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We report a generic mechanism for spontancous fractal spatial pattern formation, believing this to be the first such report. The
mechanism has independence with respect to both the particular form of non-linearity and the particular context of the non-linecar
system. From our simulation we know that this system can generate a scale-dependent fractal. In the one-dimensional case its
fractal dimension changes from 2 to 1 with increase in spatial frequency.

Introduction

Complexaty focuses on commonality across subject areas and forms a natural platform for
multidisciplinary activities. Typical pgeneric signatures of complexity include: ()
spontaneous occurrence of simple pattern (e.g. stripes, hexagons), emerging as a dominant
non-linear mode, and (11) formation of highly complex pattem in the form of a fractal (with
structure spanning decades of scale). However, to our knowledge, a firm connection
between these two signatures has not previously been established. This is perhaps not
surprising since system non-linearity tends to impose a specific scale, while fractals are
defined by their scale-less character

In the photomcs domain, Berry [1] established that fractal light may be generated in simple
LINEAR optical systems. More recently, the highly-structured (linear) modes of unstable-
cavity lasers were discovered to be fractal in character [2], and optical fractal generators
based upon introducing electronic feedback/non-linearity have also been developed [3]
Instead, we propose intrinsic non-linear dynamics providing both the necessary feedback
mechanism and the pattern seed for building fractals.

Kerr-slice-with-single-feedback-mirror System

The system, as showed in the figure below, 1s composed of & thin slice of Kerr medium
tlluminated from one side by a spatially smooth beam and a feedback mimor a distance d
away to generate counter-propagating beams in the Kerr shee [4] The reflectivity of the
mirror 18 R. The photoexcitation density a of the Kerr medium has a relaxation time constant
T and a diffusion length 1, To simplify the numenical model, the thickness L of the Kerr
medium 1s considered to be small enough so that the time by which light transverses though
it and the diffraction caused by it can both be neglected. Then the evolution of the system can
be represented by the [ollowing equations:
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where 7 parametenizes the Kerr effect (positive for a focusing medium, negative for a
defocusing medium), and F and B are the forward and backward field respectively.
According to free space propagation, the Founer transforms of the forward and backward
fields obey the relation:
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where B(K) and F{K) are the Fourier transforms of the backward and forward fields, and k,
15 the wave number of the beam. From this equation, we know that any frequency
components higher than k, will die out after propagation. So one can also use k, Lo control
the maximum frequency which can pass through the free space.

Pattern Formation Thresholds

From linear stability analysis [4], the instability threshold of the system is:
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(2a) Threshold @/k, =100,1, =1,R=09,yL=1) (2b) Expected spectrum

This threshold divides the frequency space into an infinite number of frequency bands. Their
widths and the separations between nearby bands decrease with K. The lowest threshold values
in the bands increase smoothly with K.

Naturally, we expect the power spectrum of the pattern to be proportional to the difference
between the input wave spectrum and the threshold Comparing the expected spectrum of the
Kerr system with the spectra of unstable laser modes [5], the amplitudes both decrease
smoothly by some laws with increase in frequency, though these laws are different

We therefore hope that this system can also generate optical fractals.

The figure on the nght is the threshold plot for 1,=0, =0,
dk,~1, and R=0.9. The lowest threshold of each frequency
band is equal. So if we make the intensity of the incident
plane wave slightly higher than the lowest threshold, the
frequencies with the same lowest threshold in all bands will
have the same growth rate. The intensity distribution in a
two-dimensional plane is then an extremely complex
pattern with a fractal dimension of 3.

Spontaneous Optical Fractals

(4d)
Two-dimensional pattem evolution of the system when [0, ™0, d%,~1, and R=09

(4a) has a one-band-pass frequency filter imposed (4b), (4c) and (4d) are pattems after the filter
1s removed. (4b) +=3T . (dc) £-6T,, (4d) £-9T, (Ty=2d/c, c1s the speed of hight).

We introduce a filter by setting k, so that only frequencies in the first band can pass. We start
with plane-wave input and steady-state photoexcitation density plus a small white noise of 1%.
The backward field intensity distribution becomes the static hexagonal pattern shown in figure
(4a). We then instantly open up the filter (set k, to infimty) to see how the system evolves.
Three intermediate patterns are shown in figures (4b), (4c) and (4d). Pattern evolution 1s from
hexagon towards a fractal pattem with a fractal dimension of 3

Pattern Evolution in Time: 1,=0

(5d) (5¢) (50)

Pattern evolution in time when 1,=0, 70, d%,~1, and R=0.9. (58) has a one-band-pass frequency
filter imposed. (5b) through to (5f) are pattems after the flter 15 removed
(5b) £=2T, , (S5c)t=7T,, (5d) t=13T,, (Se) 1=16T,, (50) t-50T, (Ty=2d/c, cis the speed of light).

