

INTEGRATING FACTOR METHOD

Graham S McDonald

A Tutorial Module for learning to solve 1st order linear differential equations

- Table of contents
- Begin Tutorial

Table of contents

- 1. Theory
- 2. Exercises
- 3. Answers
- 4. Standard integrals
- 5. Tips on using solutions
- 6. Alternative notation

Full worked solutions

1. Theory

Consider an ordinary differential equation (o.d.e.) that we wish to solve to find out how the variable y depends on the variable x.

If the equation is **first order** then the highest derivative involved is a first derivative.

If it is also a **linear** equation then this means that each term can involve y either as the derivative $\frac{dy}{dx}$ OR through a single factor of y.

Any such linear first order o.d.e. can be re-arranged to give the following standard form:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P(x) and Q(x) are functions of x, and in some cases may be constants.

Section 1: Theory

A linear first order o.d.e. can be solved using the **integrating factor** method.

After writing the equation in standard form, P(x) can be identified. One then multiplies the equation by the following "integrating factor":

IF=
$$e^{\int P(x)dx}$$

This factor is defined so that the equation becomes equivalent to:

$$\frac{d}{dx}(IF y) = IF Q(x),$$

whereby integrating both sides with respect to x, gives:

IF
$$y = \int IF Q(x) dx$$

Finally, division by the integrating factor (IF) gives y explicitly in terms of x, i.e. gives the solution to the equation.

2. Exercises

In each case, derive the general solution. When a boundary condition is also given, derive the particular solution.

Click on Exercise links for full worked solutions (there are 10 exercises in total)

Exercise 1.

$$\frac{dy}{dx} + y = x \ ; \ y(0) = 2$$

Exercise 2.

$$\frac{dy}{dx} + y = e^{-x}$$
; $y(0) = 1$

Exercise 3.

$$x\frac{dy}{dx} + 2y = 10x^2$$
; $y(1) = 3$

● Theory ● Answers ● Integrals ● Tips ● Notation

Exercise 4.

$$x\frac{dy}{dx} - y = x^2$$
; $y(1) = 3$

Exercise 5.

$$x\frac{dy}{dx} - 2y = x^4 \sin x$$

Exercise 6.

$$x\frac{dy}{dx} - 2y = x^2$$

Exercise 7.

$$\frac{dy}{dx} + y \cot x = \csc x$$

Exercise 8.

$$\frac{dy}{dx} + y \cdot \cot x = \cos x$$

Exercise 9.

$$(x^2 - 1)\frac{dy}{dx} + 2xy = x$$

Exercise 10.

$$\frac{dy}{dx} = y \tan x - \sec x \; ; \; y(0) = 1$$

• Theory • Answers • Integrals • Tips • Notation

3. Answers

- 1. General solution is $y = (x-1) + Ce^{-x}$, and particular solution is $y = (x-1) + 3e^{-x}$,
- 2. General solution is $y = e^{-x}(x+C)$, and particular solution is $y = e^{-x}(x+1)$,
- 3. General solution is $y=\frac{5}{2}x^2+\frac{C}{x^2}$, and particular solution is $y=\frac{1}{2}(5x^2+\frac{1}{x^2})$,
- 4. General solution is $y = x^2 + Cx$, and particular solution is $y = x^2 + 2x$,
- 5. General solution is $y = -x^3 \cos x + x^2 \sin x + Cx^2$,
- 6. General solution is $y = x^2 \ln x + C x^2$,

- 7. General solution is $y \sin x = x + C$,
- 8. General solution is $4y \sin x + \cos 2x = C$,
- 9. General solution is $(x^2 1)y = \frac{x^2}{2} + C$,
- 10. General solution is $y\cos x = C x$, and particular solution is $y\cos x = 1 x$.

