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x Ultra-narrow beams (progressive miniaturisation of IT devices).

Type Il scenarios (Helmholtz type of nonparaxiality).

* Propagation of optical solitons at an arbitrary angle (rotation, steering or
intrinsic).
* Simultaneous propagation of multiplexed soliton beams.

Scalar full Helmholtz theory (Kerr media)
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Bright soliton solution

The general bright soliton solution is given by the expression

3 n(€ + V() |14 2602 ¢ e
u(&,¢) = nsech [\/1 — 2/1‘/2] exp 2\/1 R (—Vf + %> exp [—z%]

In the multiple limit & — 0, KV? — 0, k0> — 0, we recover the NLS
fundamental soliton

u(§,¢) = nsech [n(§ + V()] exp [—in + i%(?f = VQ)C]

The general V' # 0 solutions can be obtained by transforming the V' = 0
soliton.
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Rotational invariance

The previous transformation can be decomposed in three steps:

x The nonparaxial solution is written in the original (unscaled) frame of
reference.

x We introduce a rotation of angle 6, where tanf = v/2xV .

* The solution is transformed back to the scaled units.

The previous transformation is then written, in terms of 6, as

[ 3 ] _ cos 6 ﬁsin@ [ ¢ ]
q — 2k sin 6 cos 6 ¢ |

The additional phase term is introduced due to the phase reference used to
obtain the normalised equation.
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Properties of fundamental bright solitons

Paraxial soliton Helmholtz soliton
Soliton area A = &{on = 1 Soliton area A = &gn = V1 + 2kV 2
e Conserved during propagation. | e Conserved during propagation.
e Independent of V o V dependent (/1 + 2xV2 = 1/ cos(h)).
Soliton wave-vector Soliton wave-vector
_ 1 (2 2 _ 14+2k12 1 1+2km?
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Fundamental bright solitons
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Dark soliton solution
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Dark soliton solution

A general dark solution of the defocusing NNLS is found to be
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(1 + 26W2)/2 1+ 26V

transverse velocity involving V' (choice of reference) and Vy (intrinsic grey
soliton velocity), given by
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Dark solitons

F and A are real constants, where [’ = £(1 — A?).

*x ' = 0: black solitons.
* |F| > 0: grey solitons.

In the paraxial limit, the NLS dark soliton is obtained:

where © = ugA [£ + (V — Fug)(].
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Properties of dark solitons

Paraxial dark solitons exist for arbitrary values of background intensity, whereas
Helmholtz dark solitons exist only for 4kué < 1 (2ne2E? < ng).

Paraxial grey solitons exist for any nonzero |F| < 1, while Helmholtz grey
solitons exist only for 0 < |F| < |F|maz = (1 — 4kud)*/2/(2ku2)/? where
by = £m/2 for |F| = |F|maz-

The beam enlargement factor is 1/v/1 + 2cW?2 = sec(6 — 0y), where 0y =
sec L /1 + 26V72 and 0 = sec™1 V1 + 26V 2.
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Properties of dark solitons
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Initial condition u(&,0) = sech(§) exp(—iSp€)

Exact paraxial soliton with V' = 5.

When we observe the soliton propagation in the 6 direction, the initial condition
presents a perturbation of the soliton width of a factor v/1 + 2xV2. The
asymptotic evolution can be described using IST techniques.

When xn? << 1

g v 1—|—2/<;772N V __sinf6
0~ 1+26V2 " 1T+26V2 25

the value of V' is fixed by the initial condition and the asymptotic value of
soliton area is secl = /1 + 2x V2
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Numerical results - dark solitons

Helmholtz solitons

Initial condition u(&,0) = ug tanh(upé) exp(—iSoé)
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Spontaneous generation of multiple dark solitons

e The initial condition wu(£,0) =
ug tanh (uga&), 0 < a < 1, is used.

e The generation of 2Ny + 1 paraxial
solitons is expected during evolution
governed by the NLS, where N
is the largest integer that satisfies
Ny < 1/61,

e The figure shows the paraxial (a) and
Helmholtz (b) results for a = 0.26
and Upg = 5.
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Spontaneous generation of multiple dark solitons

