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The generalized Non-Linear Helmholtz (gNLH) equation can be used to model broad spatial beams propagating at arbitrarily large
angles, relative to the reference direction, in planar-waveguide geometry. The physical equivalence of transverse and longitudinal
dimensions Is preserved, and new effects are predicted which have no counterpart in paraxial theory. Exact analytical soliton solutions
and conserved quantities of the gNLH equation are presented. Well-tested numerical perturbative techniques examine the role of the
new solitons as robust attractors in the system dynamics.

osNLH Equation & Soliton Solutions

Recovery of Paraxial Solutions

The propagation of spatial beams in planar waveguides is routinely described by models based on the Non- Known solutions of the paraxial model [5] corresponding to the gNLH equation can be recovered from the full
Linear Schrédinger (NLS) equation. Such equations are constrained by the paraxial approximation, making Helmholtz solutions when an appropriate multiple limit is enforced: 1
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Solitons as Robust Attractors

This solution represents a spatial beam propagating at a non-trivial angled = tan™ (/247" | with respect to the
reference direction. \ |

The Helmholtz correction factor 2x72? can be arbitrarily large, even for broad
beams. This regime defines a Helmholtz-type of non-paraxiality.

The numerical perturbative approach involves using initial conditions that correspond to exact solutions of the
paraxial equation with transverse velocity S,. For quasi-paraxial beams (where the first two conditions in the
paraxial limit are met), rotational symmetry establishes a connection between I and 5,. Examination of the
beam along its propagation axis shows that the evolution is equivalent to that of an on-axis paraxial soliton
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The figures below depict beam self-reshaping situations. Depending upon the parameters involved (5,, #, ¢)a

propagation-invariant (stationary) soliton may emerge asymptotically from the initial condition. The
corresponding Helmholtz soliton is then classified as a stable fixed point. Alternatively, the oscillations may
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Conclusions

The integral representation of the invariants is vital for monitoring the integrity of any numerical scheme used

to solve the gNLH equation [6].
« The gNLH equation possesses exact analytical soliton solutions. Two distinct solution families exhibit

strong (exponential) weak (power-law) localization of the beam energy.

Helmholtz Algebraic Solitons

« JNLH solitons are of intrinsic mathematical interest. They represent a novel contribution to the knowledge
of soliton dynamics in fully 2"%-order non-integrable models. New algebraic solitons have been derived.

A weakly-localized non-linear wave of the gNLH equation is the algebraic soliton. This solution has much « Experimentally, the gNLH equation pertains directly to known materials, such as some semiconductor-
slower power-law (e.g. Lorentzian) asymptotics as opposed to the strongly-localized sech-type (e.g. doped glasses [2] and non-linear polymers [3,4]. This is an appropriate model for describing oblique
exponential) solutions. The algebraic soliton is supported only in the Type-l competing regime where, in the propagation of spatial optical beams in these media.

limit =0, there remains a non-zero energy-flow, W (;=>0) = 0.

: « gNLH solitons have been to shown to behave predominantly as limit cycle attractors of the system

& T dynamics. In some cases, they can act as stable fixed points, but this behaviour is highly dependent on
,- 7 : & ; AT s L@ both material parameters and the inverse beam width 1.
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