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Wave envelopes with second-order spatiotemporal dispersion.
II. Modulational instabilities and dark Kerr solitons
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A simple scalar model for describing spatiotemporal dispersion of pulses, beyond the classic “slowly varying
envelopes + Galilean boost” approach, is studied. The governing equation has a cubic nonlinearity, and we
focus here mainly on contexts with normal group-velocity dispersion. A complete analysis of continuous waves
is reported, including their dispersion relations and modulational instability characteristics. We also present a
detailed derivation of exact analytical dark solitons, obtained by combining direct-integration methods with
geometrical transformations. Classic results from conventional pulse theory are recovered asymptotically from
the spatiotemporal formulation. Numerical simulations test theoretical predictions for modulational instability
and examine the robustness of spatiotemporal dark solitons against perturbations to their local pulse shapes.

DOI: 10.1103/PhysRevA.86.023839 PACS number(s): 42.65.Tg, 42.25.−p, 05.45.Yv

I. INTRODUCTION

When modeling wave phenomena in physical systems,
one is typically concerned with describing the evolu-
tion of a real quantity Q(t ,z) that may be represented
as an envelope q(t ,z) modulating a rapidly oscillating
component according to Q(t,z) = q(t,z) exp [i(k0z − ω0t)] +
q∗(t,z) exp [−i(k0z − ω0t)]. The space and time variables are
denoted by z and t , respectively; the underlying carrier wave
has propagation constant k0 and angular frequency ω0. The
variable Q may correspond to elastic displacement, electric
field, polarization grating, fluid velocity, ion density, etc. [1–3].
The slowly varying envelope approximation (SVEA), which
anticipates that the longitudinal variation of q is slow on
the ∼1/k0 scale length, is the first part of a near-universal
mathematical device whose function is to reduce complicated
governing equations to a more tractable structure. The second
part is the deployment of a Galilean-type coordinate boost to a
frame of reference (tloc,zloc), moving at some characteristic
(system-dependent) speed, typically the group velocity vg .
Such a transformation has the standard form tloc ≡ t − z/vg

and zloc ≡ z (the local time frame is denoted throughout by
the “loc” subscript).

The “SVEA + Galilean boost” recipe is used so freely in the
literature that one rarely queries its adoption. One of the key
advantages of this classic approach is that it can operate often
independently of system nonlinearity, and it is certainly true
that the technique works well in the vast majority of studies
to date. However, an inevitable consequence is that relatively
little is known about the mathematical properties of the more
general governing equations and the properties (e.g., structure
and stability) of its solutions. One should also be mindful
that there are classes of problems where such a conventional
modeling approach is not necessarily appropriate.

We investigate a dimensionless universal spatiotemporal
dispersion model having cubic nonlinearity [4,5] with partic-
ular emphasis on the case of normal group-velocity dispersion

(GVD). This generic equation, which, for example, arises in
photonics and waveguide optics [6], is of the form

κ
∂2u

∂ζ 2
+ i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ |u|2u = 0, (1)

where u is the wave envelope, ζ denotes the (longitudinal)
space coordinate along which the wave packet is traveling,
and τ denotes time (note that τ does not represent a local time
variable). The three parameters appearing in Eq. (1) are as
follows: α (proportional to a ratio of group speeds), s = ±1
(flagging the GVD regime: +1 for anomalous, −1 for normal),
and κ (parametrizing the strength of spatial dispersion). Spatial
and temporal dispersion phenomena are, thus, identified with
the κ∂2/∂ζ 2 and (s/2)∂2/∂τ 2 operators, respectively. The
mathematical structure of Eq. (1) depends upon the product sκ
[for sgn(sκ) = +1 (−1), it is elliptic (hyperbolic) in character].

The reader is directed to the Appendix for a derivation
of model (1) in an optical context where, historically, the
SVEA + Galilean boost has often been applied [7,8]. This
latter approach usually works well provided the pulses under
consideration are relatively long (where a sufficient number
of electric-field cycles are contained within the envelope),
and one is operating sufficiently far from the zero-dispersion
point [2,6–11]. When such conditions are not met, one may
choose to accommodate higher-order linear effects through
a succession of additional terms of the type γj (i∂/∂τ )ju
(where j = 3,4,5,. . . and the {γj} are real parameters) [12]
or may abandon the notion of an “envelope” altogether and
instead work with the short-pulse equation [13]. Recently, it
has been shown that there exist some semiconductor materials
(e.g., ZnCdSe/ZnSe superlattices) where the role played by
the κ∂2/∂ζ 2 operator is no longer marginal and cannot be
neglected in the traditional way [14]. A striking feature of
spatial dispersion (an effect allied to κ∂2u/∂ζ 2) is that the
parameter κ in Eq. (1) may assume either sign.
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In Ref. [5], the transformation and conservation laws were
derived for Eq. (1). Exact analytical bright solitons were found
to exist when s = +1 along with two classes of temporally
extended solutions (cnoidal and dnoidal waves, which describe
periodic trains of pulses). Two distinct but equivalent solution
representations were also developed. Extensive computations,
in parallel with classic analytical methods [15], confirmed the
bright soliton pulses as highly robust entities surrounded by
wide basins of attraction.

Here, we complete the analysis of model (1). The focus
is predominantly on exact analytical dark solitons, which
exist when s = −1 and comprise a continuous-wave (cw)
background field modulated by a phase-topological gray “dip.”
The stability of the cw background is an issue of fundamental
importance since these solutions play a key role in dark soliton
structure [16]. Our motivation is to establish the stability
properties of the dark solitons of Eq. (1) and to see whether
they exhibit a similar degree of robustness as their bright
counterparts.

The layout of this paper is as follows. In Sec. II, we review
the mathematical steps taken to obtain the conventional pulse
model from Eq. (1). In Sec. III, the cw solutions to Eq. (1) are
derived, their dispersion relations are characterized, and the
subtle recovery of the corresponding conventional solutions is
demonstrated. Linearization techniques are then deployed to
investigate the resilience of cw solutions to small perturbative
modulations, and both long- and short-wave instability regimes
are identified. Subsequent numerical computations validate
theoretical predictions. In Sec. IV, we report exact analytical
dark solitons (black and more general gray families) and a
class of snoidal wave (essentially a black-soliton pulse train).
The space-time structure of these more exotic solutions is
detailed, and the recovery of their conventional counterparts is
described in Sec. V. Sets of simulations, testing the robustness
of dark solitons against perturbations to their temporal shape,
are presented in Sec. VI. Geometrical transformations are
used to predict asymptotic pulse parameters. We conclude,
in Sec. VII, with some comments on the significance and
potential applications of these results.

