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1. Historical Context
Light beams impinging on the interface between two dissimilar dielectric materials is one of the most 
straightforward optical geometries (see Fig. 1).  The seminal papers of Aceves, Moloney and Newell [1,2] 
considered perhaps the simplest scenario, where a spatial soliton was incident on the planar boundary between 
two different Kerr-type materials.  Their intuitive approach reduced the full complexity of the electromagnetic 
interface problem to something far more tractable – namely, the solution of a scalar equation of the 
inhomogeneous nonlinear Schrödinger (NLS) type.  Over the past two decades, their investigations of single [1] 
and double [2] interface geometries have paved the way to deeper understandings of how light behaves inside 
patterned nonlinear structures such as coupled waveguide arrays and photonics crystals.

It is true to say that the analyses of Aceves and coworkers have provided an enormous level of insight into soliton 
behavior at interfaces [1–4], and that they have heralded new research fields in nonlinear photonics.  However, 
there is an intrinsic limitation in the use of paraxial (i.e., NLS-based) models to describe geometries that 
are, by their very nature, highly nonparaxial. For instance, the paraxial approximation restricts their domain of 
validity to regimes were the angles of incidence, reflection and refraction are negligibly small.  Hence, there is an 
obvious gap that needs to be filled – it is desirable to be able to describe angles of any size, while keeping an 
intuitive scalar model.

2. Power-Law Interfaces
In recent works [5,6], we have analyzed the refraction of spatial solitons incident on the boundary between 
dissimilar Kerr-type materials at arbitrary angles.  By deploying the formalism of Helmholtz soliton theory, the 
angular limitation of paraxial models was lifted, and a manageable envelope equation emerged (by retaining the 
full generality of the in-plane Laplacian).  Applying appropriate field continuity conditions at the interface led to a 
Snell’s law for Kerr spatial solitons.  At first glance, this new law strongly resembles the classic refraction rule for 
plane waves at the interface between linear media.  However, there appears a factor (denoted by ) that captures 
the interplay between finite-beam effects and (linear and nonlinear) medium discontinuities.

Here, we report the first steps toward extending our Kerr analyses to regimes involving wider classes of materials.  
In our systematic approach, we first consider media whose nonlinear refractive index nNL has a generic power 
law-type dependence on the electric field amplitude E,

where  is a (small) positive coefficient, n0 is the linear index (n0 >> |E|q), and the exponent q > 0 [7].  The single 
power-law model is perhaps the simplest non-Kerr nonlinearity one might care to consider [8].  Materials that fall 
within this category include some semiconductors (e.g., InSb and GaAs/GaAlAs), doped filter glasses (e.g., 
CsSxSex-2) and liquid crystals. Non-Kerr regimes (i.e., where q deviates from the value of 2) have been found 
to give rise to a diverse range of new qualitative phenomena.

3. Helmholtz Modelling
We consider the TE-polarized continuous-wave scalar electric field E(x,z,t) = E(x,z)exp(–it) + E*(x,z)exp(+it), 
where x and z are the spatial coordinates in the medium, t is the time coordinate and  is the angular frequency.  
This representation makes sure that the field remains real, as should be the case.  If the spatial part of the field 
varies slowly (in the transverse direction) on the scale of the free-space optical wavelength , then E(x,z) satisfies 
a nonlinear Helmholtz equation on each side of the material boundary:

where j = 1, 2 denotes the medium and c is the vacuum speed of light.  The total refractive index nj is routinely 
taken to be the sum of two terms: nj = n0j + nNLj(E), where n0j is the linear index of medium j at frequency , and 
nNLj(E) is a small field-dependent correction.  Since the wave equation is quadratic in nj, one may make the 
approximation nj

2 ~ n0j
2 + 2n0jnNLj(E) = n0j

2 + j|E|q.  The carrier-wave component of E(x,z) can be factored out 
according to E(x,z) = E0u(x,z)exp(ik1z), so that z and x denote the longitudinal and transverse coordinates, 
respectively. Here, E0 = (n0/1kLD)1/q is a (real) constant, k1 = (/c)n01, and u(x,z) is the dimensionless envelope.  
Arbitrarily, the carrier wave in medium 1 has been factored out of E(x,z) [equally, one could have stripped out the 
complex-exponential factor exp(ik2z)]. After substitution into the above field equation, it can be shown that u
satisfies the dimensionless inhomogeneous equation,

