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DIRECT CURRENTS 
 

Introduction 
 
Current: Rate of charge flow,  I = dq/dt Units: amps 
 
Potential and potential difference: work done to move unit +ve charge from point A 

to point B.    
     Potential=Work/unit charge,  
     Units: volts 
 
Electric field:  Force which acts on a unit +ve charge at a particular point. 
 
   Force = field x charge 
   F = Eq  E = F/q 
 
 Since work = force x distance = F x L 
 
 potential = work/charge = (force x distance)/charge = field x distance = EL 
 
 
Drude theory of metals - Free electron model 
 
In metals the valence electrons are no longer associated with a single atom but are free to 
move under the influence of external forces. The metal is therefore considered to be a 
container of free electrons. 
 
Electrical Current 
 
   i = dq/dt 
 
Units of current: Ampere  =  Coulomb/second 
 
The direction of the current is always defined as the direction that positive charges 
move. For electrical current this will be in the opposite direction to the electron flow. 
 
Current density 
 
Uniform current   J = i/A   Units: Am-2 
 
The direction of  J is defined as the direction of the net flow of positive charges at the 
particular element.  
  
In the general case where the current is not uniform: 
 
   di = J.dA = J dA cos Θ Θ is the angle made between J 
       and dA 
 



The total current passing through the total area A is therefore the sum of the 
differential elements: 
   I = ∫ J.dA  

 
For a number of electrons each with charge q, the number in a unit volume is the 
number density nq. If the electrons have a velocity v then in time ∆t then the total 
charge passing through an area A will be ∆Q. This is the amount of charge which is 
contained in the volume A(v∆t). Therefore the amount of charge will be: 
 
   ∆Q = (nqq)(Av∆t) 
 
The current is then given by the charge passing through the area in unit time: 
 
   I = ∆Q/∆t = nqqAv 
 
As the current density J is I/A then: 
 
   J = nqqv 
 
Resistance and Ohms Law 
 
Resistance is defined as a measure of the ease of current flow, and is the ratio of the 
potential difference to the current - Ohm’s law. 
 
   R = V/I 
 
Resistivity 
 
When looking at electrical current we can say that: 
 
 the resistance of a wire is proportional to the length L 
and 
 the resistance of a wire is inversely proportional to its cross sectional area A 
 
  R α L/A 
 
  R = ρL/A  Where ρ is the resistivity, units Ohm-meters 
 
Thus resistivity is a characteristic of the material and not on the dimensions of the 
material. Resistivity is temperature dependant and this can be complicated, but for 
most metals the relationship between temperature and resistivity is given by: 
 
  ρ(t) = ρ*[1 + α(t - t*)] 
 
 where:  ρ* is the resistivity at a reference temperaure t* 
   α is the temperature coefficient of resistivity 
   ρ(t) is the resistivity at temperature t 
 



The reciprical of resistivity is conductivity σ 
 
  σ = 1/ρ 
 
Ohms law can now be written in terms of resistivity or conductivity: 
 
  V = IR = IρL/A = ρL I/A 
 
  V/L = ρ I/A 
 
V/L is the magnitude of the electric field E, and I/A is the magnitude of the current 
density J; therefore: 
 
  E = ρJ 
 
Electric power - Energy transfer 
 
When charges move along a conductor the potential energy of the charge decreases. If 
a potential difference of V volts is applied across a conductor, then the work done to 
maintain the flow of a charge q  will be: 
 
  W = qV 
 
Power is defined as the rate at which work is done i.e. P = dW/dt, so we can write: 
  P = Vdq/dt 
 
Now dq/dt is the current I, so: 
 
  P = Vi = i2R = V2/R Watts 
 
Electomotive force 
 
The emf is the potential difference produced by a device when no current is drawn 
from it. Examples of these devices are: 
 
 Battery:  emf produced by chemical reactions 
 Solar cells:  emf produced by light energy 
 Thermocouples: emf produced by thermal energy 
 Generator  emf produced by work 
 



DIRECT CURRENT CIRCUITS 
 
Resistors in Series  
 
  R = R1 +  R2 + R3 +  R4 
 
Resistors in parallel 
 
  1/R = 1/R1 + 1/R2 + 1/R3  
 
Compound resistor circuits 
 
The rules used to calculate series and parallel equivalent resistances can be used 
repeatedly to find the equivalent resistance of circuits containing both series and 
parallel elements. 
 
