mholtz-Manakov Solitons

James M Christian
Graham S McDonald

Joule Physics Laboratory, Institute of Materials Research,
School of Computing, Science and Engineering,
= University of Salford, Salford M5 4WT, U.K.

}S

and

Pedro Chamorro-Posada
Departmento de Teoria de la Serial y Comunicaciones e Ingenieria Telematica,
Universidad de Valladolid, ETSI Telecomunicacion,
Campus Miguel Delibes s/n, 47011 Valladolid, Spain.



lalk Outling

Non-paraxial optical beams
Non-Linear Helmholtz equations
Advantages of NLH-type models
Helmholtz-type of non-paraxiality
Angular limitations of paraxial models
New vector solitons

Solitons as robust attractors

Conclusions and closing remarks



Non-Paraxial Optical Beams

© Working definition:

“Non-paraxiality” refers to any optical beam

that cannot be adequately described by the
paraxial approximation.

® 3 regimes to consider:

Ultra-narrow beams, X
Intense self-focusing, X
Oblique propagation. \/



Non-Linear Helmholtz Equations

© Do not invoke the slowly-varying envelope approximation and
consider broad beams ...

NLH equation = drop «0,.= NLS equation ...

Helmholtz
term




o

Advantages of NLH-type Models

Rotationally-invariant model — respects inherent (x,z) symmetry
of the uniform medium

x and z are PHYSICALLY EQUIVALENT

Describes accurately waves propagating at
ARBITRARILY LARGE PROPAGATION ANGLES
w.r.t. the z axis

Can describe multiple beams interacting at arbitrary angles
Supports non-linear standing-wave solutions

Offers well-defined connection between transverse velocities in
(f N4 ) and propagation angles 1n the (x,z) laboratory frame



nelmholtz- [ype Non-Paraxiality

© Invariance laws of the NLH and H-M equations show that ...

4 Z
e
z’ 10| | , tan @ = 2xV
: X
|
I
0 Helmholtz (angular) correction can

assume any positive value!

— Defines
“Helmholtz-type non-paraxial beams”

Paraxiality: @ << 1 (in radians) so x}?> 2 0



Angular Limitations of Paraxial Moaels

© NLS and Manakov equations accurate only for
VANISHINGLY SMALL PROPAGATION ANGLES

(arrows denote propagation directions)

Helmholtz =z | z

(retain x0 ) Paraxial
; (drop x0,,)
0 "
NLH and H-M NLS and Manakov

REQUIRES THE RESTORATION OF (x-z7) SYMMETRY

> X



dolitons of the H-M Equation

® H-M equation admits four new exact analytical soliton solutions ..

2 solutions in a focusing medium ...

BRIGHT-BRIGHT SOLITON

- E+VE .1+2K772(_ i) (_.QJ
U(é,g)_cnseCh[ \/1+2KV2] p{l\/1+2KV2 V§+2K }exp lzK

C{cosw)exp(m)}

sin (& )exp(idp)

@ Generalization of the Manakov and NLH scalar bright solitons

More exof) S also exist...



dolitons of the H-M Equation
A(g,g):nsech[a \/%)exp{i,/::jzzz (—V§+2ij]exp(—izi)

_ E+V¢ R i 4 5
B(g,g)mtanh[amjexp{l\/ 1122 (—V§+§j exp(—lgj

B tends to weaken the overall guiding effect
(e.g. anti-guiding soliton)

Bright-L M Soliton



dolitons of the H-M Equation

2 solutions in a defocusing medium ...

o
A(&.¢) = A{cosqﬁtanh[a \/%]H’Sind GXP[iM(—VSZJFZij] exp(—i%)

B(g,g’):\/Aozcos2¢—azsech[a Sl jexp[i\/przx(a _2A0)(—W§+§j}xp(—ijj
K

N1+ 26 W2 142k W? 2K
A Vo atan ¢
= -
I+2xVV \/1—21('(2/102 +a° tan’ ¢)

B tends to weaken the overall guiding effect
(e.g. anti-guiding soliton)

Dark-Br M Soliton



dolitons of the H-M Equation

w " 1-dxy”
A(ega():A{COS%taﬂh(a\/i:rz—ljl/z)ﬂsm@}exp[z 1+2Z£12 (—Vlgg+2ij]exp(—i2ij
w . - 1-dxy’
B(§,§)=B{cos¢2 tanh(a\/f:z—’(fyzlﬂsmgbz}exp[z 1+2Z£22 (—V2§+2€(j:|exp£—i2€(]
125A§+B§