4. Standard integrals

f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1} (n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	$\ln g(x) $
e^x	e^x	a^x	$\frac{a^x}{\ln a}$ $(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\csc x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \left \tanh \frac{x}{2} \right $
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{x}{2} + \frac{\sin 2x}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

$\int f(x) dx$	f(x)	$\int f(x) dx$
$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right (0 < x < a)$
(a>0)	$\frac{1}{x^2 - a^2}$	$\left \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right (x > a > 0) \right $
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\left \ln \left \frac{x + \sqrt{a^2 + x^2}}{a} \right \ (a > 0) \right $
	$\frac{1}{\sqrt{x^2 - a^2}}$	$\left \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0) \right $
$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2+x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
$+\frac{x\sqrt{a^2-x^2}}{a^2}$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$
	$\frac{1}{a} \tan^{-1} \frac{x}{a}$ $(a > 0)$ $\sin^{-1} \frac{x}{a}$ $(-a < x < a)$ $\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$ \frac{1}{a} \tan^{-1} \frac{x}{a} \qquad \frac{1}{a^2 - x^2} $ $ (a > 0) \qquad \frac{1}{x^2 - a^2} $ $ \sin^{-1} \frac{x}{a} \qquad \frac{1}{\sqrt{a^2 + x^2}} $ $ (-a < x < a) \qquad \frac{1}{\sqrt{x^2 - a^2}} $ $ \frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right] \qquad \sqrt{a^2 + x^2} $

5. Tips on using solutions

- When looking at the THEORY, ANSWERS, INTEGRALS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises.
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct.
- Try to make less use of the full solutions as you work your way through the Tutorial.

>

6. Alternative notation

The linear first order differential equation:

$$\frac{dy}{dx} + P(x) y = Q(x)$$

has the integrating factor IF= $e^{\int P(x) dx}$.

The integrating factor method is sometimes explained in terms of simpler forms of differential equation. For example, when constant coefficients a and b are involved, the equation may be written as:

$$a\frac{dy}{dx} + by = Q(x)$$

In our standard form this is:

$$\frac{dy}{dx} + \frac{b}{a}y = \frac{Q(x)}{a}$$

with an integrating factor of:

$$IF = e^{\int \frac{b}{a} \, dx} = e^{\frac{bx}{a}}$$

Full worked solutions

Exercise 1.

Compare with form:
$$\frac{dy}{dx} + P(x)y = Q(x)$$
 (P, Q are functions of x)

Integrating factor: P(x) = 1.

Integrating factor, IF =
$$e^{\int P(x)dx}$$

= $e^{\int dx}$
= e^x

Multiply equation by IF:

$$e^{x} \frac{dy}{dx} + e^{x}y = e^{x}x$$

i.e. $\frac{d}{dx} [e^{x}y] = e^{x}x$

Integrate both sides with respect to x:

$$e^x y = e^x (x-1) + C$$

$$\{ \ \underline{\text{Note}} \colon \int u \, \frac{dv}{dx} dx \quad = \quad uv - \int v \, \frac{du}{dx} \, dx \quad \text{i.e. integration by parts with}$$

$$u \quad \equiv \quad x, \quad \frac{dv}{dx} \equiv e^x$$

$$\qquad \to \quad xe^x - \int e^x dx$$

$$\qquad \to \quad xe^x - e^x = e^x (x-1) \ \}$$

$$\text{i.e.} \quad y \quad = \quad (x-1) + Ce^{-x} \ .$$

Particular solution with y(0) = 2:

$$2 = (0-1) + Ce^{0}$$

= $-1 + C$ i.e. $C = 3$ and $y = (x-1) + 3e^{-x}$.

Return to Exercise 1

Exercise 2.

Integrating Factor:
$$P(x) = 1$$
, $IF = e^{\int P dx} = e^{\int dx} = e^x$

Multiply equation:

$$e^{x}\frac{dy}{dx} + e^{x}y = e^{x}e^{-x}$$
 i.e.
$$\frac{d}{dx}[e^{x}y] = 1$$

Integrate:

$$\begin{array}{rcl} e^x y & = & x+C \\ \text{i.e.} & y & = & e^{-x}(x+C) \end{array} \; .$$

Particular solution:

$$y = 1$$

 $x = 0$ gives $1 = e^{0}(0 + C)$
 $= 1.C$ i.e. $C = 1$
and $y = e^{-x}(x + 1)$.

Return to Exercise 2

Exercise 3.