If a resistor R1 is in series with a parallel combination of two resistors R2 and R3 then 
the equivalent resistance with be: 
 
  1/RP = 1/R2 + 1/R3 
  RP = R2R3/(R2+ R3) 
  RE = R1 + RP 
  RE = R1 + R2R3/(R2+ R3) 
 
Simple DC circuits 
 
General rules 
 
In a series circuit it is the current which remains constant through each element of the 
circuit. 
 
In a parallel circuit it is the voltage which remains constant through each arm of the 
circuit. 
 
 
Divider circuits 
 
A circuit which is particularly useful involves the division of a voltage between two 
resistors connected in series. 
 
If we have a voltage V applied across two series resistors R1 and R2 then the voltage 
drop V1 across R1 is: 
 
  V1/V = R1/(R1 + R2) 
 



KIRCHOFF’S LAWS 
 
Definitions  
 
• Loops: All circuits can be divided into a number of closed loops 
• Nodes: A node is any point where 3 or more conductors come together# 
• Branch: A path between two nodes which does not contain any other node. 
 
1st law - The node rule 
 
The total current flowing towards a node is equal to the total current flowing away 
from the node i.e. the algebraic sum of the currents flowing towards a node is zero. 
The current is said to be positive if it flows into a node and negative if it flows away 
from a node. 
 
A general rule: the number of independent equations obtained by applying the node 
rule is one less than the number of nodes in the circuit. 
 
2nd Law - The loop rule 
 
The algabraic sum of the emf’s in any closed loop is equal to the algabraic sum of the 
potential drops. This rule is states that the algabraic sum of the potential differences 
across all the circuit elements in a loop is zero. 
 
A general rule: the number of independent equations obtained by applying the loop 
rule is one less than the total number of loops in the circuit. 
 
Thevenin’s theorem 
 
Thevenin’s theorem states: The current through a resistor R connected across any 
two points A and B of an active network (i.e. a network containing one or more 
sources or emf) is obtained by dividing the potential difference between A and B (with 
R disconnected) by R+r, where r is the resistance of the network measured between A 
and B with R disconnected and the sources of emf replaced by their values of internal 
resistance. 
 
ELECTRICAL MEASUREMENT 
 
The indicating analogue measuring device contains three essential features: 
 
a) A deflecting device: a mechanical force is produced by the current, voltage 

or power. 
b) A controlling device: the value of the deflection is dependent on the  
    magnitude of the quantity being measured. 
c) A damping device: to prevent oscillation of the moving system and allow it 
    to reach its final value quickly. 
 
 
 



POTENTIOMETER 
 
Measures potential difference, current and resistance. 
 
Measuring potential difference 
 
The principle action is that an unknown potential difference is measured by balancing 
it against a known potential difference. The slider is moved along a uniform wire 
(connected across a known potential difference) until the deflection in the 
galvanometer is zero.  
 
 
  Vu/V0 = R1/(R1+ R2) 
 
 or if the wire is uniform then the resistance is proportional to the length, and so: 
 
  Vu/V0 = L1/(L1+ L2) 
 
WHEATSTONE BRIDGE 
 
This is used to measure unknown resistance’s. 
 
 
   R2/Rx = R1/ R3  
 
GALVANOMETER/AMMETER/VOLTMETER 
 
The galvanometer measures small currents or by adding a resistor can be made to 
measure large currents or volts. 
 

 
 



ELECTROSTATICS 
 
ELECTRIC CHARGE 
 
"Like charges repel each other, unlike charges attract each other."  
 
Although charge is an intrinsic feature of every atom, and although we know how 
charges interact, the nature of charge is still a mystery and there is still no theory to 
explain the nature of charge. 
 
The net charge of a body is the algebraic sum of the individual charges. 
 
SI unit of charge is the COULOMB (C)  
Definition: The coulomb is defined in terms of the ampere. If 1 ampere of charge 
current flows in 1 second, then the total charge moved is 1 coulomb. 
 
Magnitude of charge q or e = 1,602 x 10-19 C 
 
Charge in matter 
 
In an atom, it is the electric forces which exist between the electrons and protons 
which hold the atom together. 
 
All electrons have the same charge and therefore in bodies the net charge is the 
integral multiple of this charge - charge is therefore said to be quantised. 
 
In a closed system the total charge is always conserved. Individual charges can be 
created or destroyed so long as the net change in charge is zero - conservation of 
charge. 
 
COULOMB'S LAW 
 
a)  the force F depended on how far apart the charged objects were and falls 

inversely as the square of the distance r:  F α 1/r2 
 
 b) the force depended on the amount of charge on each of the objects and is 

proportional to the product of the charges. F α q1q2 
 

  F q q
r
1 2

2=
1

4 0πε
  Coulomb’s Law 

 
Coulomb’s law only holds for charged objects whose sizes are much smaller than the 
distance between them i.e only point charges. 
 