II. SLOWLY VARYING ENVELOPES
AND GALILEAN BOOSTS

Conventional pulse theory makes an initial assumption that
the first term in Eq. (1) may be neglected. Adoption of the
SVEA, which is embodied by the inequality |κ∂2u/∂ζ 2| �
|∂u/∂ζ |, reduces the governing equation to the more tractable
form

i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ |u|2u � 0. (2)

One then condenses the differential-operator combination
∂/∂ζ + α∂/∂τ into a single derivative by introducing local
coordinates τloc ≡ τ − αζ and ζloc ≡ ζ . Under this
Galilean-type boost to a frame of reference moving at
speed 1/α in the +ζ direction, ∂/∂ζ and ∂/∂τ trans-
form individually as ∂/∂ζ = ∂/∂ζloc − α∂/∂τloc and ∂/∂τ =
∂/∂τloc, combining to leave a parabolic wave operator
in the local time frame: i(∂/∂ζ + α∂/∂τ ) + (s/2)∂2/∂τ 2 =

i∂/∂ζloc + (s/2)∂2/∂τ 2
loc [7–11]. Since the nonlinearity is left

unchanged under boost transformation (this is true even when
the nonlinearity involves time dependence, e.g., for Raman-
type contributions [17]), the solution u(τloc,ζloc) satisfies the
canonical nonlinear Schrödinger (NLS) equation, namely
[i∂/∂ζloc + (s/2)∂2/∂τ 2

loc + |u2|]u(τloc,ζloc) � 0.
This standard approach is unhelpful if, for instance,

one wishes to retain the κ∂2u/∂ζ 2 term [4–6,14,17,18].
By abandoning the Galilean boost and remaining in the
laboratory frame, Eq. (1) can instead be analyzed within a
more exact framework (see Appendix 2), involving space-time
coordinate transformations that are remarkably similar to those
in Einstein’s special theory of relativity. It is then found that the
predictions of conventional pulse theory [i.e., Eq. (2)] tend to
be recovered asymptotically from the more general model [i.e.,
Eq. (1)] in the same formal way that Newtonian mechanics
emerge in the low-speed limit of relativistic mechanics.

III. CONTINUOUS WAVES
AND MODULATIONAL INSTABILITY

A. Dispersion relations

The cw solutions of Eq. (1) have the form u(τ,ζ ) =
ρ

1/2
0 exp[i(−
τ + Kζ )] exp(−iζ/2κ), where ρ0 ≡ |u|2 is the

wave intensity, 
 measures the (normalized) deviation of
the envelope from the carrier-wave frequency, and K is the
propagation constant. Substitution of u into Eq. (1) yields the
quadratic dispersion relation,

κK2 − 1

4κ
− 


(
α − s




2

)
= β, (3a)

where we have introduced β ≡ ρ0 (the reasons for this choice
will become clear shortly). When sgn(sκ) = +1 (−1), Eq. (3a)
prescribes families of ellipses (hyperbole) in the (
,K) plane
that are parametrized by κ , s, α, and β. The corresponding cw
solutions are then given by [4]

u(τ,ζ ) = ρ
1/2
0 exp(−i
τ )

× exp

[
±i

√
1 + 4κβ + 4κ


(
α − s




2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (3b)

where the ± sign denotes propagation in the forward and back-
ward longitudinal directions, respectively. For sgn(sκ) = +1
(ellipses), nonevanescent waves exist within the (displaced)
frequency band 
− < 
 < 
+, where 
± = sα ± [α2 +
(2sβ + 1/2|sκ|)]1/2. For sgn(sκ) = −1 (hyperbole), there are
no such propagation cutoffs (see Fig. 1).

B. Recovery of conventional waves

When all contributions from the κ∂2u/∂ζ 2 term are
negligibly small simultaneously, one must be able to recover
the predictions made by conventional pulse theory. For the
cw solutions of Eq. (1), the threefold algebraic limit κ → 0
(negligible spatial dispersion), κβ → 0 (negligible nonlinear
phase shift), and κ
[α − (s/2)
] → 0 (negligible frequency
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FIG. 1. (Color online) Dispersion relations for cw solutions with
κ = +10−3, ρ0 = 1.0, and α = 1.0. (a) Ellipse when s = +1
[representative of regimes with sgn(sκ) = +1] and (b) hyperbole
when s = −1 [representative of regimes with sgn(sκ) = −1]. The
families of curves are centered on (
,K) = (sα,0), so the dominant
effect of varying α is to translate the curves along the 
 axis.
Blue-upper curves: forward wave. Red-lower curves: backward wave.

shift) is formally equivalent to the SVEA. The forward wave
in Eq. (3b) converges to u(τ,ζ ) � ρ

1/2
0 exp[−i
(τ − αζ ) +

i(β − s
2/2)ζ ] so that, in the local time frame, the solution
u(τloc,ζloc) � ρ

1/2
0 exp[−i
τloc + i(β − s
2/2)ζloc] satisfies

the canonical NLS equation of Sec. II. Thus, parameter
β can be identified with the propagation constant of the
corresponding 
 = 0 conventional wave.

The same algebraic procedure may also be ap-
plied to the backward wave in Eq. (3b), whereupon
it is found that u(τ,ζ ) � ρ

1/2
0 exp[−i
(τ + αζ ) − i(β −

s
2/2)ζ ] exp[−i2(ζ/2κ)]. Although boosting to a local time
frame moving in the backward direction is possible (e.g.,
by introducing τloc ≡ τ + αζ and ζloc ≡ ζ ), there is no
advantage in so doing: This transformed wave u(τloc,ζloc)
clearly cannot satisfy the approximate equation [i(∂/∂ζloc +
2α ∂/∂τloc) + (s/2)∂2/∂τ 2

loc + |u|2]u(τloc,ζloc) � 0 because of
the κ-dependent rapid phase factor that survives the limit
process. The conventional model is inherently unidirectional
(describing evolution with respect to a single longitudinal
direction) and does not support backward propagation.

C. Linear stability analysis

Attention is now turned to the stability of the cw solutions
against small-amplitude modulations in the time domain.
Without loss of generality, we set 
 = 0 and express u as
u(τ,ζ ) = ρ

1/2
0 [1 + εa(τ,ζ )] exp(iKζ ) exp(−iζ/2κ), where ε

is a formal expansion parameter and a(τ ,ζ ) is a complex func-

tion that describes a disturbance to the amplitude and phase of
the stationary state. By considering small modulations, where
|ε| � O(1) and |a| = O(1), one can linearize in a around the
cw solution and derive the following equation at O(ε):

κ
∂2a

∂ζ 2
± i

√
1 + 4κβ

∂a

∂ζ
+ iα

∂a

∂τ
+ s

2

∂2a

∂τ 2
+ ρ0(a + a∗) = 0.

(4)

The simplest perturbation to analyze is a single Fourier
component with frequency shift 
p. Such a component can
be represented by

a(τ,ζ ) = a1 exp(−i
pτ + iKpζ ) + a∗
2 exp( + i
pτ − iK∗

pζ ),

(5)

where a1 and a2 are arbitrary constants. Here, Kp ≡ kp + i
p

is a complex wave number whose real and imaginary parts
correspond to the propagation constant and spatial growth rate
of Fourier mode (5), respectively.

After substituting a(τ ,ζ ) into Eq. (4), one arrives at the
following characteristic equation for Kp:

κ2K4
p − (

1 + 6κβ − sκ
2
p

)
K2

p + 2α
p

√
1 + 4κβKp

+ 1
2
2

p

[
1
2
2

p − 2(α2 + sρ0)
] = 0. (6)

The third term in Eq. (6), which arises from the iα∂/∂τ

operator, has no counterpart in the corresponding spatial
calculation [19]. This linear-in-Kp factor frustrates subsequent
algebraic analysis because one cannot first solve for K2

p. It is
possible, in principle, to solve Eq. (6) for Kp directly with
recourse to the standard formula for finding the roots of quartic
equations [20]. However, these solutions are algebraically
complex and provide little physical insight into the stability
problem.

