Integration

ALGEBRAIC FRACTIONS

Graham S McDonald and Silvia C Dalla

A self-contained Tutorial Module for practising the integration of algebraic fractions

- Table of contents
- Begin Tutorial

© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Theory
- 2. Exercises
- 3. Answers
- 4. Standard integrals
- 5. Polynomial division
- 6. Tips on using solutions

Full worked solutions

1. Theory

The method of partial fractions can be used in the integration of a proper algebraic fraction. This technique allows the integration to be done as a sum of much simpler integrals

A proper algebraic fraction is a fraction of two polynomials whose top line is a polynomial of lower degree than the one in the bottom line. Recall that, for a polynomial in $\,x$, the degree is the highest power of $\,x$. For example

$$\frac{x-1}{x^2+3x+5}$$

is a proper algebraic fraction because the top line is a polynomial of degree 1 and the bottom line is a polynomial of degree 2.

• To integrate an **improper algebraic fraction**, one firstly needs to write the fraction as a sum of proper fractions. This first step can be done by using polynomial division ('P-Division')

-

• Look out for cases of proper algebraic fractions whose top line is a multiple k of the derivative of the bottom line. Then, the standard integral

 $\int \frac{k g'(x)}{g(x)} dx = k \ln|g(x)| + C$

can be used (instead of working out partial fractions)

• Otherwise, the bottom line of a proper algebraic fraction needs to be factorised as far as possible. This allows us to identify the form of each partial fraction needed

 $\underline{\text{factor in the bottom line}} \longrightarrow \underline{\text{form of partial fraction(s)}}$

$$(ax + b)$$

$$(ax + b)^{2}$$

$$\frac{A}{ax+b} + \frac{B}{(ax+b)^{2}}$$

$$(ax^{2} + bx + c)$$

$$\frac{Ax+B}{ax^{2}+bx+c}$$

where A and B are constants to be determined

2. Exercises

Click on Exercise links for full worked solutions (there are 13 exercises in total)

Perform the following integrations:

Exercise 1.
$$\int \frac{x^2 + 2x + 5}{x} \, dx$$

Exercise 2.
$$\int \frac{x^3 + 4x^2 + 3x + 1}{x^2} dx$$

Exercise 3.
$$\int \frac{x^2 + 3x + 4}{x + 1} dx$$

Exercise 4.
$$\int \frac{2x^2 + 5x + 3}{x + 2} dx$$

EXERCISE 5.
$$\int \frac{4x^3 + 2}{x^4 + 2x + 3} \, dx$$

EXERCISE 6.
$$\int \frac{x}{x^2 - 5} dx$$

EXERCISE 7.
$$\int \frac{17-x}{(x-3)(x+4)} dx$$

EXERCISE 8.
$$\int \frac{11x + 18}{(2x+5)(x-7)} dx$$

EXERCISE 9.
$$\int \frac{7x+1}{(x+1)(x-2)(x+3)} dx$$

EXERCISE 10.
$$\int \frac{2x+9}{(x+5)^2} dx$$

EXERCISE 11.
$$\int \frac{13x-4}{(3x-2)(2x+1)} dx$$

EXERCISE 12.
$$\int \frac{27x}{(x-2)^2(x+1)} dx$$

EXERCISE 13.
$$\int \frac{3x^2}{(x-1)(x^2+x+1)} dx$$

● Theory ● Answers ● Integrals ● P-Division ● Tips

3. Answers

1.
$$\frac{1}{2}x^2 + 2x + 5 \ln|x| + C$$
,

2.
$$\frac{1}{2}x^2 + 4x + 3 \ln|x| - \frac{1}{x} + C$$
,

3.
$$\frac{1}{2}x^2 + 2x + 2 \ln|x+1| + C$$
,

4.
$$x^2 + x + \ln|x + 2| + C$$
,

5.
$$\ln|x^4 + 2x + 3| + C$$
,

6.
$$\frac{1}{2} \ln |x^2 - 5| + C$$
,

7.
$$2 \ln |x-3| - 3 \ln |x+4| + C$$
,

8.
$$\frac{1}{2} \ln |2x+5| + 5 \ln |x-7| + C$$
,

9.
$$\ln|x+1| + \ln|x-2| - 2\ln|x+3| + C$$
,

10.
$$2 \ln |x+5| + \frac{1}{x+5} + D$$
,

11.
$$\frac{2}{3} \ln |3x-2| + \frac{3}{2} \ln |2x+1| + C$$
,

12.
$$3 \ln |x-2| - \frac{18}{x-2} - 3 \ln |x+1| + D$$
,

13.
$$\ln |x-1| + \ln |x^2 + x + 1| + D$$
.