If more than 2 charges are present then Coulomb’s law holds for each pair of charges 
and we can calculate the forces exerted on only one charge by using the vector 
equation: 
 
Force exerted on q1 = F1 = F12 + F13 + F14 + .............................. 



 
where F12  is the force exerted on q1 by q2 
 
ELECTRIC FIELD 
 
An electric charge creates an electric field in the space around it.  A second particle 
does not interact directly with the first, it responds to the field it encounters.  
 
The electric field E at the point is defined: 
 
  E = F/q0 
 
The direction of the electric field is the direction of the force. 
 
Units: N/C = volts/metre 
Using Coulomb’s law we can now evaluate the electric field due to a point charge. 
 
The electric field points away from a +ve charge and points towards a -ve charge. 
 
To find the resultant field E due to a number of point charges: first, calculate the field 
at the point of interest for each charge as if it were the only charge present; second, 
add these values vectorially to find the resultant field E at the point: 
 
  E1 = E1 + E2 + E3 + E4 +................. 
 
ELECTRIC POTENTIAL ENERGY 
 
when a charged particle is placed in an electric field then it must have an associated 
potential energy as the field does work to move the particle from one place to another. 
 
External work WAB must be done to overcome the electric force of q0E on the charge.  
 
  WAB = Fd = q0Ed = potential energy U 
 
The electrical potential difference between two points will therefore be: 
 
  VB - VA = WAB/q0  = Ed 
 
If this external force moves the charge a short distance dl along the path from A to B 
then an element of work will have been done equal to F.dl. To find the total work 
done we have to integrate along the path A to B: 
 
  W = d  =  - q dAB

A

B
0

A

B
F. l E. l∫ ∫  

 

  V - V = W
q

=  - dB A
AB

0 A

B
E. l∫  

 
If A is at infinity and VA is zero then the potential at point B can be found: 



 
  V =  - dB

B
E. l
∞∫  

 
These two equations allow the calculation of potential difference between two points 
or at a single point if the electric field is known. 
 
DIPOLES 
 
A dipole is normally considered as a combination of 2 equal point electric charges, of 
opposite signs, separated by a small distance. 
 
Dipole moment 
 
The dipole moment, measured in coulomb metres, is the product of either charge (or 
pole) and the distance between them. 
 
The field at point P due to a dipole is found to be: 

   E aq
r
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1
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  where r>>a 
 
The properties of the charge distribution i.e. the magnitude q and the separation 2a, 
are a product in the equation. This means that if we measure E at various distances 
from the dipole, we can never deduce q and 2a separately, but only as the product 2aq. 
If q was doubled and 2a was simultaneously halved, then E would not change. The 
product 2aq is the dipole moment p. 

 
Therefore: 

   E p
r

=
1
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Potential due to a dipole 
 
 

  V q a
r

p
r

= =
4
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0

2πε
θ

πε
θcos cos  

 
If Θ = 90° then V disappears and this shows that it takes zero work to bring in a test 
charge along this plane towards the dipole. 
 
For a small set radius, V has its greatest positive value for Θ = 0°, and its greatest 
negative value for Θ = 180°. 
 
The above equation describes the potential due to a simple dipole. It also holds for 
other charge configurations.  
 
 
 
 



ELECTRIC POTENTIAL ENERGY 
 
If 2 charges q1 and q2, initially separated by a distance r,  are moved apart, then work 
must be done. If both the charges have the same sign then the work will be negative. 
If they are of opposite signs the work will be positive. The energy represented by this 
work is thought of as being stored by the system of charges as electric potential 
energy. 
 

   W q q
r

U= =
1

4 0

1 2

12πε
 = electric potential energy 

 
For a dipole: 
 

   U q q
r

=
−1

4 0

1 2

12πε
( )  

 
Dipole in an electric field 
 
In a uniform electric field E, the dipole with moment p makes an angle θ with the 
field. Two equal and opposite forces F and -F act on the charges (couple) and are 
equal to: 
 
   F = qE 
 
The net force is zero, but there is a net torque about an axis through O given by: 
 
   Τ = 2F(a sinθ) = 2aF sinθ 
Therefore: 
   Τ = 2qEa sinθ = pE sinθ 
 
Thus, a dipole placed in an electric field E experiences a torque tending to align the 
dipole with the field. 
   Τ = p x E 
 
if the dipole has an initial angle of θ0, then the work required to turn the dipole to an 
angle θ will be: 

   W dW d U= = ∫∫ =Τ Θ
Θ

Θ

Θ

Θ

00

  
 
Substituting for Τ: 

   U pE d pE d= ∫ = ∫sin . sin .Θ Θ Θ Θ
Θ

Θ

Θ

Θ

0 0

 

   U pE= −cosΘ
Θ

Θ

0

 

 
 



Gauss’s Law 
 
 
The electric field and field lines 
 
Electric field lines provide a convenient way of visualising the electric field. 
 