D. Long-wave and short-wave instabilities

We restrict our attention to regimes with β = O(1) and
where there is only a small level of spatial dispersion |κ| �
O(1). When sgn(sκ) =+1 (see Fig. 2), Re[Kp(
p)] comprises
a pair of ellipses of approximate width (2/|κ|)1/2 centered
on 
p � ±α, whereas, Im[Kp(
p)] comprises a set of four
hyperbole that characterize a short-wave instability. There also
exists a long-wave instability near the origin 
p � 0 [see inset
of Fig. 2(b)]. In this domain, where κK2

p → 0, κ
2
p → 0, and

κβ → 0, Eq. (6) is well approximated by the parabola,

K2
p − 2α
pKp − 1

2
2
p

[
1
2
2

p − 2(α2 + sρ0)
] � 0, (7a)

which can be solved immediately to yield

Kp = α
p ±
√

1

2

2

p

(
1

2

2

p − 2sρ0

)1/2

. (7b)

For s = +1, modulational instability (MI) appears in the
frequency band |
p| < (4ρ0)1/2 where Kp acquires a nonzero
imaginary component. The most unstable frequency is 
p0 =
(2ρ0)1/2, which is associated with a period Tp0 ≡ 2π/
p0 =
21/2π/ρ

1/2
0 . This long-wave instability vanishes for s = −1
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FIG. 2. (Color online) Dispersion relation [obtained by solving
Eq. (6) numerically] for Fourier mode (5) when κ = +10−3, ρ0 = 1.0,
α = 1.0, and s = +1. Note that there are always four branches because
of the quartic nature of Eq. (6). (a) The propagation constant of the
perturbation (real part of the complex wave number Kp) comprises
two ellipses. (b) The spatial growth rate of the mode (imaginary part
of Kp) has a short-wave MI at high 
p . Inset: Bow-tie-type structure
of the classic long-wave MI curve (the additional two roots are zero).
These small-scale features in 
p(
p) are not apparent from visual
inspection of the larger-scale plot.

[irrespective of sgn(κ)] because Kp is always real. It is
interesting to note that Eqs. (7a) and (7b) coincide with the
predictions of conventional pulse theory. After a Galilean boost
to the local time frame, the first term on the right-hand side of
Eq. (7b) is transformed away, and one is left with the classic
result Kp(
p) = ±|
p|(
2

p/4 − sρ0)1/2 [21]. When sgn(sκ)
= −1, Re(Kp) always comprises four hyperbole. For s = +1
and κ < 0, Im[Kp(
p)] exhibits only the long-wave MI band
[see Fig. 2(b)]; when s = −1 and κ > 0, one finds Im(Kp) =
0 (i.e., no MI at any 
p).

E. Spontaneous modulational instability

Analysis predicts, and simulations confirm, that there is no
growth of long-wave instability when ρ0 = 0; indeed, bright
solitons (i.e., pulses on a zero-amplitude cw background) were
found to behave like robust attractors [5]. Results are now
presented from simulations of model (1) with s = +1. A
cw solution with ρ0 = O(1) and 
 = 0 is initialized, and
a 0.01% level of complex noise is added to accelerate the
growth of any spontaneous instability. During the early stages
of evolution, before fully developed nonlinear dynamics take
hold of the system, long-wave sidebands corresponding to the
most-unstable frequency [predicted by Eq. (7b)] grow first
(see Fig. 3). Simulations have not uncovered any evidence

FIG. 3. (Color online) Spontaneous development of modulational
instability in the anomalous-GVD regime (s = +1) when κ = +10−3,
α = 1.0, and ρ0 = 1.0. In this simulation, the level of noise is set to
0.01% (ε = 10−4). The zero-frequency spectral component [i.e., the
dominant peak in the fast Fourier transform (FFT) that is associated
with the 
 = 0 cw background field] has been filtered from the
dataset. The first sidebands that start to grow are centered on the most
unstable frequency 
p0 � (2ρ0)1/2 as predicted by linear analysis.
The results are qualitatively unchanged for κ = −10−3 because the
long-wave instability region is independent of κ .

of long-wave instabilities in regimes with s = −1, providing
numerical confirmation of our analytical predictions.

IV. DARK SOLITON PULSES

In this section, two equivalent representations of the exact
analytical dark solitons of Eq. (1) are derived. One expects
families of tanh-type solutions to exist in the normal-GVD
regime (where s = −1). However, these particular solution
classes are much more difficult to derive than their bright
counterparts [5]. A direct-integration method is developed
for the governing equation in which the dark solution u is
explicitly decomposed into its cw background field and gray-
dip (intensity and phase) quadratures. A range of coordinate
transformation techniques is then deployed to arrive at a more
general dark solution [22,23].

A. Coordinate transformation laws and
velocity combination rule

It is worthwhile to review some essential mathematical
results that will be used extensively throughout the following
derivation and analysis. Under the coordinate change,

τ = τ ′ − V ζ ′
√

1 + 2sκV 2
, (8a)

and

ζ = 2sκV τ ′ + ζ ′
√

1 + 2sκV 2
, (8b)

where V is a velocitylike parameter, the form invariance
of Eq. (1) is preserved so long as u transforms according
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to

u(τ,ζ )

= exp

[
−i

sV τ ′
√

1 + 2sκV 2
+ i

2κ

(
1 − 1√

1 + 2sκV 2

)
ζ ′

]

× exp

[
−isα

τ ′ − V ζ ′
√

1 + 2sκV 2
+ isατ ′

]
u′(τ ′,ζ ′). (8c)

From Eqs. (8a) and (8b), it can be shown that two arbitrary
velocities, denoted by V0 and V , combine geometrically (not
additively as they do in conventional pulse theory) to give a
net velocity W , where [4,5,23]

W = V0 + V

1 − 2sκV0V
. (8d)

This result for W is generic in nature in the sense that
it is independent of both the system nonlinearity and the
solution u being transformed. The structure of Eq. (8d) also
bears a striking similarity to the velocity combination rule of
relativistic kinematics [24]. For brevity, we refer throughout
to V , V0, and W as background, intrinsic, and net velocities,
respectively, while remaining mindful of the fact that they are
strictly related to inverse velocities in the unscaled laboratory
frame.

B. Symmetry reduction and quadrature equations

The analysis begins by seeking solutions of the
form u(τ,ζ ) = ρ1/2(τ,ζ ) exp[i�(τ,ζ )] exp(−iζ/2κ), where
ρ(τ,ζ ) ≡ |u(τ,ζ )|2 is the (real) wave intensity, �(τ,ζ ) is the
phase distribution, and the complex exponential exp(−iζ/2κ)
is a manifestation of the underlying carrier wave (this contribu-
tion always appears explicitly in fully-second-order envelope
solutions) [25]. In the following analysis, we are concerned
primarily with regimes where the total spatial dispersion
parameter is positive (i.e., where κ > 0). Substitution of u into
Eq. (1) and isolating the real and imaginary parts, respectively,
yields

2

ρ

(
∂2ρ

∂τ 2
− 2κ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

− 2κ

(
∂ρ

∂ζ

)2]

− 4

[(
∂�

∂τ

)2

− 2κ

(
∂�

∂ζ

)2]
+ 8

(
α

∂�

∂τ
− 1

4κ
− ρ

)
= 0,

(9a)

and

ρ

(
∂2�

∂τ 2
− 2κ

∂2�

∂ζ 2

)
+

(
∂ρ

∂τ

∂�

∂τ
− 2κ

∂ρ

∂ζ

∂�

∂ζ

)
− α

∂ρ

∂τ
= 0.