Equation is linear, 1st order i.e.
$$\frac{dy}{dx} + P(x)y = Q(x)$$
 i.e.
$$\frac{dy}{dx} + \frac{2}{x}y = 10x, \qquad \text{where} \qquad P(x) = \frac{2}{x}, \ Q(x) = 10x$$

 $\underline{\text{Integrating factor}}: \text{IF} \quad = \quad e^{\int P(x) dx} = e^{2 \int \frac{dx}{x}} = e^{2 \ln x} = e^{\ln x^2} = x^2 \,.$

Multiply equation:
$$x^{2} \frac{dy}{dx} + 2xy = 10x^{3}$$
i.e.
$$\frac{d}{dx} \left[x^{2} \cdot y \right] = 10x^{3}$$

$$\underline{\text{Integrate:}} \qquad x^{2}y = \frac{5}{2}x^{4} + C$$
i.e.
$$y = \frac{5}{2}x^{2} + \frac{C}{x^{2}}$$

1

<u>Particular solution</u> y(1) = 3 i.e. y(x) = 3 when x = 1.

i.e.
$$3 = \frac{5}{2} \cdot 1 + \frac{C}{1}$$

i.e.
$$\frac{6}{2} = \frac{5}{2} + C$$

i.e.
$$C = \frac{1}{2}$$

$$\therefore y = \frac{5}{2}x^2 + \frac{1}{2x^2} = \frac{1}{2}\left(5x^2 + \frac{1}{x^2}\right).$$

Return to Exercise 3

Exercise 4.

Standard form:
$$\frac{dy}{dx} - \left(\frac{1}{x}\right)y = x$$

Compare with
$$\frac{dy}{dx} + P(x)y = Q(x)$$
, giving $P(x) = -\frac{1}{x}$

Integrating Factor: IF =
$$e^{\int P(x)dx} = e^{-\int \frac{dx}{x}} = e^{-\ln x} = e^{\ln(x^{-1})} = \frac{1}{x}$$
.

Multiply equation:

$$\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = 1$$
i.e.
$$\frac{d}{dx}\left[\frac{1}{x}y\right] = 1$$

Integrate:

$$\frac{1}{x}y = x + C$$
 i.e.
$$y = x^2 + Cx \ .$$

Toc

>

Particular solution with y(1) = 3:

$$3 = 1 + C$$

i.e.
$$C = 2$$

Particular solution is
$$y = x^2 + 2x$$
.

Return to Exercise 4

Exercise 5.

Linear in
$$y$$
: $\frac{dy}{dx} - \frac{2}{x}y = x^3 \sin x$

Integrating factor: IF =
$$e^{-2\int \frac{dx}{x}} = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$$

Multiply equation:
$$\frac{1}{x^2} \frac{dy}{dx} - \frac{2}{x^3} y = x \sin x$$
i.e.
$$\frac{d}{dx} \left[\frac{1}{x^2} y \right] = x \sin x$$

Integrate:
$$\frac{y}{x^2} = -x\cos x - \int 1 \cdot (-\cos x) dx + C'$$

Note: integration by parts,

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx, \ u = x, \ \frac{dv}{dx} = \sin x]$$
 i.e.
$$\frac{y}{x^2} = -x \cos x + \sin x + C$$

i.e.
$$y = -x^3 \cos x + x^2 \sin x + Cx^2.$$

Return to Exercise 5

Exercise 6.

Standard form:
$$\frac{dy}{dx} - \left(\frac{2}{x}\right)y = x$$

Integrating Factor:
$$P(x) = -\frac{2}{x}$$

IF =
$$e^{\int P dx} = e^{-2 \int \frac{dx}{x}} = e^{-2 \ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$$

Multiply equation:
$$\frac{1}{x^2} \frac{dy}{dx} - \frac{2}{x^3} y = \frac{1}{x}$$

i.e.
$$\frac{d}{dx} \left[\frac{1}{x^2} y \right] = \frac{1}{x}$$

$$\frac{1}{x^2} y = \int \frac{dx}{x}$$

$$\frac{1}{x^2}y = \ln x + C$$

$$y = x^2 \ln x + Cx^2 .$$

Return to Exercise 6

Exercise 7.

