� or broadens ���1�, and
the emission of 2N0 gray solitons is expected, where
N0 is the largest integer satisfying N0�	� [19,29].

Attention is now turned to the refraction of gray
solitons. As for black �F=0� solitons, the phase slope
of the background beam associated with its trans-
verse velocity V must be continuous across the inter-
face. In the gray �F�0� case, an additional indepen-
dent condition arises from assuring the continuity of
the phase structure of the supporting beam: the in-
trinsic phase jump of the gray soliton, which, from
Eq. (2), amounts to −2 tan−1�F /A�, must be the same
on both sides of the interface. It depends solely on the
grayness parameter F, and its preservation upon re-
fraction implies the conservation of F. Black (gray)
solitons impinging the nonlinear interface are thus
refracted as black (gray) solitons in the second me-
dium.

Refraction properties of gray solitons are also de-
pendent on the value of F. This effect is shown in Fig.

2, where two solitons with different values of F en-
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counter the same interface (�=−0.016 and �=3) with
the same angle of incidence for the background beam
�i=30°. The left picture of Fig. 2 shows a gray soliton
with F=0.05 undergoing external refraction. How-
ever, internal refraction is experienced by the gray
soliton with F=0.6, as demonstrated in the right side
of Fig. 2. Larger F entails a larger intrinsic velocity
component, Eq. (4), and a smaller net transverse ve-
locity, W. This reduces the angle of refraction until it
is less than the angle of incidence. Refraction proper-
ties of gray solitons thus present novel features (not
found in bright or black soliton refraction).

In this work, simulations have employed a non-
paraxial beam propagation method [30] for the nu-
merical integration of the NLH equation. Rotational
symmetry [15] allowed us to consider solitons travel-
ing with zero transverse velocity encountering an ob-
liquely orientated interface. The background beam,
supporting the solitons, was a raised cosine h���
=cos2
� /rL����−L1�� if L1� ����L2, h���=1 if ����L1,
and h���=0 if ����L2, with roll-off factor r=0.5, grid
length L=160, L1= �1−r�L /4, and L2= �1+r�L /4.

In summary, dark-soliton refraction at interfaces
separating two defocusing Kerr media has been ana-
lyzed for the first time. Analysis has been undertaken
within the framework of Helmholtz theory, which
yields valid results for beams propagating at arbi-
trary angles. We have provided a unified theory in
which a compact generalized Snell’s law describes the
refraction of both bright and black solitons. Numeri-
cal results show excellent agreement with analytical
predictions. Analysis of gray soliton refraction re-
vealed a richer complexity that was explained in
terms of the properties of the exact solutions. One
key finding is that soliton grayness is conserved dur-
ing refraction.
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Fig. 2. (Color online) External (left) and internal refrac-
tion (right).
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