\ \ \ \ \ \ \ \ \
1.08 N
1.06 F -
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A (UF% Non-paraxial
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1.02 - -
1 * % A e
0.98 x x x x x x x x

Normalised transverse velocities of simulated grey solitons (symbols) and the
corresponding analytical predictions (curves).
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Numerical results: conclusions

Helmholtz solitons are robust solutions that act as attractors of the nonlinear
dynamics:

* Perturbed bright and dark solitons evolve asymptotically to exact Helmholtz

solitons.
* The spontaneously generated Helmholtz solitons fit the exact solutions

presented.
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(Helmholtz type of nonparaxiality)
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Considering two beams w1 (&, () and us(&, () propagating at angles 6 and —6
to the (-axis and setting u(&, () = u1(&, () + u2(&, ¢) in the NNLS.

The simultaneous presence of the beams modulates the refractive index of the
Kerr medium according to |u|? = |u1|? + |ua|? + uiu3 + usu? leading to three
distinct effects:

* |uj]2uj (SPM)

* 2|u3_j\2uj (XPM)

2, % i
* usu3_; (Phase sensitive terms).
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Helmholtz soliton collisions: geometry

Geometry of Helmholtz soliton collisions in which interactions are dominated by
the individual beam intensities. Top panel: copropagating solitons; bottom
panel: counterpropagating solitons
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Helmholtz soliton collisions: numerical results
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Intensity profiles of two interacting solitons with equal amplitudes. Left panel: two

co-propagating solitons; right panel: two counterpropagating solitons.
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Helmholtz soliton collisions: numerical results
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Magnitude of the trajectory phase shift as a function of the interaction angle 6 for both
copropagation and counterpropagation configurations (k = 10_3).
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Helmholtz soliton collisions: numerical results

Small amount of radiation is found in the numerical simulations of soliton
collisions.

Small reshaping effect is found after collisions.
Failure to obtain multisoliton solutions.
Non-integrability of the NHE.

Helmholtz solitons are robust modes (individually and during interactions).



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.

Kerr soliton theory generalised to non-vanishing propagation angles.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:

* Nonparaxial numerical beam propagation techniques.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:

* Nonparaxial numerical beam propagation techniques.
* Robustness of soliton solutions.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:

* Nonparaxial numerical beam propagation techniques.
* Robustness of soliton solutions.

Soliton collisions at arbitrary angles.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:

* Nonparaxial numerical beam propagation techniques.
* Robustness of soliton solutions.

Soliton collisions at arbitrary angles.

Usefulness of the exact solutions to describe nonlinear beam propagation.



Conclusions & directions Helmholtz solitons

CONCLUSIONS

Helmholtz type of nonparaxiality.
Kerr soliton theory generalised to non-vanishing propagation angles.

Exact bright and dark soliton solutions:

* Nonparaxial numerical beam propagation techniques.
* Robustness of soliton solutions.

Soliton collisions at arbitrary angles.

Usefulness of the exact solutions to describe nonlinear beam propagation.



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.

Helmholtz-Manakov soliton families: solutions, properties and interactions.



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.
Helmholtz-Manakov soliton families: solutions, properties and interactions.

Higher dimensional Helmholtz modes (stripes,rings, vortices, etc.).



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.
Helmholtz-Manakov soliton families: solutions, properties and interactions.
Higher dimensional Helmholtz modes (stripes,rings, vortices, etc.).

Helmholtz solitons in alternative media.



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.

Helmholtz-Manakov soliton families: solutions, properties and interactions.
Higher dimensional Helmholtz modes (stripes,rings, vortices, etc.).
Helmholtz solitons in alternative media.

Medium inhomogeneities: interfaces and devices.



Conclusions & directions Helmholtz solitons

CURRENT AND FUTURE WORK

Interaction of Helmholtz dark solitons.

Helmholtz-Manakov soliton families: solutions, properties and interactions.
Higher dimensional Helmholtz modes (stripes,rings, vortices, etc.).
Helmholtz solitons in alternative media.

Medium inhomogeneities: interfaces and devices.



