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Abstract
The novel Helmholtz-Manakov equation and its vector soliton solutions are presented for the first time.  These solutions exhibit the expected non-trivial Helmholtz-type corrections to their paraxial 
counterparts.  The stability of the Helmholtz solutions is addressed by using a well-tested numerical perturbative approach.

Introduction

References

Vector solitons are well-known in paraxial wave optics (multi-component self-trapped non-linear structures of low-dimensional systems).  A simple extension of the well-known paraxial
non-linear Schrödinger (NLS) equation was first proposed by Manakov [1].  In the context of spatial soliton propagation, the Manakov equation governs the behaviour of an electric field 
with two transverse field components confined to quasi-2D waveguide geometry.  The initial work was extended some years ago [2], with more exotic solutions being found for both 
Kerr focusing and defocusing media.  The work presented here extends the Manakov equation to the Helmholtz-type regime by retaining the       operator:zz∂
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Non-Trivial Helmholtz-Type Corrections…
• Well-defined angles, e.g. tan2θ=2κV2,
• Angular beam broadening,
• Corrections to phase shifts,
• Modifications to soliton intrinsic velocity.

Retain Helmholtz term

The Helmholtz-Manakov (H-M) equation is a vector extension of the scalar non-paraxial non-linear Schrödinger (NNLS) equation [3].  This framework provides a well-defined connection 
between angles in the unscaled (x,z) and scaled (ξ,ζ) coordinate systems.  In contrast, paraxial models based on the NLS equation support waves propagating only at vanishingly small 
angles, which themselves are poorly defined quantities.  The H-M equation can be solved analytically using Ansatz techniques and also Hirota’s method [4].

Bright-Bright Helmholtz Soliton
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• Exist for the focusing non-linearity,
• Are topologically trivial,
• Can be found using Ansatz approach.

δ1 and δ2 are the phases of the components.
α is the polarization angle.

Figure 1.  Bright-Bright Soliton Profiles. Dotted lines
correspond to paraxial solutions (no broadening). 
Parameters: κ=10-3 and V=25, so θ≈48.2°.  The soliton 
amplitude here is η=1 with polarization angle α=π/8 .

Figure 2.  Reshaping Bright-Bright Soliton Beam.
Equal-amplitude components, α=π/4.

Figure 3.  Reshaping Bright-Bright Soliton Beam.
Unequal-amplitude components, α=π/8.

Bright-Dark Helmholtz Soliton

Initial conditions correspond to exact paraxial bright-bright solitons.  The non-paraxial parameter is κ=10-3 with η=O(1), but 
κV2>>1. This defines the Helmholtz-type non-paraxial regime, where the propagation angles are non-trivial.
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• Exist for the focusing non-linearity,
• Are topologically non-trivial,
• Can be found using Ansatz approach,
• The solution is constrained by  .2 2aη ≥

Figure 4.  Bright-Dark Soliton Profiles. Dotted lines
correspond to paraxial solutions (no broadening).
Parameters: κ and V as in figure 1. Here, η=1 and a=0.8.

Figure 5.  Reshaping Bright-Dark Soliton Beam. 

For a=0.99 and Helmholtz soliton formation occurs.  Dotted 
curves are for a=1 where the dark component B is null.

Figure 6.  Reshaping Bright-Dark Soliton Beam.

With a=0.8 and S0=5, Helmholtz soliton formation does not 
occur.  Instead there are long-lived persistent oscillations.

The initial conditions are taken as:
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S0=5,10,15 corresponds to the non-trivial propagation
angles of θ=12.9°, 26.6° and 42.1°, respectively, for
the value κ=10-3.

Dark-Bright Helmholtz Soliton • Exist for the defocusing non-linearity,
• Are topologically non-trivial,
• Must be found using Hirota’s method,
• The solution is constrained by      .  .2 2 2
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NON-TRIVIAL CORRECTIONS TO
PARAXIAL THEORY ALSO INCLUDE
A MAXIMUM INTRINSIC VELOCITY.

Figure 7. Dark-Bright Soliton Profiles. Dotted lines
correspond to paraxial solutions (no broadening).
Parameters: κ and V as in figure 1.  Here, A0=1, a=0.8
and

The dark-bright soliton has a net velocity W and an intrinsic
velocity V0, in addition to its transverse velocity V:

The initial conditions are taken as:
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Dark-Dark Helmholtz Soliton • Exist for the defocusing non-linearity,
• Are topologically non-trivial,
• Must be found using Hirota’s method,
• The solution is constrained by .2 2 2 2 2
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Figure 8.  Reshaping Dark-Bright Soliton Beam. 

For a=0.99 and Helmholtz soliton formation occurs fairly 
quickly compared to the focusing case, figure 5. 

Figure 9.  Reshaping Dark-Bright Soliton Beam. 

For a=0.2 the asymptotic soliton emerges more rapidly, with 
the oscillatory component almost completely suppressed 

(c.f. Figure 8 and also Figure 6, with decreasing a).
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Figure 10. Dark-Dark Soliton Profiles. Dotted lines
correspond to paraxial solutions (no broadening).
Parameters: κ=10-3 and V1=25 , so θ1≈48.1°.  Also,

a=1 and A0=0.9.  All other
parameters are determined from implicit conditions.
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2.    The intrinsic velocity is,

where j=1,2 labels polarization component A,B.

Conclusions
• Helmholtz-Manakov vector solitons have a rich dynamical behaviour afforded by the inclusion of a second field component and an extra degree of freedom.

• Focusing Kerr Non-Linearity
Paraxial input conditions (equivalent to perturbed paraxial solitons in the rotated frame) can exhibit monotonically-decreasing oscillations in the peak amplitude 
(e.g. bright-bright).  The corresponding H-M soliton is then referred to as a STABLE FIXED POINT of the system, in a non-linear dynamical sense.

Alternatively, no steady-state asymptotic soliton (fixed peak amplitude) may emerge from the paraxial initial condition.  Instead, oscillations persist and are the 
dominant feature of the long-term dynamics.  The corresponding H-M soliton is then referred to as a LIMIT CYCLE of the system (e.g. bright-dark).

• Defocusing Non-Linearity
These H-M solitons have strongly attracting properties and are generally STABLE FIXED POINTS of the system.  The asymptotic soliton state is usually 
reached much more rapidly than in the focusing case.  This may be linked to the modulational stability of CW solutions in a defocusing Kerr medium, with the
primary dark component possessing greater stability than the anti-guiding (secondary) bright component.

BRIGHT-DARK (focusing non-linearity) and DARK-BRIGHT (defocusing non-linearity) ARE NOT EQUIVALENT!!

• For comparison: Bright scalar Helmholtz solitons are weakly attracting, with the reshaping oscillations gradually decaying to a fixed-amplitude steady-state [5].
Dark scalar Helmholtz solitons are strongly attracting, with the asymptotic soliton state emerging after a relatively short propagation length [6].
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Reshaping of the dark-dark H-M soliton is expected to mirror that of the scalar Helmholtz dark soliton [6], in the
same way that the bright-bright H-M solution reshapes like its scalar counterpart [5].
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