4. Standard integrals

f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1} (n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	
e^x	e^x	a^x	$\frac{a^x}{\ln a}$ $(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\csc x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \left \tanh \frac{x}{2} \right $
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{x}{2} + \frac{\sin 2x}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
$\int (x)$	J J (a) aa	J (x)	
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\left \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right \ (0 < x < a) \right $
	(a > 0)	$\frac{1}{x^2 - a^2}$	$\left \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right (x > a > 0) \right $
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2+x^2}}$	$\left \ln \left \frac{x + \sqrt{a^2 + x^2}}{a} \right \ (a > 0) \right $
		$\frac{1}{\sqrt{x^2 - a^2}}$	$\left \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0) \right $
	2 5 1 4 3		2 [1 4) /2+2
$\sqrt{a^2-x^2}$	$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2+x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
	$+\frac{x\sqrt{a^2-x^2}}{a^2}$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$

5. Polynomial division

You can use formal long division to simplify an improper algebraic fraction. In this Tutorial, we us another technique (that is sometimes called 'algebraic juggling')

- In each step of the technique, we re-write the top line in a way that the algebraic fraction can be broken into two separate fractions, where a simplifying cancellation is forced to appear in the first of these two fractions
- lacktriangle The technique involves re-writing the top-line term with the highest power of x using the expression from the bottom line

The detail of how the method works is best illustrated with a long example

One such example follows on the next page ...

Toc

$$\frac{x^3 + 3x^2 - 2x - 1}{x + 1} = \frac{x^2(x + 1) - x^2 + 3x^2 - 2x - 1}{x + 1}$$
{ the bottom line has been used to write x^3 as $x^2(x + 1) - x^2$ }
$$= \frac{x^2(x + 1) + 2x^2 - 2x - 1}{x + 1}$$

$$= \frac{x^2(x + 1)}{x + 1} + \frac{2x^2 - 2x - 1}{x + 1}$$

$$= x^2 + \frac{2x^2 - 2x - 1}{x + 1}$$

$$= x^2 + \frac{2x(x + 1) - 2x}{x + 1}$$
{ writing $2x^2$ as $2x(x + 1) - 2x$ }

Toc

i.e.
$$\frac{x^3 + 3x^2 - 2x - 1}{x + 1} = x^2 + \frac{2x(x + 1)}{x + 1} - 4x - 1$$
$$= x^2 + \frac{2x(x + 1)}{x + 1} + \frac{-4x - 1}{x + 1}$$
$$= x^2 + 2x + \frac{-4x - 1}{x + 1}$$
$$= x^2 + 2x + \frac{-4(x + 1) + 4}{x + 1}$$
{ writing $-4x$ as $-4(x + 1) + 4$ }
$$= x^2 + 2x + \frac{-4(x + 1)}{x + 1} + \frac{3}{x + 1}$$
$$= x^2 + 2x + \frac{-4(x + 1)}{x + 1} + \frac{3}{x + 1}$$

i.e.
$$\frac{x^3 + 3x^2 - 2x - 1}{x + 1} = x^2 + 2x + \frac{-4(x+1)}{x+1} + \frac{3}{x+1}$$

= $x^2 + 2x - 4 + \frac{3}{x+1}$

We have now written the original improper algebraic fraction as a sum of terms that do not involve any further improper fractions, and our task is complete!

