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For years, soliton evolution at nonlinear interfaces has been studied in terms of the nonlinear Schrödinger equation
(NLS) [1], whose validity is restricted to paraxial propagation. Recently, the development of a new nonparaxial theory
has presented a lucid generalisation of the existing theory [2] by considering the full nonlinear Helmholtz equation
(NHE) allowing the study of soliton interaction at nonlinear interfaces for arbitrary angles of incidence.

A generalized NHE is employed to describe the evolution of Helmholtz solitons at the interface separating two
Kerr-type media
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where κ = 1/(kw0)2 is a nonparaxial parameter, H(ξ) is the Heaviside function and u accounts for the complex
envolope of a CW optical field in scaled units [2]. The relation between the linear and nonlinear parts of the
refractive indexes at both sides of the interface is included trought ∆ = (n2

1 − n2
2)/n2

1 and α = α1/α2 respectively.
A general solution to (1) has been proposed and studied numerically showing that when only linear mismatching in
the refractive index is considered, Helmoltz solitons behave according to a Snell law for solitons.

In this work, we focus on analyzing the soliton behavior when the linear part of the refractive index is continuous
across the interface, ∆ = 0. In that case, the solution to (1) in the second medium reads
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where η′ = ηα−1/2. From (2), the soliton preserves the velocity and modifies both the width (depending on α−1/2) and
the energy flow asociated, 2η

√
1/α−1 + 2κη2. Therefore, when a soliton enters a medium with a weaker nonlinearity,

α−1 < 1, the resulting beam broadens without limit since the power of the incident soliton is not high enough to
create a soliton in the second medium (a). On the other hand, when α−1 > 1, the exceeding power asociated with
the incident soliton causes the soliton to break up into a series of narrower solitons (b). A great amount of numerical
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work is under way to complete the characterization of the pattern formed in the second medium. However two
important differences can be established with respect to the paraxial limit when α−1 > 1. While in the paraxial
limit, κη2 → 0, the number of solitons grows depending on the strength of α−1/2, the nonparaxial framework becomes
more restrictive in the number of solitons formed as κη2 and 1/α−1 can be of the same order of magnitude. Moreover
from the numerical integration of (1) the multi-soliton pattern created depends not only on α−1 as the paraxial
theory states, but also depends on the angle of incidence.
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