
DIELECTRICS 
 
Dielectrics and the parallel plate capacitor 
 
When a dielectric is placed between the plates of a capacitor q is larger for the same value 
of voltage. From the relation C = q/V it can be seen that the capacitance must also 
increase.  
 
The ratio of the capacitance of the capacitor with the dielectric to the capacitance of the 
capacitor without the dielectric is called the dielectric constant κ of the material.  
 
If the same charge is maintained on the capacitor with and without the dielectric then the 
potential difference between the plates of the capacitor with the dielectric, Vd will be less 
than that without the dielectric V0 by a factor of 1/κ. 
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Where A is the plate area and d is the plate separation. 
 

Therefore:  C = A
d
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Dielectric materials - a description 
 
Dielectrics can be of two types, those which possess permanent dipole moments such as 
water and those which obtain an induced dipole. 
 
When an electric field is applied to these materials the dipoles tend to align themselves to 
the field - this is not a perfect alignment due to thermal effects. The alignment is improved 
by either increasing the field or by decreasing the temperature. The alignment is due to the 
electric dipole moment p which is proportional to the electric field. 
 

 



 
To illustrate the dipole effects taking place within a slab of dielectric, we can take a 
charged parallel plate capacitor (battery disconnected) which has a fixed charge q and 
provides a uniform electric field E0.  
 
When the dielectric is placed between the plates then the dipoles align with the electric 
field and the centre of positive charge separates from the centre of negative charge i.e. the 
dielectric becomes polarised while remaining electrically neutral. This separation of charge 
is on the atomic scale and it should be noted that the charge does not move as it would if 
the slab were made from a conductor - no charge movement over macroscopic distances. 
 
The effect of this charge separation is the introduction of a electric field E’ which opposes 
the external field E0, the resultant field E is therefore the vector sum of these two fields: 
 
  E = E’ + E0 
 
which is smaller than the original field. 
 
From the equation for a parallel plate resistor (V = Ed) it can be seen that the field is 
directly proportional to the potential difference and therefore the reduction in the overall 
field results in a reduction in the potential difference between the plates, and: 
 
  E0/E = V0/Vd = κ 
 
If the battery is left connected during the introduction of the dielectric, then the above 
equation does not hold. The potential difference now remains constant but the charge q on 
the plates increases by a factor of κ. 
  
 
The use of Gauss’s law for capacitors with a dielectric 
 

 
 



If no dielectric is present then Gauss’s law gives: 
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With the dielectric present then Gauss’s law gives: 
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Using E = E0/κ and substituting in D1 we get: 
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By combining this equation with D2 we find: 
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q’ the surface induced charge, is shown to be always less than the magnitude of the free 
charge and is equal to zero when there is no dielectric i.e. κ = 1. 
 
Returning to the integral for the case with a dielectric it can be shown that: 
 
  ε κ0  E.dA =∫ q  
 
This equation generally holds for all capacitors and is used when a dielectric is present. 
 
 



Energy within a capacitor 
 
Work must be done to separate two equal and opposite charges and this energy can be 
stored in the system i.e. on the capacitor plates. The energy can be recovered if the charges 
are allowed to come back together. If a capacitor is initially uncharged, then the work W 
done to charge the capacitor is equal to the electric potential energy U stored by the 
charged capacitor. This can be visualised as pulling electrons from one plate and 
depositing them onto the other plate. 
 
If at time t a charge q’ has been transferred from one plate to the other plate of a capacitor, 
then the potential difference V will be equal to q’/C. If now, an extra small amount of 
charge dq’ is transferred, then the extra work needed to do this will be equal to: 
 
  dW  =  Vdq’ = (q’/C)dq’ 
 
If this process is continued until the total charge is q, then the total work done will be: 
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Substituting for q using the standard relation, q = CV we obtain: 
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The energy stored in a capacitor is said to reside in the electric field. 
 
In a parallel plate capacitor, if we neglect fringing at the edges, then the electric field has 
the same value for all points between the plates. Therefore the energy stored per unit 
volume (the energy density) is uniform and is given by: 
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where A is the area of the plates and d is the plate separation: Ad is therefore the volume 
 
If we remember that the capacitance C for a parallel plate capacitor is: 
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Now the electric field E = V/d so: 
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This equation was derived for the parallel plate capacitor but it also holds true for all 
capacitors. 
 
In general, if we have an electric filed E at any point in space, we can think that at that 

point there is a site of stored energy of magnitude u E=
1
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0
2κε  per unit volume. 


