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{Left}: Third mamber of the mode family for a cavity with
hexagonal geometry, @ magnification of 1.3, and an
aoulvalent Fresnel number of 3.5,
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lance at the mode patterns of an unstable cavity
laser and the immediate impression is of their
beauty and complexity. Perform a detailed
mathematical examination of their structure and one dis-
covers that the patterns possess fractal character.!* We
have christened the unstable cavity system as a kaleido-
scope laser,” after the device invented by Sir David Brew-
ster in 1816. Just as the patterns in a toy kaleidoscope vary
endlessly as the tube is shaken, so the modes of the kalei-
doscope laser change with the shape of the defining aper-
ture and the dimensions of the cavity (represented by the
Fresnel number). Although experiments have been con-
centrated on relatively low Fresnel number systems, mode
profiles have been generated computationally for much
higher values and for numerous aperture shapes includ-
ing triangles, squares, pentagons, hexagons, octagons, cir-
cles, and rhombuses.® Typical modes are shown in the
pictures on the left.
Most lasers are based on sta-
ble optical cavities in which the
mode energy is confined to the
region near the cavity axis; light rays
that circulate in the cavity are then
trapped forever between the mirrors, and
leakage around the mirror edges is mini-
mal. In contrast, the rays that bounce
between the mirrors of an unstable cavity run
away from the axis toward the mirror edges and
ultimately escape. The associated cavity modes fill
the entire resonator volume, which is a highly desir-
able feature in some contexts, for example, in high-
power lasers for which maximum energy extraction
from an active medium is required. Energy spillage at
the mirror edges is an inherent feature of unstable cavity
lasers, so it is not surprising that the shape of the mirror
(or whatever component defines the aperture of the sys-
tem) is critical. Indeed, the mode profiles are formed
from the repeated diffraction of the field that circulates
in the cavity at the aperture boundary.

Typical mode patterns of stable cavities camr be found
in just about any textbook on laser physics. A fascinating
semi-analytical technique for calculating the mode pro-
files of unstable cavities was developed by Southwell in
the 1980s.” In his so-called virtual source (VS) method,
an unstable resonator is unfolded to create a corridor of
virtual images of the defining aperture. A plane wave is
launched into the far end of the corridor, and the mode
is formed from the superposition of the patterns dif-
fracted at the individual apertures—the virtual sources
that give the technique its name. By applying a self-con-
sistency condition, Southwell was able to obtain the
mode eigenvalues that control the way in which diffrac-
tion from the different apertures combines to form the
modes, The whole operation takes a second or two on a PC.

The chief limitation of the Southwell method is that
it basically works only in one transverse coordinate;
two-dimensional (2-D) modes can be found in just a
couple of special cases—for square geometry in which
2-D modes are the product of two one-dimensional
(1-D) modes, and for circular geometry in which the
single transverse coordinate is the radius of the circle.
We have undertaken the fizst investigation of 2-D modes

of unstable cavity lasers in the general case. Although we
have made encouraging progress in extending the VS
method to two transverse coordinates, the best way of
generating the 2-D modes is by brute force numerical
calculation. Finding the lowest-loss mode is quite easy
for almost any cavity geometry because one only needs
to propagate an arbitrary initial pattern repeatedly
around the cavity and wait for all the higher-loss modes
to die away. This is the well-known Fox-Li method that
has a history dating back to the 1960s. We have 'gone
beyond this, however, by including a filtering operation
that allows us to select different higher-order modes at
will, a technique closely analogous to the insertion of a
Fabry-Perot etalon into a real laser. The hexagonal mode
shown is in fact the third member of the mode family.

The key question is: what is the origin of the fractal
structure of the modes? In particular, how is it that a
simple linear optical system that involves merely repeat-
ed diffraction leads to such an exotic characteristic?
Although the complete answer to these questions awaits
more detailed study, some general pointers have already
been identified. First, the degree of instability in an
unstable resonator is governed by its magnification fac-
tor, which determines the rate at which rays run away
from the axis. This suggests a picture in which a mode is
formed by the repeated superposition of similar images
of different sizes, and it is then a short step to self-simi-
larity and fractals. Although this picture does not tell the
whole story, its conclusion is correct. Visual inspection of
the 2-D images does indeed reveal the expected multiple
scales and, when a box-counting algorithm is applied to
the highly structured 1-D modes, fractional dimensions
in the 1.2-1.6 range have been duly recorded.!

Recently, we developed a more sophisticated mathe-
matical explanation of the fractal nature of the modes.
It is well known that fractals can be characterized by
their spatial power spectrum. Surprisingly, we deter-
mined that Fresnel diffraction patterns provide just the
right building blocks, so that the superposition of many
such patterns yields a profile with the appropriate spec-
tral properties for fractal structure.
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