The field lines are drawn according to the following rules: 
 
1. The field lines point in the same direction as the electric field at every point in 

space. Therefore the electric field at a point is always at a tangent to the field 
lines at that point. 

 
2. Field lines always start on the positive charge and end on the negative charge. 
 
3. The strength of the field is represented by the density of the lines. The number 

of lines, in 3 dimensions, leaving a positive charge or approaching a negative 
charge is proportional to the magnitude of the charge. 

 
4. No two lines touch or cross. 
 
Electric Flux φ 
 
Definition of flux: The flux of any vector quantity through an area is the product of 

the area and the component of the vector at right angles to the 
area. 

 
For a flat surface in a uniform electric field E the electric flux is: 
 
   φ = EAcos θ 
 
   Φ = ∫E A.

surface
d   general equation 

 
Gaussian surfaces 
 
A Gaussian surface is an imaginary surface drawn so as to be able to use Gauss’s law. 
 
dA represents a small area of the surface and is known as the surface vector. The 
surface is chosen to represent the symmetry of the system. 
 
Gauss’s Law 
 

The total electric flux of a closed surface in an electric field is 4π times the 
electric charge within that surface. 

or 
The total electric flux through a closed surface is proportional to the charge 
enclosed by that surface. 

 



   φ = qn/ε0 
 
   qn = ε 0 E. Ad∫  
 
where:  qn is the net charge enclosed by the surface 
  E.dA is the flux through a small surface element 
  E. Ad∫ is the total flux through a closed surface 
 
Application to a point charge (zero dimension) 
 

   Φ = q r E2

ε
π

0
4=  

 
Uniform line of charge (1 dimension) 
 

  q E dA E2 rL
ε

π
0
= ∫ =  

 
This can be rearranged to give the magnitude of the electric field: 
 

  E = q
L r r

1
2

1 1
20 0πε πε

λ
=   

 
The net charge enclosed by the surface = λL 
 
A uniform sheet of charge (2 dimension) 
 

  q E(A + A) = 2EA 
ε 0

=  

 
Substituting the charge density into this equation gives: 
 

  E =
2
σ
ε 0

 

 
Spherical symmetric charge distribution (3 dimension) 
 
Assign a Gaussian spherical surface of radius r where r > R. Applying Gauss’s law: 
 

  E = 1
4

q
r 2πε 0

  q is the total charge 

 
Assign a Gaussian spherical surface of radius r where r < R. Applying Gauss’s law: 
 

  E = 1
4

q *
r 2πε 0

  where q* is the part of q contained within  

     the sphere of radius r 



 
For points inside the sphere, then 

  q* = q

4
3 r

R

3

34
3

π
π

 

 

  q* = q r
R







3

 

 
the expression for E becomes: 
 

  E = 1
4

qr
R 3πε 0

 

 
Relationship between distance r and dimensionality 
 
 An electric field’s dependance on distance r depends on the dimensionality of the 
charge distribution that creates it. 
 
0-dimension: the electric field for point charge falls as 1/r2 
 
1-dimension: the electric field for a line of charge falls as 1/r 
 
2-dimension: the electric field for  plane of charge is constant everywhere in space 
 
3-dimension: the electric field for a spherical distribution of charge rises with r 
 
 
From the above it can be seen that: 
 
  THE ELECTRIC FIELD CHANGES AS rD-2 
 



CAPACITORS AND DIELECTRICS 
 
Definitions and Units 
 
Capacitance: 
 
 The property of a system of electrical conductors and insulators which enables it 

to store electric charge when a potential difference exists between the conductors. 
 
Units: farad (Coulomb per volt) 
 
 Defined as the capacitance of a capacitor between the plates of which there 

appears a potential drop of 1 volt when it is charged with one coulomb of 
electricity 

 
 
Dielectric: 
 
 A non-conductor of electricity, insulator. A substance in which an electric field 

gives rise to no net flow of electric charge but only to a displacement of charge. 
 