6. Tips on using solutions

• When looking at the THEORY, ANSWERS, INTEGRALS, P-DIVISION or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct

• Try to make less use of the full solutions as you work your way through the Tutorial

Full worked solutions

Exercise 1.

$$\int \frac{x^2 + 2x + 5}{x} \, dx$$

 $\int \frac{x^2 + 2x + 5}{x} dx$ top line is quadratic in x bottom line is linear in x

 \Rightarrow we have an improper algebraic fraction

 \rightarrow we need simple polynomial division ...

i.e.
$$\int \frac{x^2 + 2x + 5}{x} dx = \int \left(\frac{x^2}{x} + \frac{2x}{x} + \frac{5}{x}\right) dx$$
$$= \int \left(x + 2 + \frac{5}{x}\right) dx$$
$$= \int x dx + \int 2 dx + 5 \int \frac{1}{x} dx$$

i.e.
$$\int \frac{x^2 + 2x + 5}{x} dx = \frac{1}{2}x^2 + 2x + 5 \ln|x| + C$$
,

where C is a constant of integration.

Return to Exercise 1

Exercise 2.

$$\int \frac{x^3 + 4x^2 + 3x + 1}{x^2} dx$$
 top line is cubic in x bottom line is quadratic in x

 \Rightarrow an improper algebraic fraction

 $\rightarrow \,$ simple polynomial division ...

$$\int \frac{x^3 + 4x^2 + 3x + 1}{x^2} dx = \int \left(\frac{x^3}{x^2} + \frac{4x^2}{x^2} + \frac{3x}{x^2} + \frac{1}{x^2}\right) dx$$
$$= \int \left(x + 4 + \frac{3}{x} + \frac{1}{x^2}\right) dx$$
$$= \int x dx + \int 4 dx + 3 \int \frac{1}{x} dx + \int x^{-2} dx$$

i.e.
$$\int \frac{x^3 + 4x^2 + 3x + 1}{x^2} dx = \frac{1}{2}x^2 + 4x + 3 \ln|x| + \frac{x^{-1}}{(-1)} + C$$
$$= \frac{1}{2}x^2 + 4x + 3 \ln|x| - \frac{1}{x} + C,$$

where C is a constant of integration.

Return to Exercise 2

Exercise 3.

$$\int \frac{x^2 + 3x + 4}{x + 1} \, dx$$

top line is quadratic in x

bottom line is linear in x

 \Rightarrow an <u>improper</u> algebraic fraction

 $\rightarrow\,$ polynomial division ...

Now we have more than just a single term in the bottom line and we need to do full polynomial division

If you are unfamiliar with this technique, there is some extra help within the P-DIVISION section

Here, we will go through the polynomial division first, and we will leave the integration until later ...

Toc

$$\frac{x^2 + 3x + 4}{x + 1} = \frac{x(x + 1) - x + 3x + 4}{x + 1}$$
{ the bottom line has been used to write x^2 as $x(x + 1) - x$ }
$$= \frac{x(x + 1) + 2x + 4}{x + 1}$$

$$= \frac{x(x + 1)}{x + 1} + \frac{2x + 4}{x + 1}$$

$$= x + \frac{2x + 4}{x + 1}$$

$$= x + \frac{2(x + 1) - 2}{x + 1}$$
{ writing $2x$ as $2x(x + 1) - 2$ }

i.e.
$$\frac{x^2+3x+4}{x+1} = x + \frac{2(x+1)}{x+1} + 2$$

$$= x + \frac{2(x+1)}{x+1} + \frac{2}{x+1}$$

$$= x + 2 + \frac{2}{x+1}$$
{ polynomial division is complete, since we no longer have any improper algebraic fractions }

$$\therefore \int \frac{x^2 + 3x + 4}{x + 1} dx = \int \left(x + 2 + \frac{2}{x + 1} \right) dx$$
$$= \frac{1}{2}x^2 + 2x + 2 \ln|x + 1| + C.$$

Return to Exercise 3

Exercise 4.