Of the form:
$$\frac{dy}{dx} + P(x)y = Q(x)$$
 (i.e. linear, 1st order o.d.e.)

where $P(x) = \cot x$.

Integrating factor: IF =
$$e^{\int P(x)dx} = e^{\int \frac{\cos x}{\sin x}dx} \left\{ \equiv e^{\int \frac{f'(x)}{f(x)}dx} \right\}$$

= $e^{\ln(\sin x)} = \sin x$

Multiply equation:
$$\sin x \cdot \frac{dy}{dx} + \sin x \left(\frac{\cos x}{\sin x}\right) y = \frac{\sin x}{\sin x}$$

i.e. $\sin x \cdot \frac{dy}{dx} + \cos x \cdot y = 1$
i.e. $\frac{d}{dx} \left[\sin x \cdot y\right] = 1$

Integrate:
$$(\sin x)y = x + C$$
.

Return to Exercise 7

Exercise 8.

Integrating factor:
$$P(x) = \cot x = \frac{\cos x}{\sin x}$$

IF =
$$e^{\int P dx} = e^{\int \frac{\cos x}{\sin x} dx} = e^{\ln(\sin x)} = \sin x$$

$$\left\{ \underline{\text{Note:}} \quad \frac{\cos x}{\sin x} \equiv \frac{f'(x)}{f(x)} \right\}$$

Multiply equation:

$$\sin x \cdot \frac{dy}{dx} + \sin x \cdot y \cdot \frac{\cos x}{\sin x} = \sin x \cdot \cos x$$
i.e.
$$\frac{d}{dx} \left[\sin x \cdot y \right] = \sin x \cdot \cos x$$

Integrate:

$$y\sin x = \int \sin x \cdot \cos x \, dx$$

{ Note:
$$\int \sin x \cos x \, dx \equiv \int f(x)f'(x)dx \equiv \int f \frac{df}{dx} \cdot dx$$

$$\equiv \int f df = \frac{1}{2}f^2 + C$$
}

i.e.
$$y \sin x = \frac{1}{2} \sin^2 x + C$$

= $\frac{1}{2} \cdot \frac{1}{2} (1 - \cos 2x) + C$

i.e. $4y \sin x + \cos 2x = C'$

$$\left(\begin{array}{c} \text{where } C' = 4C + 1 \\ = \text{constant} \end{array}\right) .$$

Return to Exercise 8

Toc

Exercise 9.

Standard form:
$$\frac{dy}{dx} + \left(\frac{2x}{x^2 - 1}\right)y = \frac{x}{x^2 - 1}$$

Integrating factor:
$$P(x) = \frac{2x}{x^2 - 1}$$

IF =
$$e^{\int P dx} = e^{\int \frac{2x}{x^2 - 1} dx} = e^{\ln(x^2 - 1)}$$

= $x^2 - 1$

Multiply equation:
$$(x^2 - 1)\frac{dy}{dx} + 2xy = x$$

(the original form of the equation was half-way there!)

i.e.
$$\frac{d}{dx}\left[(x^2-1)y\right] = x$$

Integrate:
$$(x^2 - 1)y = \frac{1}{2}x^2 + C$$
.

Return to Exercise 9

Exercise 10.

$$P(x) = -\tan x$$

$$Q(x) = -\sec x$$

$$IF = e^{-\int \tan x \, dx} = e^{-\int \frac{\sin x}{\cos x} \, dx} = e^{+\int \frac{-\sin x}{\cos x} \, dx}$$

$$= e^{\ln(\cos x)} = \cos x$$

Multiply by IF: $\cos x \frac{dy}{dx} - \cos x \cdot \frac{\sin x}{\cos x} y = -\cos x \cdot \sec x$

i.e.
$$\frac{d}{dx} [\cos x \cdot y] = -1$$
 i.e. $y \cos x = -x + C$.

$$y(0) = 1$$
 i.e. $y = 1$ when $x = 0$ gives

$$\cos(0) = 0 + C \quad \therefore \quad C = 1$$

i.e.
$$y \cos x = -x + 1$$
.

Return to Exercise 10

Toc