We also simulate the system with just one transverse dimension. The pattem evolution of the
backward field from a simple one to a fractal-like one is shown in figure 5, and the corresponding
power spectra are plotted in figure 6. Figure (5a) is the pattem formed under the same conditions
as the pattern shown in figure (4a).



Power Spectrum Evolution in Time: 7,=0

Power spectrum evolution in time when 1,0, -0, dk,~1, and R=09. (6a) has a one-band-pass
frequency filter imposed (6b) through to (6f) are patterns after the filter is removed.
(b) t=2T,, (¢) t=TTy, (d) t=13T, (c) 16T, ([) £=50T, (T,~2dlc, ¢is the speed of light).

The harmonic frequencies of the dominant frequency grow more rapidly than other frequency
components, and those with lower frequency grow more rapidly. After 50T, all frequency
components reach a value with the same order of magnitude, We can consider the fractal pattem of
this system as composed of an infimite number of simple pattemns of different size.

Power Spectrum Evolution in Time: /,=0.1
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Power spectrum evolution in time when 1,=0.1, d%&,=100, R=09, yL=1, and I, =3.0. (a) =2T,
(B)t=5T, (c)t=10T,, (d) #=50T,, (e} +=500T, () +=2000T, (T,=2d/c, e is the speed of light ).

These figures show the dynamic evolution when medium diffusion is included. The speed of the
process does change with system parameters, such as the intensity of the incident wave. But fractal
formation 1s nonetheless very fast, typically less than 50T, Figures (7d), (7¢) and (7f) show that the
logarithm of the power spectrum normally distributes around a straight line. While the evolution of
the system continues to redistnibute power in the different space frequencies, this does not change
either the intercept or the slope of the line around which the power 1s distributed.

Spectrum Variation with Diffusion (/,,)

(8a)1,-0.8 % (8b)1,-0.4

The average trend of the logarithm of the power spectrum can be represented by a straight
line. That 1s: iog(P(k)) —a+bk

Where Pfk) and k are the power spectrum and space frequency, respectively, and a and b
are constants dictated by system parameters. Then, we have:
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Using D = % + %:2“;))) one oblains an expression of power spectrum fractal dimension:
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For our one-dimensional calculations, D must be between 1 and 2. So the equation of the
fractal dimension should be written as:

: Dk)>2
D(k)= %1«%& when 1< D(k) <2
{ D(k)<1

Since D varies with k (in common with unstable laser modes), we refer to the patterns
generated by this system as scale-dependent fractals.

Fractal Dimension vs. K
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The above plot 1s obtained by using Benoit 1.3 [§] Benoil appears to be one of the most
popular software in fractal analysis. One can see that the slope of the tangent decrease smoothly
from 2 to 0 when the window interval length increases from 1 to 100, the average slope remains
0 when the window interval length is larger than 100. So, according to the definition of
variogram fractal dimension, D=2-slape/2, the fractal dimension increases from 1 to 2 when the
window interval length increases from 1 to 100. It has a value of 2 when the window interval
length 1s larger than 100.

The fractal dimension of the pattern thus decreases smoothly from 2 to 1 with increase in spatial
frequency. This result 1s consistent with that found by using the power spectrum method, and
this proves our claim regarding the [ractal dimension of the pattern.

Other Nonlinear Systems

(1) Counter-propagating beams—no cavity [9]
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(11) Ring cavity with 2-level atoms [10]
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(8¢)1,70.2

(8d)1,-0.1

The red lines in figures (8a), (8b), (8c) and (8d) are calculated by lincar regression.
The slopes of the lines increase with decrease of the diffusion length.

Summary of Power Law Characteristics

Conclusions

“*The first prediction of spontancous fractal pattemn formation in an all-optical nonlinear system has been
presented. Moreover, we identify this as a generic process that would anse in a wide vanety of non-linear
ophical systems.

“*The particularly simple system studied here g tes optical fractals whose 11
either: (a) the optical wavelength, or (b) diffusion of the medium photoexcitation.
“*Inclusion of a spatial filter has allowed us to demonstrate both con
formation and fractal formation in the same optical system.

“*In the diffusion-limited system, we show that the dependence of spectral characteristics on the carrier
diffusion length and the input pump intensity 15 given by a rather simple law.

“* An analytical form is also derived for the (scale-dependent) fractal di
confirmed by variogram analysis.

scale 1 limited by

| (single frequency) pattern

ion, and predictions are

(9a)bvsl, (Ob)bvsi,

Variation of the slope b of the line of trend versus (a) diffusion length I, and (b) intensity of incident
plane wave I, . (a) I, =3.0, d/k,~100, R=0.9 and zL=1. (b) 1, =1.0 d/k,=100, R=0.9 and zL~1.

The slope is found to vary linearly with I, . Figure (9b) shows the relation between slope b and
intensity of input wave I, The line fitted has the equation b=b,l /(I - I,) , where I, is the lowest
threshold for pattern formation and b, 1s a constant.
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