(9b)

Physically, dark solitons comprise a gray dip in the intensity
profile (described by ρ) modulating a continuous wave [see
Eq. (3b)]. This simplifies the mathematical problem because
one may proceed by looking for particular solutions of
Eqs. (9a) and (9b) in which � may be expressed as �(τ ,ζ ) =
�(τ ,ζ ) + Kζ . Here, �(τ ,ζ ) represents the phase variation
across the dark soliton, K = ±(1 + 4κβ)1/2/2κ [from Eq. (3a)
where β ≡ ρ0], and it has been assumed, for simplicity, that
the cw background field has 
 = 0 (this restriction will be
lifted shortly). The partial derivatives ∂�/∂τ and ∂�/∂ζ may

then be replaced by ∂�/∂τ and ∂�/∂ζ + K , respectively, so
that Eqs. (9a) and (9b) become

2

ρ

(
∂2ρ

∂τ 2
− 2κ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

− 2κ

(
∂ρ

∂ζ

)2]

− 4

[(
∂�

∂τ

)2

− 2κ

(
∂�

∂ζ

)2]

+ 8

(
α

∂�

∂τ
+ 2κK

∂�

∂ζ
+ β − ρ

)
= 0, (10a)

and

ρ

(
∂2�

∂τ 2
− 2κ

∂2�

∂ζ 2

)
+

(
∂ρ

∂τ

∂�

∂τ
− 2κ

∂ρ

∂ζ

∂�

∂ζ

)

−
(

α
∂ρ

∂τ
+ 2κK

∂ρ

∂ζ

)
= 0. (10b)

In this way, the cw component has been eliminated from the
problem, and one can concentrate solely on deriving the gray-
dip part of the solution u.

Referring to coordinate change (8a) and (8b), it is con-
venient to introduce a new coordinate ξ ≡ (τ − V0ζ )/(1 −
2κV 2

0 )1/2, where τ − V0ζ = 0 defines the trajectory in
the space-time plane along which the pulse center travels
(alternatively, ξ may be interpreted as a rest-frame coor-
dinate). Here, V0 is the intrinsic velocity of the gray dip
in the (normalized) laboratory frame; for a pulse moving
forward (backward) along the longitudinal ζ axis, V0 must
be positive (negative). The operators ∂/∂τ and ∂/∂ζ trans-
form as ∂/∂τ = (1 − 2κV 2

0 )−1/2(d/dξ ) and ∂/∂ζ = −V0(1 −
2κV 2

0 )−1/2(d/dξ ), whereas, ∂2/∂τ 2 = (1 − 2κV 2
0 )−1(d2/dξ 2)

and ∂2/∂ζ 2 = V 2
0 (1 − 2κV 2

0 )−1(d2/dξ 2). This symmetry re-
duction approach has, thus, transformed Eqs. (10a) and (10b)
into a pair of coupled ordinary differential equations for the ρ

and � quadratures,

d

dρ

[
1

ρ

(
dρ

dξ

)2]
= 4

(
d�

dξ

)2

− 8

(
α − 2κKV0√

1 − 2κV 2
0

)
d�

dξ

− 8(β − ρ), (11a)

and

d

dξ

(
ρ

d�

dξ
− α − 2κKV0√

1 − 2κV 2
0

ρ

)
= 0, (11b)

which may be decoupled and may be solved exactly.
Indefinite integration (with respect to ξ ) of Eq. (11b) yields

d�/dξ = (α − 2κKV0)(1 − 2κV 2
0 )−1/2 + c1/ρ, where c1 is a

constant to be determined later (by applying solution boundary
conditions). The phase slope d�/dξ can now be eliminated
from Eq. (11a), and a first integration (with respect to ρ)
gives (

dρ

dξ

)2

= −4c2
1 − 4

(α − 2κKV0)2

1 − 2κV 2
0

ρ2

− 8

(
βρ2 − ρ3

2

)
+ c2ρ, (12)

where c2 is a second constant to be determined. The relevant
boundary conditions on ρ and � for a gray soliton are as
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follows:

lim
ξ→0

ρ(ξ ) = ρ1, (13a)

lim
ξ→0

d

dξ
ρ(ξ ) = 0, (13b)

lim
ξ→±∞

ρ(ξ ) = ρ0, (13c)

where ρ0 corresponds to the intensity of the cw background
field and 0 < ρ1 � ρ0 is the intensity at the pulse center. For
dark-type solutions, the ξ derivatives of ρ and � must satisfy
vanishing asymptotics,

lim
ξ→±∞

d

dξ
ρ(ξ ) = 0, (13d)

lim
ξ→±∞

d

dξ
�(ξ ) = 0. (13e)

Together, boundary conditions (13a)–(13e) supplement
quadrature equation (12) and allow one to find the desired
gray soliton by direct integration.

C. Exact analytical gray solitons

Since the right-hand side of Eq. (12) is an expression cubic
in ρ, one may write (dρ/dξ )2 = B(ρ0 − ρ)2(ρ − ρ1), where
B is a constant, ρ0 is a double root, and ρ1 is a single root.
Comparing the coefficients of the four powers of ρ (from 3
to 0) uncovers the following relations: B = 4,

[(2κK)2 + 2κρ0F
2]V 2

0 − 2α(2κK)V0 + (α2 − ρ0F
2) = 0,

(14)

c2 = 4ρ2
0 (3 − 2A2), and c2

1 = ρ3
0F 2, respectively. Here, the

notation A2 + F 2 = 1 has been introduced, where F 2 ≡
ρ1/ρ0 is the traditional contrast (or grayness) parameter.
Since dρ/dξ > 0 in the domain ξ > 0, direct integration of
dρ/dξ = 2(ρ0 − ρ)(ρ − ρ1)1/2 gives rise to the classic dark
soliton intensity distribution for a cubic nonlinearity, namely,
ρ(ξ ) = ρ0[1 − A2 sech2(ρ1/2

0 Aξ )]. One must also consider the
phase distribution. Since the phase gradient d�/dξ vanishes
as ξ → ±∞, it follows that (α − 2κKV0)(1 − 2κV 2

0 )−1/2 +
ρ

1/2
0 F = 0 [we also note that this result is formally identical

to Eq. (14)]. Substituting for ρ(ξ ), separation and integra-
tion of the phase quadrature equation d�/dξ = ρ

1/2
0 F {[1 −

A2 sech2(ρ1/2
0 Aξ )]−1 − 1} leads to a second classic result,

namely, �(ξ ) = tan−1[(A/F ) tanh (ρ1/2
0 Aξ )].

By reintroducing the original space-time coordinates τ and
ζ , the exact analytical dark solitons of Eq. (1) may be written as

u(τ,ζ )

= ρ
1/2
0

[
1 − A2sech2

(
ρ

1/2
0 A

τ ∓ V0ζ√
1 − 2κV 2

0

)]1/2

× exp

{
i tan−1

[(
A

F

)
tanh

(
ρ

1/2
0 A

τ ∓ V0ζ√
1 − 2κV 2

0

)]}

× exp

[
±i

√
1 + 4κβ

ζ

2κ

]
exp

(
−i

ζ

2κ

)
. (15)

Here, the upper (lower) signs describe a pulse evolving forward
in time and traveling in the forward (backward) longitudinal

FIG. 4. (Color online) Schematic illustrating the geometry of
solution (17) and, in particular, the distinction between pulses
propagating in the forward (FWD) and backward (BWD) longitudinal
directions. In the (τ ,ζ ) plane, the minimum of the gray dip travels
along the lines τ − V0ζ = 0 and τ + V0ζ = 0, respectively, where
the intrinsic velocity V0 is given by Eq. (16a). The trajectory makes
an angle � relative to the longitudinal axis where tan � = V0.

direction (see Fig. 4). The intrinsic velocity V0 is given by

V0(F ) = ρ
1/2
0 F

√
1 + 2κβ(2 + F 2) − 2κα2 + α

√
1 + 4κβ

1 + 2κβ(2 + F 2)
.