$$\int \frac{2x^2 + 5x + 3}{x + 2} dx \quad \text{top line is quadratic in } x$$

$$\Rightarrow \text{bottom line is linear in } x$$

$$\Rightarrow \text{an improper algebraic fraction}$$

$$\rightarrow \text{polynomial division } \dots$$

$$\frac{2x^2 + 5x + 3}{x + 2} = \frac{2x(x + 2) - 4x + 5x + 3}{x + 2}$$
{ the bottom line has been used to write $2x^2$ as $2x(x + 2) - 4x$ }
$$= \frac{2x(x + 2) + x + 3}{x + 2}$$

$$= \frac{2x(x + 2) + x + 3}{x + 2}$$

i.e.
$$\frac{2x^2 + 5x + 3}{x + 2} = 2x + \frac{x + 3}{x + 2}$$

$$= 2x + \frac{(x + 2) - 2 + 3}{x + 2}$$
{ writing x as $(x + 2) - 2$ }
$$= 2x + \frac{(x + 2) + 1}{x + 2}$$

$$= 2x + \frac{(x + 2) + 1}{x + 2}$$

$$= 2x + \frac{(x + 2)}{x + 2} + \frac{1}{x + 2}$$

$$= 2x + 1 + \frac{1}{x + 2}$$
{ no improper algebraic fractions }
$$\therefore \int \frac{2x^2 + 5x + 3}{x + 2} dx = \int \left(2x + 1 + \frac{1}{x + 2}\right) dx$$

$$= x^2 + x + \ln|x + 2| + C.$$

Return to Exercise 4

Toc

Exercise 5.

$$\int \frac{4x^3 + 2}{x^4 + 2x + 3} dx \quad \text{top line is degree 3 in } x$$

bottom line is degree 4 in x

 \Rightarrow we have a proper algebraic fraction

→ factorise bottom line for partial fractions?

No! First, check if this is of the form $\int \frac{k g'(x)}{g(x)} dx$, where k = constant

If $g(x) = x^4 + 2x + 3$ (the bottom line), $g'(x) = \frac{dg}{dx} = 4x^3 + 2$ (which exactly equals the top line). So we can use the standard integral

$$\int \frac{k g'(x)}{g(x)} dx = k \ln|g(x)| + C, \text{ with } k = 1$$

(or employ substitution techniques by setting $u = x^4 + 2x + 3$)

$$\therefore \int \frac{4x^3 + 2}{x^4 + 2x + 3} \, dx = \ln|x^4 + 2x + 3| + C.$$

Return to Exercise 5

Toc

Exercise 6.

$$\int \frac{x}{x^2 - 5} dx \quad \text{top line is degree 1 in } x$$
bottom line is degree 2 in x

$$\Rightarrow \text{ we have a proper algebraic fraction}$$

$$\rightarrow \text{ consider for partial fractions?}$$

No! First, check if this is of the form $\int \frac{k g'(x)}{g(x)} dx$, where k = constant

If $g(x) = x^2 - 5$ (the bottom line), $g'(x) = \frac{dg}{dx} = 2x$ (which is proportional to the top line). So we can use the standard integral

$$\int \frac{k g'(x)}{g(x)} dx = k \ln|g(x)| + C, \text{ with } k = \frac{1}{2}$$

(or employ substitution techniques by setting $u = x^2 - 5$)

i.e.
$$\int \frac{x}{x^2 - 5} dx = \int \frac{\frac{1}{2} \cdot 2x}{x^2 - 5} dx = \frac{1}{2} \ln|x^2 - 5| + C.$$

Return to Exercise 6

Exercise 7.

$$\int \frac{17-x}{(x-3)(x+4)} dx$$
 is a proper algebraic fraction, and the top line is not a multiple of the derivative of bottom line

Try partial fractions

$$\frac{17 - x}{(x - 3)(x + 4)} = \frac{A}{x - 3} + \frac{B}{x + 4}$$
$$= \frac{A(x + 4) + B(x - 3)}{(x - 3)(x + 4)}$$

$$\therefore$$
 17 - $x = A(x+4) + B(x-3)$ [if true then true for all x]
 $\underline{x = -4}$ gives 17 + 4 = 0 + (-4 - 3) B i.e. 21 = -7 B , $B = -3$
 $\underline{x = 3}$ gives 17 - 3 = (3 + 4) A + 0 i.e. 14 = 7 A , $A = 2$

$$\therefore \int \frac{17 - x}{(x - 3)(x + 4)} dx = \int \frac{2}{x - 3} + \frac{(-3)}{x + 4} dx$$
$$= 2 \int \frac{dx}{x - 3} - 3 \int \frac{dx}{x + 4}$$
$$= 2 \ln|x - 3| - 3 \ln|x + 4| + C.$$

Note.