Dielectric constant or relative permittivity: 
 
 The ratio of the capacitance of a capacitor with the given substance as the 

dielectric, to the capacitance of the same capacitor with air (or a vacuum) as the 
dielectric. Symbol κ. 

 
Dielectric strength: 
 
 The maximum voltage which can be applied to a dielectric material without 

causing it to break down. Usually expressed in volts per mm. 
 
 
Capacitors 
 
Spheres 
 
The potential of a positively charged conducting sphere is given by: 
 

  + =V
q
R

' 1
4 0πε

 

If another sphere of the same radius R, carrying a negative charge -q, is located at a 
distance >>R from the first sphere then it can be said that both spheres are electrically 
isolated. The potential of the second sphere is therefore given by: 
 

  − =V
q
R

' 1
4 0πε

 

 
The potential difference between the two spheres is thus: 



 

  + −= − =V V V
q

R' ' ' 1
4

2
0πε

 

 
The potential difference is therefore proportional to the charge on either sphere. 
 
This equation can now be written: 
 
  q R V C V= =( ) ' ' '2 0πε  
 
C’, the proportionality constant, is called the capacitance of the two spheres. 
 
when the two spheres are brought closer together, the positive sphere will have the effect 
of raising the potential of the negative sphere from V-’ to V- and the negative sphere will 
lower the potential of the positive sphere from V+’ to V+.  
 
It is therefore simple to deduce that, although the charge on each sphere has remained 
constant, the potential difference between the spheres has been reduced and the 
capacitance has been increased. 
 
  q = CV  where C>C’ and V<V’ 
 
Parallel plate capacitor 
 

  C q
V

EA
Ed

A
d

= = =
ε ε0 0    Parallel plate capacitor 

A cylindrical capacitor 
 

E = q
2 rlπ ε 0

 

 
The potential difference between the plates is: 
 

  V = Edr = q
2

dr
r

q
2

ln b
aa

b

a

b

πε πε0 0l l∫∫ =  

 
The capacitance is given by: 
 

  C = q
V ln(b / a)
=

2 0πε l  

 
The capacitance only depends on the geometry of the capacitor. 
 
 
 
Capacitors in Series 
 
1/C = 1/C1 +  1/C2 + 1/C3 



 
Capacitors in Parallel 
 
C = C1 + C2 + C3 
 
 
DIELECTRICS 
 
Dielectrics and the parallel plate capacitor 
 
When a dielectric is placed between the plates of a capacitor q is larger for the same 
value of voltage. From the relation C = q/V it can be seen that the capacitance must 
also increase.  
 
The ratio of the capacitance of the capacitor with the dielectric to the capacitance of 
the capacitor without the dielectric is called the dielectric constant κ of the material.  
 
If the same charge is maintained on the capacitor with and without the dielectric then 
the potential difference between the plates of the capacitor with the dielectric, Vd will 
be less than that without the dielectric V0 by a factor of 1/κ. 
 
   Vd = V0/κ 
 

   C = A
d
κε 0  

 
The use of Gauss’s law for capacitors with a dielectric 
 

q
A

q
A

q
Aκε ε ε0 0 0

= −
'  

 

  q q'= −
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


1 1
κ

 

 
q’ the surface induced charge, is shown to be always less than the magnitude of the 
free charge and is equal to zero when there is no dielectric i.e. κ = 1. 
 
Returning to the integral for the case with a dielectric it can be shown that: 
 
  ε κ0  E.dA =∫ q  
 
This equation generally holds for all capacitors and is used when a dielectric is 
present. 
 
 
Energy within a capacitor 

  W dW q
C

dq q
C

q
= = ∫∫ =

' '
0

21
2

 



 
Substituting for q using the standard relation, q = CV we obtain: 

  W U CV= =
1
2

2  

 
The energy stored in a capacitor is said to reside in the electric field. 
 
In a parallel plate capacitor, if we neglect fringing at the edges, then the electric field 
has the same value for all points between the plates. Therefore the energy stored per 
unit volume (the energy density) is uniform and is given by: 

  u U
Ad

CV

Ad
= =

1
2

2

 

C for a parallel plate capacitor is: 

  C A
d

=
κε 0  

then by substitution: 

  u V
d

= 



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κε 0

2
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Now the electric field E = V/d so: 

  u E=
1
2

0
2κε  

 
This equation was derived for the parallel plate capacitor but it also holds true for all 
capacitors. 
 
In general, if we have an electric filed E at any point in space, we can think that at 

that point there is a site of stored energy of magnitude u E=
1
2

0
2κε  per unit volume. 

 