(16a)

This generalized expression is obtained by solving Eq. (14),
which is quadratic in V0 and, thus, possesses two solutions.
However, for compactness of notation, we have absorbed these
two possible sign choices into the argument of the tanh and
sech functions [cf. solution (15)], and hence, V0 must be always
non-negative. The above expressions yield consistency with
those found for black solitons (whose results are flagged by
the “b” subscript) F = 0 and V0(0) ≡ V0b, where (see Fig. 5)

V0b ≡ α√
1 + 4κβ

. (16b)

The equation for V0b is identical to that given in Refs. [4,5]
for the bright soliton of Eq. (1). It is interesting to note that
V0(F ) is not antisymmetric with respect to F since V0(−F ) �=
−V0(F ) [7,23]. For convenience, one may express solution
(15) in the following more compact form:

u(τ,ζ ) = ρ
1/2
0

[
A tanh

(
ρ

1/2
0 A

τ ∓ V0ζ√
1 − 2κV 2

0

)
− iF

]

× exp

[
±i

√
1 + 4κβ

ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (17)

where phase variations have been absorbed into the complex
tanh-shaped wave profile.

FIG. 5. (Color online) Schematic illustrating the distinction be-
tween forward-propagating black and gray dark solitons. The black
soliton (those solutions with F = 0) has an intrinsic velocity V0b

[given by Eq. (16b)], whereas, its more general gray counterpart
(here, a solution with F > 0) has an intrinsic velocity V0 [where
V0(F > 0) > V0b].
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D. Mapping onto continuous waves

In the spirit of the frames-of-reference approach [4,5],
space-time (geometrical) operations can now be used to find
a more general dark soliton of Eq. (1). Such a solution
comprises a gray dip modulating a cw background field
that has a nonzero frequency shift [cf. Eq. (3b)]. Note that
although transformation laws (8a)–(8d) are expressed in terms
of velocity V , the free parameter should ideally be 
.

One can proceed by establishing the relationship connecting

 and V . This 
(V ) correspondence can be uncovered by a
two-stage analysis: (i) Apply geometrical transformation (8)
to solution (17), and (ii) map the transformed cw component
(in terms of V ) onto the solution given in Eq. (3b) (in terms of

). The first part of this procedure leads to

u(τ,ζ ) = ρ
1/2
0

[
A tanh

(
ρ

1/2
0 A

τ ∓ Wζ√
1 − 2κW 2

)
− iF

]

× exp

[
−i
τ ± i

√
1 + 4κβ + 4κ


(
α + 


2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (18)

whereas, the second part (equating the temporal phase slope)
yields


(V ) ≡ V

√
1 + 4κβ

1 − 2κV 2
+ α

(
1√

1 − 2κV 2
− 1

)
. (19a)

With this definition of 
(V ), the longitudinal phase slope
is automatically mapped so that solution (18) is entirely self-
consistent. Inversion of Eq. (19a) can also determine V as a
function of 
,

V (
) =
(
 + α)

√
1 + 4κβ + 4κ


(
α + 1

2

) − α

√
1 + 4κβ

1 + 4κβ + 2κ(
 + α)2
,

(19b)

where V (
) is independent of F (as must be the case,
since soliton grayness is unaffected by any frequency shift
in the cw background field). The net velocity W ≡ W (F,
)
is given in Eq. (8d) where V0 ≡ V0(F ) and V ≡ V (
) are
obtained from Eqs. (16a) and (19b), respectively. This results
in an algebraic expression for W (F ,
) that is somewhat
cumbersome, namely,

W (F,
) = [(
 + α)
√

η − α
√

1 + 4κβ]μ + [
ρ

1/2
0 F

√
μ − 2κα2 + α

√
1 + 4κβ

]
(η + 2κα2)

(η + 2κα2)μ + 2κ[(
 + α)
√

η − α
√

1 + 4κβ]
[
ρ

1/2
0 F

√
μ − 2κα2 + α

√
1 + 4κβ

] , (20a)

where, for compactness, we have introduced η ≡ 1 + 4κβ +
4κ
(α + 
/2) and μ ≡ 1 + 2κβ(2 + F 2). For black solitons,
Eq. (20a) simplifies considerably to W (0,
) ≡ Wb(
), which
is given by

Wb(
) = α + 
√
1 + 4κβ + 4κ


(
α + 1

2

) . (20b)

Equation (20b) agrees with the result in Refs. [4,5], which
was derived for bright and black solitons on a slightly different
basis (though still with frame-of-reference ideas in mind). One
may also prove that Wb is compatible with transformation
laws (8a)–(8d), since it can be shown that Wb(
) = [V0b +
V (
)]/[1 + 2κV0bV (
)]. It is interesting to note that an ansatz
approach fails to yield solution (18) [23].

E. Exact analytical snoidal waves

Model (1) supports classes of nonlinear waves that are
periodic in τ [26]. Temporally extended solutions described by
Jacobi elliptic functions (of the first kind) represent periodic
wave trains of similar pulses whose separation (in time)
is controlled by the modulus m, where 0 � m � 1. In the
limit m → 1, the period becomes infinite, and the solution
reduces to a single soliton pulse. The analytical form of
such periodic waves was recently reported in Ref. [5] for the
anomalous-GVD regime (s = +1), where families of cnoidal
and dnoidal waves were uncovered.

Families of snoidal waves, that exist in the normal-GVD
regime (s = −1), are reported here to be

u(τ,ζ )

= mρ
1/2
0 sn

(
ρ

1/2
0

τ ∓ Wsnζ√
1 − 2κW 2

sn

; m

)

× exp

[
−i
τ ± i

√
1 + 4κβsn + 4κ


(
α + 


2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (21)

where βsn ≡ ρ0(1 + m2)/2. The net velocity Wsn of the sn
wave is formally identical to Wb [see Eq. (20b)], except that
the propagation constant β is replaced by βsn. For m → 1, the
sn function becomes a tanh and, in this case, a black soliton
emerges. As m → 0, solution (21) tends to a (quasilinear) sin
wave with vanishingly small amplitude.