In the above we have used
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + D$$

Return to Exercise 7

Exercise 8.

$$\int \frac{11x+18}{(2x+5)(x-7)} dx$$
 is a proper algebraic fraction, and the top line is not a multiple of the derivative of bottom line

Try partial fractions

$$\frac{11x+18}{(2x+5)(x-7)} = \frac{A}{2x+5} + \frac{B}{x-7}$$
$$= \frac{A(x-7) + B(2x+5)}{(2x+5)(x-7)}$$

$$\therefore \int \frac{11x+18}{(2x+5)(x-7)} dx = \int \frac{1}{2x+5} + \frac{5}{x-7} dx$$
$$= \int \frac{dx}{2x+5} + 5 \int \frac{dx}{x-7}$$
$$= \frac{1}{2} \ln|2x+5| + 5 \ln|x-7| + C.$$

Note.

In the above we have used
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + D$$

Return to Exercise 8

Exercise 9.

$$\int \frac{7x+1}{(x+1)(x-2)(x+3)} \ dx \quad \text{is a proper algebraic fraction,}$$
 and the top line is not a multiple of the derivative of bottom line

Try partial fractions

$$\frac{7x+1}{(x+1)(x-2)(x+3)} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x+3}$$

$$= \frac{A(x-2)(x+3) + B(x+1)(x+3) + C(x+1)(x-2)}{(x+1)(x-2)(x+3)}$$

$$\therefore 7x + 1 = A(x-2)(x+3) + B(x+1)(x+3) + C(x+1)(x-2)$$

•

$$7x + 1 = A(x - 2)(x + 3) + B(x + 1)(x + 3) + C(x + 1)(x - 2)$$

$$\underline{x = -1}$$
 gives $-6 = A(-3)(2)$ i.e. $-6 = -6A$ i.e. $A = 1$

$$\underline{x=2}$$
 gives $15 = B(3)(5)$ i.e. $15 = 15B$ i.e. $B = 1$

$$\underline{x = -3}$$
 gives $-20 = C(-2)(-5)$ i.e. $-20 = 10C$ i.e. $C = -2$

$$\therefore \int \frac{7x+1}{(x+1)(x-2)(x+3)} dx = \int \frac{1}{x+1} + \frac{1}{x-2} - 2\frac{1}{x+3} dx$$
$$= \ln|x+1| + \ln|x-2| - 2\ln|x+3| + C.$$

Return to Exercise 9

Toc

Exercise 10.

Proper algebraic fraction and we can use partial fractions

$$\int \frac{2x+9}{(x+5)^2} \ dx = \int \frac{A}{(x+5)} + \frac{B}{(x+5)^2} \ dx$$

where
$$\frac{2x+9}{(x+5)^2} = \frac{A(x+5)+B}{(x+5)^2}$$
 i.e. $2x+9 = A(x+5)+B$

$$\underline{x = -5} \quad \text{gives} \quad -10 + 9 = B$$

i.e.
$$B = -1$$

$$\underline{x=0}$$
 gives $9=5A+B=5A-1$ i.e. $10=5A$ i.e. $A=2$

$$\therefore \int \frac{2x+9}{(x+5)^2} dx = \int \frac{2}{x+5} + \frac{(-1)}{(x+5)^2} dx$$
$$= 2 \int \frac{dx}{x+5} - \int \frac{dx}{(x+5)^2}$$

Toc

i.e.
$$\int \frac{2x+9}{(x+5)^2} dx = 2\ln|x+5| - \int (x+5)^{-2} dx + C$$
$$= 2\ln|x+5| - \frac{(x+5)^{-1}}{(-1)} + C$$
$$= 2\ln|x+5| + \frac{1}{x+5} + C,$$

where, in the last integral, we have used

$$\int (ax+b)^n = \frac{(ax+b)^{n+1}}{n+1} + C, \quad (n \neq -1).$$

Return to Exercise 10

Toc

Exercise 11.

