
Gauss’s Law 
 
The electric field and field lines 
 
Electric field lines provide a convenient way of visualising the electric field. 
 
The field lines are drawn according to the following rules: 
 
1. The field lines point in the same direction as the electric field at every point in 

space. Therefore the electric field at a point is always at a tangent to the field 
lines at that point. 

 
2. Field lines always start on the positive charge and end on the negative charge. 
 
3. The strength of the field is represented by the density of the lines. The number 

of lines, in 3 dimensions, leaving a positive charge or approaching a negative 
charge is proportional to the magnitude of the charge. 

 
4. No two lines touch or cross. 
 
 

 

 
Electric Flux 
 
Definition of flux: The flux of any vector quantity through an area is the product of 

the area and the component of the vector at right angles to the 
area. 

 
For an electric field, the flux φ is measured by the number of lines of force that pass 
through a hypothetical surface. 
 
 
 
 
 



 
 

 
For a flat surface in a uniform electric field E the electric flux is: 
 
   φ = EAcos θ 
 
where:  φ is the flux through the surface A 
  A is the surface area 
  θ is the angle between the surface vector and the field vector 
 
This can be generalised for any surface by: 
 
   Φ = ∫E A.
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If a closed surface (such as a sphere or cube etc.) encloses no net charge then its total 
flux is zero. 
 
The total flux through a surface enclosing a net charge is proportional to the value of 
the charge. 
 
 
Gaussian surfaces 
 
A Gaussian surface is an imaginary surface drawn so as to be able to use Gauss’s law. 
 
dA represents a small area of the surface and is known as the surface vector. The 
vectors magnitude is the small surface area; its direction is represented as being 
normal to the surface and away from the volume. 
 
The surface must surround some or all of the charge and must go through the point 
where the electric field is to be calculated. 
 
The surface is chosen to represent the symmetry of the system. 
 
Gauss’s Law 
 
The total electric flux of a closed surface in an electric field is 4π times the electric 
charge within that surface. 
 
or 
 
The total electric flux through a closed surface is proportional to the charge enclosed 
by that surface. 
 
   φ = qn/ε0 
 
   qn = ε 0 E. Ad∫  
 
where:  qn is the net charge enclosed by the surface 
  E.dA is the flux through a small surface element 
  E. Ad∫ is the total flux through a closed surface 
 



This integral can be difficult to solve unless the surface chosen exploits the symmetry 
of a system which can the simplify the solution. 
 

 
Application to a point charge (zero dimension) 
 
 
It is required to calculate the electric field at a point P due to a single point charge. 
 

 
 
First choose a closed gaussian surface which encloses the charge and passes through 
the point P. 
 
To illustrate the difficulties which can be encountered if  we do not follow the general 
rule of selecting a surface to mirror the symmetry of the system, we will first choose a 
cube as the Gaussian surface. 
 



 
 
It can be seen that the integral will be extremely difficult to perform as the flux lines 
pass through the surfaces at varying angles i.e. the angle between the surface vector 
and the electric field E changes. 
 
By looking at the symmetry of the system we can select a sphere as the Gaussian 
surface. The electric field vectors are now always parallel to the surface vectors and 
therefore the electric field has the same magnitude over the complete surface. 
 
   qn = ε 0 E. Ad∫  
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Uniform line of charge (1 dimension) 



 
We can calculate the electric field created by an infinitely long line of charge, at any 
point in space, by using a cylindrical Gaussian surface. 
 
 

 
The net charge enclosed by the surface = λL 
 
The electric field lines are parallel to the surface vectors of the round surface of the 
cylinder and perpendicular to the surface vectors of the top and bottom. 
 
Perform the integration for each surface: 
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This can be rearranged to give the magnitude of the electric field: 
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The electric field from an infinitely long line of charge falls as 1/r. 
 
A uniform sheet of charge (2 dimension) 
 



For a uniform sheet of charge with a charge density of σ (charge per unit area) it is 
useful to be able to calculate the field E at any distance r from the sheet. 
 

 
 
A convenient Gaussian surface is a cylinder of cross section A and length 2r. This 
pierces the plane so that its length is perpendicular to it.  
 
E points perpendicularly away from the plane in both directions and is therefore 
parallel to the end cap surface vectors. E is always perpendicular to the curved side of 
the cylinder and therefore, as previously seen,  can be ignored. 
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Substituting the charge density into this equation gives: 
 

  E =
2
σ
ε 0

 

 
Therefore E is the same magnitude for all points on each side of the plain. 
 
 
 
 
 
 
 
 
Spherical symmetric charge distribution (3 dimension) 
 



For a spherical charge distribution of radius R, the charge density ρ (charge per unit 
volume) at any point depends only on the distance of the point from the centre and not 
on the direction - this is called spherical symmetry. There are 2 cases to be 
considered: 
 
1. To find E for points outside the charge sphere, we assign a Gaussian spherical 

surface of radius r where r > R. Applying Gauss’s law: 
  q = ε 0 E. Ad∫  

 
  q = ε π0 4 2E r  
 

  E = 1
4

q
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  q is the total charge 

 
This is the same result as obtained for a point charge. Therefore it can be said that for 
points outside a spherical symmetric distribution of charge, the electric field has a 
value that it would have if the charge were concentrated at its centre. 
 
2. To find E for points inside the charge sphere, we assign a Gaussian spherical 

surface of radius r where r < R.  
  q* = ε 0 E. Ad∫  

 
  q* = ε π0 4 2E r  
 

  E = 1
4
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  where q* is the part of q contained within  

     the sphere of radius r 
 
If the charge is uniformly distributed and ρ would then have a constant value for all 
points within the sphere of radius R, and is zero outside of the sphere. 
 
For points inside the sphere, then 
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Then the expression for E becomes: 
 

   E = 1
4

qr
R 3πε 0

 

Relationship between distance r and dimensionality 
 



 An electric field’s dependance on distance r depends on the dimensionality of the 
charge distribution that creates it. 
 
0-dimension: the electric field for point charge falls as 1/r2 
 
1-dimension: the electric field for a line of charge falls as 1/r 
 
2-dimension: the electric field for  plane of charge is constant everywhere in space 
 
3-dimension: the electric field for a spherical distribution of charge rises with r 
 
 
From the above it can be seen that: 
 
  THE ELECTRIC FIELD CHANGES AS rD-2 
 
Where D is the dimensionality of the charge distribution. 
 

 