F. Velocity representation

Thus far, exact analytical dark solitons of Eq. (1) have been
presented using the representation traditionally encountered
in pulse physics (i.e., where the temporal phase gradient,
identified with a frequency shift, is treated as a free parameter).
It is also possible to represent the same solutions using a
velocity-type representation of the phase (one that is more
commonly used when describing nonlinear beams). In a
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sense, this is a more natural representation, given the velocity
parametrization of transformation laws (8a)–(8d). Dark soliton
(18) then becomes

u(τ,ζ ) = ρ
1/2
0

[
A tanh

(
ρ

1/2
0 A

τ ∓ Wζ√
1 − 2κW 2

)
− iF

]

× exp

[
i

√
1 + 4κβ

1 − 2κV 2

(
−V τ ± ζ

2κ

)]

× exp

(
−iα

τ ∓ V ζ√
1 − 2κV 2

+ iατ

)
exp

(
−i

ζ

2κ

)
,

(22a)

where V is the free parameter, whereas, V0 and W are given
by Eqs. (16a) and (8d), respectively. In a similar way, one can
express snoidal wave (21) in the form

u(τ,ζ ) = mρ
1/2
0 sn

(
ρ

1/2
0

τ ∓ Wsnζ√
1 − 2κW 2

sn

; m

)

× exp

[
i

√
1 + 4κβsn

1 − 2κV 2

(
−V τ ± ζ

2κ

)]

× exp

(
−iα

τ ∓ V ζ√
1 − 2κV 2

+ iατ

)
exp

(
−i

ζ

2κ

)
,

(22b)

where Wsn = (V0sn + V )/(1 + 2κV0snV ), V is the free
parameter and V0sn is identical to V0b [see Eq. (16b)]. This
representation is advantageous for drawing comparisons with
the mathematical structure of spatial solitons and seeing more
clearly the effect on exact analytical solutions of including
the term iα∂u/∂τ in the governing equation. Note that, when
deriving the backward solutions in Eqs. (22a) and (22b), it was
convenient to make the change V → −V in Eqs. (8a)–(8d).
This swap merely preserves the position of the + and −
signs in Eq. (8d) and makes for a more compact simultaneous
representation of forward and backward pulses.

V. CONVENTIONAL DARK SOLITONS
AND SNOIDAL WAVES

It is axiomatic that, when all contributions from κ∂2u/∂ζ 2

are negligible simultaneously, the corresponding predictions
of conventional pulse theory [i.e., Eq. (2)] must emerge from
Eq. (1). However, this physically intuitive requirement is
more subtle to implement mathematically than simply setting
κ = 0. Indeed, experience has shown that this oversimplified
approach yields erroneous results in the spatial domain [25],
and the same is true here. In the reduction to conventional pulse
theory, one must pay careful attention to the way κ interplays
with other parameters. As illustrated in Sec. III B, the formal
restriction κ∂2u/∂ζ 2 → 0, when applied to solutions of
Eq. (1), is fully equivalent to a multifold algebraic limit.

It is particularly instructive to consider transformation
laws (8a)–(8c). Under the restriction κV 2 → 0, one re-
covers τ � τ ′ − V ζ ′, ζ � ζ ′, and u(τ,ζ ) � exp[−isV τ ′ +
is(V 2/2 + αV )ζ ′]u′(τ ′,ζ ′). In the limit κV0V → 0, the famil-
iar Galilean (additive) velocity combination rule is recovered
from Eq. (8d), namely, W � V0 + V .

A. Dark solitons

The multiple limits one has to enforce in solution (18)
are κ → 0 (negligible spatial dispersion), κβ → 0 (negligible
nonlinear phase shift), and κ
(α + 
/2) → 0 (negligible
frequency shift) and κW 2 → 0. Applying these limits to the
intrinsic and background velocities, V0 [see Eq. (16b)] and V

[see Eq. (19b)], respectively, one finds that for leading order:
V0 � ρ

1/2
0 F + α and V � 
. This latter result illustrates

the important point that frequency shifts and velocities are
completely interchangeable in conventional theory: They
have the same mathematical status under the SVEA, though
Eqs. (16b) and (19b) show that the same is clearly not true
in the more general framework. The net velocity W of the
gray soliton becomes W � ρ

1/2
0 F + α + 
 � V0 + V [see

Eqs. (20a) and (8d)]. Solution (18) may then be expressed
as

u(τ,ζ ) � ρ
1/2
0

{
A tanh

[
ρ

1/2
0 A�(τ,ζ )

] − iF
}

× exp

[
−i
(τ ∓ αζ ) ± i

(
β + 
2

2

)
ζ

]

× exp

[
−i(1 ∓ 1)

ζ

2κ

]
, (23a)

where

�(τ,ζ ) ≡ (τ ∓ αζ ) ∓ (
ρ

1/2
0 F + 


)
ζ. (23b)

Direct substitution verifies that, on one hand, the approx-
imate forward solution satisfies Eq. (2) exactly. On the other
hand, the backward solution does not satisfy that equation
because the rapid phase term, exp[−i2(ζ/2κ)], remains.
This situation points to the intrinsic unidirectionality of
wave equations derived on the assumption of slowly varying
envelopes. In the local time frame (τloc,ζloc) = (τ − αζ,ζ ), the
forward solution transforms into the classic form [7]

u(τloc,ζloc) � ρ
1/2
0

{
A tanh

[
ρ

1/2
0 A(τloc − Wlocζloc)

] − iF
}

× exp

[
−i
τloc + i

(
β + 
2

2

)
ζloc

]
(24)

whose net velocity is simply Wloc ≡ ρ
1/2
0 F + 
. The product

ρ
1/2
0 F , thus, plays the role of a local intrinsic velocity so

that, when 
 = 0 (zero frequency shift) and F = 0 (black
soliton), the pulse is stationary in the local time frame (i.e., the
intensity minimum is always located at τloc = 0 because one
has Wloc = 0).

B. Interpretation of intrinsic velocity

To gain deeper insight into soliton velocities, it is instructive
to consider coordinate transformations more carefully. Without
loss of generality, we restrict our attention to the 
 = 0 subset
of solutions (we note that inclusion of a finite frequency shift
affects none of the following).

A physical distinction between black (i.e., F = 0) and gray
(i.e., |F | > 0) dark solitons is the size of the phase shift ��

across their temporal profiles (being π rad and, generally, less
than π rad, respectively). In conventional pulse theory, where
one tends to analyze waves in local coordinates (τloc,ζloc), this
phase shift, namely, �� = −2tan−1(A/F ) = 2tan−1(F/A) −
π [2], is manifest as a so-called intrinsic velocity [cf. solution

023839-8



WAVE ENVELOPES WITH . . . . II. MODULATIONAL . . . PHYSICAL REVIEW A 86, 023839 (2012)

(24)]. By invoking the inverse Galilean transformation, the
same dark soliton, when expressed in (τ ,ζ ) coordinates [cf.
solution (23) with the upper signs], is governed by Eq. (2),
and its intrinsic velocity becomes ρ

1/2
0 F + α. Hence, from the

frames-of-reference perspective, both gray and black solitons
(and, for that matter, bright solitons [4,5]) must have an
intrinsic velocity with respect to the laboratory frame (by
virtue of simply traveling along the z axis). Note that ��

is preserved (as it must be) when transforming between local
and laboratory frames.

The way in which velocities combine under Galilean-type
boosts oversimplifies these considerations. The separation
of intrinsic velocity into two additive factors is merely an
artifact of the SVEA; furthermore, one of these factors
may be transformed away through a change in coordinates.
Equation (16a) shows that, in the more general case, V0(F ) has
a much stronger geometrical characteristic than has previously
been recognized. The interplay between system and solution
parameters is then more intricate, and the intrinsic velocity
cannot be broken up in such a straightforward and intuitive
way.