Proper algebraic fraction and we need to use partial fractions

$$\int \frac{13x - 4}{(3x - 2)(2x + 1)} dx = \int \frac{A}{(3x - 2)} + \frac{B}{(2x + 1)} dx$$

where
$$\frac{13x-4}{(3x-2)(2x+1)} = \frac{A(2x+1) + B(3x-2)}{(3x-2)(2x+1)}$$

$$13x - 4 = A(2x + 1) + B(3x - 2)$$

and

$$\underline{x = -\frac{1}{2}}$$
 gives $-\frac{13}{2} - 4 = B\left(-\frac{3}{2} - 2\right)$ i.e. $-\frac{21}{2} = -\frac{7}{2}B$, i.e. $B = 3$
 $x = \frac{2}{3}$ gives $\frac{26}{3} - \frac{12}{3} = A\left(\frac{4}{3} + \frac{3}{3}\right)$ i.e. $\frac{14}{3} = \frac{7}{3}A$ i.e. $A = 2$

$$\therefore \int \frac{13x - 4}{(3x - 2)(2x + 1)} dx = \int \frac{2}{3x - 2} + \frac{3}{2x + 1} dx$$

$$= 2 \int \frac{dx}{3x - 2} + 3 \int \frac{dx}{2x + 1}$$

$$= 2 \left(\frac{1}{3}\right) \ln|3x - 2| + 3\left(\frac{1}{2}\right) \ln|2x + 1| + C$$

$$= \frac{2}{3} \ln|3x - 2| + \frac{3}{2} \ln|2x + 1| + C,$$

where $\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + C$ has been used.

Return to Exercise 11

Exercise 12.

Use Partial fractions

$$\int \frac{27x}{(x-2)^2(x+1)} \ dx = \int \frac{A}{(x-2)} + \frac{B}{(x-2)^2} + \frac{C}{x+1} \ dx$$

where

$$27x = A(x-2)(x+1) + B(x+1) + C(x-2)^{2}$$

$$\underline{x=2}$$
 gives $54=3B$

i.e.
$$B = 18$$

$$\underline{x = -1} \quad \text{gives} \quad -27 = C(-3)^2$$

i.e.
$$C = -3$$

$$\underline{x=0}$$
 gives $0 = A(-2) + 18 + (-3)(4)$ i.e. $A = 3$

$$\therefore \int \frac{27x}{(x-2)^2(x+1)} dx = \int \frac{3}{x-2} + \frac{18}{(x-2)^2} - \frac{3}{x+1} dx$$

$$= 3\ln|x-2| + 18 \int (x-2)^{-2} dx - 3\ln|x+1| + D$$

$$= 3\ln|x-2| + \frac{18}{(-1)}(x-2)^{-1} - 3\ln|x+1| + D$$

$$= 3\ln|x-2| - \frac{18}{x-2} - 3\ln|x+1| + D.$$

Return to Exercise 12

Exercise 13.

$$\int \frac{3x^2}{(x-1)(x^2+x+1)} dx = \int \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1} dx$$

Note that $x^2 + x + 1$ does not give real linear factors One thus uses the partial fraction $\frac{Bx+C}{x^2+x+1}$

We then have

$$3x^{2} = A(x^{2} + x + 1) + (Bx + C)(x - 1)$$

$$\underline{x=1}$$
 gives $3=3A$ i.e. $A=1$
$$\underline{x=0}$$
 gives $0=A-C$ i.e. $C=A=1$
$$\underline{x=-1}$$
 gives $3=A(1-1+1)+(-B+C)(-2)$

Toc

i.e.
$$3 = A + 2B - 2C$$

i.e.
$$3 = 1 + 2B - 2$$

i.e.
$$4 = 2B$$
 i.e. $B = 2$

$$\therefore \int \frac{3x^2}{(x-1)(x^2+x+1)} dx = \int \frac{A}{x-1} + \int \frac{Bx+C}{(x^2+x+1)} dx$$
$$= \int \frac{dx}{x-1} + \int \frac{2x+1}{x^2+x+1} dx$$
$$= \ln|x-1| + \ln|x^2+x+1| + D,$$

and we note that the second integral is of the form

$$\int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + D.$$

Return to Exercise 13

Toc