A cos® ¢ + B cos’ ¢, =a’

_ V-V v, = atang;
I+2xVV ! \/1—2K(2;{2+a2tan2¢j)

Dark-Dar' <-M Soliton




Features of the New dolitons

Angular beam broadening present in all solutions, e.g. 6 = 48.2°,

Bright-Bright Bright-Dark
1 il 1
— |AG,0)| :
— |AE,0)|
0.8 — B&OI] | 038 — BEO) |
0.6 0.6
0.4 0.4
0.2 0.2
95 i — 10 B o 0 5T 10
& g

Dark-Dark

— AGO)| |
— [BE0)|
0.2} {




Features of the New dolitons

© Non-trivial corrections to the soliton velocities ...

Maximum value of the “greyness” parameter Grey (VO)

byt 1(1_2,(/102) Plane (V)
nax — tall 2 >

2Ka

when the grey component propagates at 6, =90°
(w.r.t. the plane background) and 7, — o.

For Manakov solitons, V, = atan ¢
NO PHYSICAL LIMITS

® For dark-bright and dark-dark solitons, propagation is in the
net direction 6 — 6, assigned a net velocity W, where

1 vV
leads to W= 0

N aa)? 1+ 2xVV,

cos(0—6,)=




Features of the New dolitons

© For dark-bright soliton, propagating solutions only exist when

else the beam 1s evanescent 1n ¢

- plane background has a maximum allowable intensity

® Physical interpretations:

(1) non-linear phase shift < linear phase shift
(2) refractive-index must remain positive
(implicit 1n paraxial models)

Helmholtz solitons have an explicit maximum

refractive-index change!




Recovery of the Manakov dolitons

© Manakov solitons must be recovered
in the limit that the system behaves paraxially!

© Recovery by enforcing the simultaneous triple limit:

Not too narrow —>0
. . 2
Not too intense KX (amphtude) —>0

. . 2
Propagation angle | # x (V@lOClty) S50
not too large

@ Helmbholtz operator contributes to:
- Propagation of ultra-narrow optical beams
- Intense self-focusing (rapid phase variations)
- Oblique-propagation effects

**%* NLH-type DESCRIPTION ESSENTIAL FOR
ANGUILAR REGIMES *%%*




Solitons as Robust Attractors

Initial-Value
problem

Choose exact Manakov e.g. dark-bright,
solitons ... A(&,0) = tanh (a& ) exp(=iS,£),

l B(£,0) =1-a’sech (a&)exp(—iS,¢)

Rotational symmetry identifies
a relationship 6 = f(S,)
S,=5,10, 15
=2 0=12.9°,26.6°,42.1°,

l

Beam in rotated frame = perturbed on-axis Manakov soliton

with width decreased by v1+2«V”

1

OBSERVE BEAM RESHAPING OSCILLATIONS.
DOES A HELMHOLTZ SOLITON EMERGE
ASYMPTOTICALLY?




Overview of dolitons as Rooust Attractors

© Initial conditions undergo oscillations in their amplitudes ...

0.62 - . 0.98+

£0.58 E
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z Zo.97.
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conclusions

New vector model has been introduced to describe the propagation
and interaction of multi-component waves at arbitrarily large
angles

Four new families of exact analytical Helmholtz soliton solution
have been derived (Hirota’s method)

New physical properties 1dentified

Numerical investigations show that H-M solitons are generally
robust structures with wide “basins of attraction”



CLOSING REMARKS

It is not necessary to treat the Helmholtz
operator o, as a perturbative term ...

... exact analytical solutions to NLH model
equations can often be found

For example ...



HELMHOL1TZ SOLITON MAP

H-M Equation:
T+ N = iodi i ' Cubic-Quintic Media
Cnoidal Waves [* (H * N)U(é:’ {) =0, ’ (A Plertl.()déc Vz/‘avest‘ ) KlAnk ’Slgtlliz(;)ns e _?r 2 4
U(§,§)=[A(§,{),B(§,é’)] nalytic Continuation (Amplitude) —_|u| +7|u|
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External Perturbations
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Other Soliton
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Overview of Helmholtz Soliton Theory as of May 2005.
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