C. Snoidal waves

Applying a similar asymptotic procedure, snoidal wave (21)
is approximated by

u(τ,ζ ) � mρ
1/2
0 sn

[
ρ

1/2
0 �sn(τ,ζ ); m

]
× exp

[
−i
(τ ∓ αζ ) ± i

(
βsn + 
2

2

)
ζ

]

× exp

[
−i(1 ∓ 1)

ζ

2κ

]
, (25)

where �sn(τ,ζ ) � (τ ∓ αζ ) ∓ 
ζ . Direct substitution verifies
that the approximate forward wave satisfies Eq. (2) exactly,
whereas, the approximate backward wave does not. In the
local time frame (τloc,ζloc) = (τ − αζ ,ζ ), the forward solution
transforms into the classic form [26]

u(τloc,ζloc) � mρ
1/2
0 sn

[
ρ

1/2
0 (τloc − 
ζloc); m

]
× exp

[
−i
τloc + i

(
βsn + 
2

2

)
ζloc

]
, (26)

where the net velocity in this frame is just the frequency shift

.

VI. STABILITY OF DARK SOLITON PULSES

A. Stability criterion

Conventional nonlinear theories of dark soliton stability
are routinely performed in the local time frame. They are
also based on a renormalization procedure, whereby the
continuous infinity of degrees of freedom associated with the
cw background is subtracted in a self-consistent way, rendering
the system’s conserved quantities (energy flow, momentum,
and Hamiltonian) finite [2,27]. To facilitate analysis, one
usually considers the 
 = 0 subset of solutions. The stability
criterion is introduced by way of a renormalized momentum
integral Mren [28]. A dark solution is then predicted to be stable

against small perturbations if dMren/dV0 > 0, where

Mren(V0) ≡ i

2

∫ +∞

−∞
dτloc

(
u∗ ∂u

∂τloc
− u

∂u∗

∂τloc

)(
1 − ρ0

|u|2
)

,

(27)

ρ0 is the intensity of the cw background, and V0 ≡ ρ
1/2
0 F is the

intrinsic velocity of the dark component in the local time frame.
Substituting solution (24) into Eq. (27), it can be shown that
Mren(V0) = 2V0(ρ0 − V 2

0 )1/2 − 2ρ0tan−1[(ρ0 − V 2
0 )1/2/V0].

In the more general model (1), one might expect a
relationship similar to Eq. (27) to hold on physical grounds. If a
pulse (either bright or dark) is predicted to be stable in its local
time frame, then for that prediction to be meaningful, the same
pulse must also be stable when viewed from any other frame
(e.g., the laboratory). Symmetry principles mean that one does
not expect instabilities to appear and disappear spontaneously
when boosting between different coordinate systems (since
the choice of reference frame is an entirely arbitrary one). The
formal mathematical question of stability criteria for bright
and dark (spatial and temporal) Helmholtz solitons remains
open as does the issue of renormalization theory for classes
of fully second-order nonlinear envelope equations, such as
model (1). However, one can still address questions concerning
dark soliton stability through initial-value problems and
numerical computation.

B. Initial-value problems

Simulations are now used to probe the fully developed
nonlinear dynamics when spatiotemporal dark pulses suffer
a perturbation to their temporal shapes. We begin our investi-
gation by injecting a perturbed black (F = 0) solution,

u(τ,0) = ρ
1/2
0 tanh

(
ρ

1/2
0 τ

)
exp(−i
τ ), (28)

of full width �τ0 ≡ 2/ρ
1/2
0 into the system. The formal shape

perturbation arises from omission of the correction factor
(1 − 2κW 2)1/2 from the envelope. Since this input pulse
corresponds to an exact solution of Eq. (2) [cf. soliton (23a)
with upper signs], this class of initial-value problem considers
propagation effects when one does not take full account of
contributions from the κ∂2u/∂ζ 2 term [23].

Extensive computations with Eq. (1) have been performed
using a generalization of the difference-differential algorithm
in Ref. [29] to allow for the iα∂u/∂τ term. As the pulse travels
along ζ , its width evolves toward the asymptotic value �τ∞ =
(1 − 2κW 2)1/2�τ0, corresponding to the theoretical prediction
for an exact (stationary) dark soliton [23]. Self-reshaping is
accompanied by the emission of a small amount of radiation.
Figure 6 presents two illustrative sets of results for typical pulse
evolution. When κ > 0 (the hyperbolic scenario), the injected
pulse is initially too long for the cw background intensity ρ0.
The interplay between dispersion and nonlinearity, thus, tends
to shorten the pulse length. Similarly, for κ < 0 (the elliptic
scenario), the injected pulse is too short in time. The solution,
thus, tends to broaden as it propagates.

The robustness of gray solutions can be addressed using an
initial condition of the form u(τ,0) = ρ

1/2
0 [A tanh(ρ1/2

0 Aτ ) −
iF ], whose full width is �τ0 ≡ 2/ρ

1/2
0 A. This input pulse

corresponds to an exact gray soliton of the conventional model
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FIG. 6. (Color online) Self-reshaping of perturbed black (F = 0)
pulses (28) toward an exact soliton with (a) κ = +10−3 (hyperbolic
scenario) and (b) κ = −10−3 (elliptic scenario—note that the
qualitative features of these curves are similar to those in Ref. [23]
for Helmholtz spatial dark solitons). Solid bars denote theoretical
predictions of the asymptotic full width �τ∞. Other parameters:
ρ0 = 1.0 and α = 1.0; note that the cw background of each pulse
has no long-wave MI since s = −1.

equation with V (
 = 0) = 0, and hence, W = V0 [where
V0 is given by Eq. (16a)]. The self-reshaping characteristics
of perturbed gray solitons are qualitatively similar to those
of the black solutions shown in Fig. 6. A key quantitative
difference is that much longer propagation lengths are re-
quired for stationary gray solitons to emerge from the initial
condition.

VII. CONCLUSIONS

A framework for describing dark pulses of a universal gov-
erning equation with second-order spatiotemporal dispersion
and a cubic nonlinearity has been examined. Linear analysis
has predicted the MI characteristics of continuous waves
with simulations confirming theoretical predictions. New
families of exact analytical dark solitons have been derived
for normal-GVD regimes along with a class of (temporally
periodic) snoidal waves. The space-time geometry of these
new solutions has been explored in detail. Furthermore,
computations provided supporting evidence that these dark
solitons may be classified as robust fixed-point attractors of
the system dynamics.

The analyses presented here and in Refs. [4,5] take
the first steps toward a deeper understanding of nonlinear
pulses in fully second-order systems. Many other exciting
avenues of theoretical and technological importance remain

to be explored. Most obviously, perhaps, is the question of
spatiotemporal soliton pulse multiplexing [30] (an adiabatic
perturbation method for Helmholtz-type beam systems was
developed in Ref. [31]). Equation (1) can be modified
to include other generic nonlinearities (particularly, those
functional forms where one might now reasonably expect to
find exact analytical solitons). Also of interest is the potential
for generalizing model (1) to multicomponent regimes [32].
Given the detailed knowledge now established for scalar
bright [4,5] and dark Helmholtz solitons in the time domain,
vector contexts [33] are especially appealing and natural
candidates for further study. Such coupled-mode equations
could be used in photonics applications to understand how
light behaves in birefringent waveguides [34] in the presence of
spatiotemporal dispersion. Moreover, since spatial dispersion
appears generically from the linear wave equation Laplacian,
one may reasonably expect Helmholtz soliton pulses in a range
of other nonoptical contexts.

APPENDIX

1. Derivation of optical model equation

In the classic scalar-wave optics approach, the transverse
spatial profile of the electric field E is confined by the
structure of a waveguide, and the polarization scrambling term
in Maxwell’s equations, namely, ∇(∇ · E) can be safely ne-
glected. One proceeds by seeking pulse solutions that have the
form E(t ,z) = A(t ,z)exp[i(k0z − ω0t)] + A∗(t ,z)exp[−i(k0z

−ω0t)], where z is the longitudinal coordinate along the axis of
the waveguide, t denotes the time coordinate, and A(t ,z) is the
envelope. The underlying carrier wave has a center frequency
ω0 and propagation constant k0 = n0ω0/c, where n0 is the
linear refractive index of the host medium (at frequency ω0)
and c is the speed of light in a vacuum.

By substituting the field E into the corresponding Maxwell
equations and transforming to the temporal frequency domain
(denoted by ω), it can be shown that [6]

∂2Ã

∂z2
+ i2k0

∂Ã

∂z
+ [

k2(ω) − k2
0

]
Ã = 0, (A1)

where Ã ≡ Ã(ω − ω0,z) is the Fourier transform of the pulse
envelope and k2 is the mode eigenvalue (obtained by solving
Maxwell’s equations for the transverse part of the confined
field).

At this point, it is customary to deploy a Taylor expansion
to deal with the linear temporal dispersive properties of
the system that are contained implicitly within k2(ω). By
assuming that pulse solutions have only a narrow spectral
width (temporal variations in A are on much longer time
scales than the characteristic period ∼1/ω0) and that Ã remains
peaked within the vicinity of ω0 (small frequency shifts), one
may write

k2(ω − ω0) =
∞∑

j=0

∂j

∂ωj
k2(ω)

∣∣∣∣
ω=ω0

1

j !
(ω − ω0)j . (A2)

By discarding terms beyond the second order in (ω−ω0)
where third- and higher-order linear dispersion effects may be

023839-10



WAVE ENVELOPES WITH . . . . II. MODULATIONAL . . . PHYSICAL REVIEW A 86, 023839 (2012)

neglected [12], it follows that

k2(ω − ω0) = k2
0 + 2k0k1(ω − ω0) + (

k0k2 + k2
1

)
(ω − ω0)2,

(A3)

where k0 ≡ k(ω0) and kj ≡ (∂jk/∂ωj )ω=ω0 for j = 1,2,3,. . . .
By noting the correspondence (ω − ω0)j = (i∂/∂t)j , inverse
Fourier transformation back to the time domain leads to the
following governing equation:

1

2k0

∂2A

∂z2
+ i

(
∂A

∂z
+ k1

∂A

∂t

)

− k2

2

(
1 + k2

1

k0k2

)
∂2A

∂t2
+ ω0

c
n2|A|2A = 0, (A4)

where n2 is the Kerr coefficient (assumed to be frequency
independent) and the system nonlinearity has been included
heuristically.

In our analysis, we have followed a more traditional
approach that simplifies the scalings without loss of generality.
Under similar assumptions as before, the term k2(ω) − k2

0 is
well approximated by 2k0[k(ω) − k0], and it is now k(ω) [rather
than k2(ω)] that is Taylor expanded

k(ω − ω0) =
∞∑

j=0

∂j

∂ωj
k(ω)

∣∣∣∣
ω=ω0

1

j !
(ω − ω0)j . (A5)

Keeping terms up to second order in (ω− ω0) leads to the
familiar quadratic approximation,

k(ω − ω0) = k0 + k1(ω − ω0) + k2

2
(ω − ω0)2. (A6)

It is interesting to note that there is full agreement between
Eqs. (A6) and (A3) up to terms in (ω −ω0)2. By inverse Fourier
transforming and introducing the nonlinearity in a similar way,
one arrives at the classic optical pulse equation,

1

2k0

∂2A

∂z2
+ i

(
∂A

∂z
+ k1

∂A

∂t

)
− k2

2

∂2A

∂t2
+ ω0

c
n2|A|2A = 0.

(A7)

Although Eq. (A4) is (potentially) a more accurate model, we
instead continue with Eq. (A7) as this form is more commonly
encountered in the literature [1–34].

Equations (A7) and (A4) reveal that electromagnetic modes
have an intrinsic propagation contribution to ∂2/∂z2 in the
form of the 1/2k0 traveling-wave prefactor. Biancalana and
Creatore [14] have recently shown that light in some semi-
conductor waveguides (such as ZnCdSe/ZnSe superlattices)
can also exhibit a potentially dominant material contribution,
whose physical origin lies in the coupling of the confined
electric field to diffusing excitons. Spatial dispersion appears
through a modification to the coefficient of ∂2A/∂z2 in

Eq. (A7), whereby 1/2k0 is augmented by the exciton term,

1

2k0
→ 1

2k0
+ n0��ω̃0

2δω2c
. (A8)

Here, � ≡ h̄/2M∗
x , M∗

x is the effective exciton mass, ω̃0 is a
resonant frequency, � is a dimensionless parameter related
to the oscillator strength for the coherent exciton-photon
interaction, and δω is a frequency detuning (for a detailed
account, the reader is directed to the Appendix in Ref. [14]).
It is interesting to note that the second term in Eq. (A8) can,
in principle, become negative when M∗

x < 0.
After a rescaling of Eq. (A7), the dimensionless envelope

u is governed by Eq. (1). The normalized space and time
coordinates are ζ = z/L and τ = t /tp, respectively, where tp
is the duration of a reference pulse with dispersion length
L = t2

p/|k2|. The sign of the group-velocity dispersion is
flagged by s = ±1 = −sgn(k2) (+1 for anomalous, −1 for
normal), and α ≡ k1tp/|k2|. The spatial dispersion parameter
is κ = κ0 + D, where κ0 ≡ 1/2k0L = c|k2|/2n0w0t

2
p and

D ≡ n0��ω̃0/2δω2cL = |k2|n0��ω̃0/2δω2ct2
p. Finally, u =

A/A0, where the natural unit of electric-field amplitude is
A0 = (n0/n2k0L)1/2 = (n0|k2|/k0n2t

2
p)1/2.

2. Galilean transformation

Under the conventional Galilean boost, one transforms to
a frame of reference moving along the z axis (in the forward
direction) at the group velocity vg = 1/k1. Hence, when tloc =
t − k1z and zloc = z, it follows that the operators ∂/∂t and
∂/∂z transform according to ∂/∂tloc and ∂/∂zloc − k1∂/∂tloc,
respectively. In the (tloc,zloc) frame, Eqs. (A7) and (A4) become

1

2k0

∂2A

∂z2
loc

+ i
∂A

∂zloc
− k2

2

(
1 − k2

1

k0k2

)
∂2A

∂t2
loc

− k1

k0

∂2A

∂zloc∂tloc
+ ω0

c
n2|A|2A = 0, (A9)

and

1

2k0

∂2A

∂z2
loc

+ i
∂A

∂zloc
− k2

2

∂2A

∂t2
loc

− k1

k0

∂2A

∂zloc∂tloc
+ ω0

c
n2|A|2A = 0, (A10)

respectively. The origin of the mixed partial-derivative term
at ∂2A/∂zloc∂tloc lies in the ∂2/∂z2 operator [18], and the
numerical coefficient of this term is k1/k0 in both cases. To
simplify considerations, the mixed-derivative term could be
neglected, but this leads to a less-exact model. By abandoning
the Galilean boost and remaining in the laboratory frame,
one avoids the mixed-derivative complications associated with
Eqs. (A9) and (A10).
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