The longitudinal and transverse coordinates are  = z/LD1 and  = 21/2x/w0, where LD1 = k1w0
2/2 and w0 are the 

diffraction length and waist of a reference Gaussian beam.  The nonparaxial parameter k = 1/(k1w0)2 = 2/42n01
2

quantifies the (inverse) beam width.  The validity of the Helmholtz modelling approach requires  ≡ /w0 << O(1), 
so that beam waists are much larger than the free-space light wavelength.  Hence,  is always taken to be a small 
parameter throughout:  << O(1).  The Heaviside unit function H() is defined so that H( < 0) = 0 and H( > 0) = +1
(see Fig. 1 – in this configuration, the interface is aligned along the z axis).  Equation (1) contains the interface 
parameters that describe the mismatch between the linear and nonlinear characteristics of the two media:

From these relations, three distinct scenarios emerge: (i) linear interfaces (defined by    so that there is no 
mismatch in the nonlinear coefficients), (ii) nonlinear interfaces (defined by  = 0, so the two media have the same 
linear index), (iii) mixed interfaces (with arbitrary choices of  and ).
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The behaviour of a scalar optical beam at the boundary between two dissimilar Kerr media is of fundamental interest in nonlinear photonics. Since this class of problem is intrinsically nonparaxial, 
the limitations of conventional (paraxial) theory must be observed with care.  Recently, we proposed the first Helmholtz model of Kerr spatial soliton refraction that is valid across the entire range
of incidence, reflection and refraction angles. Here, we report the first systematic generalization of these novel analyses to a wider class of power-law materials.  Soliton refraction laws will be 
given, and excellent agreement shown between theoretical predictions and computer simulations.  New qualitative phenomena are also uncovered in non-Kerr regimes. 

FIG. 1. Schematic diagram of a confocal
strip unstable laser cavity [1], comprising 
a small feedback mirror of half-width a.  
The characteristics of the mode pattern 
are largely independent of the shape of 
the main mirror.  Also shown is the 
geometry for a triangular feedback mirror.  
The nj, Qj, and tj (where j = 1,2, 3) are unit 
vectors used to define the configuration of 
the transverse symmetry.

4. Snell’s Law for Spatial Solitons
Model (1) in medium 1 is just the conventional power-law Helmholtz equation, for which the exact analytical bright 
soliton solutions are now known [8]. Far away from the interface, the solutions have a sech2/q profile, 

where 0 is the peak amplitude, V is the conventional transverse velocity, and ± flags a forward- or backward-
propagating beam. The additional parameters are  = 20

q/(2 + q) and a = q[0
q/(2 + q)]1/2. Here, V is related to the 

propagation angle  in the laboratory (x,z) frame (measured with respect to the longitudinal, i.e., z, axis) through 
the trigonometric relation tan = (2)1/2V.  By deploying the power-law Helmholtz solitons in tandem with the 
interfaces formalism [5,6], one can arrive at the following Helmholtz-Snell law predicting soliton refraction:

Here, i and t are the angles of incidence and transmission, respectively (see Fig. 1).  The factor  allows for the 
interplay between finite-width optical beams, system nonlinearity, and mismatched medium properties.  The 
critical angle C is defined to be the value of i at which t = 0 (i.e., where the refracted beam, in principle, travels 
along the material boundary).

5. Solitons at Linear Interfaces
It is convenient to introduce the dimensionless parameter  through [5,6]

Refraction thus tends to fall into two regimes: it may be either external (where  < 0, which implies t > i) or 
internal (where  > 0, which implies t < i).  The boundary between these two regimes is determined by  = 0, in 
which case t = i and the incident beam passes undeviated across the interface.  Thus,  = 0 defines the 
transparency condition, in which linear and nonlinear mismatches in refractive index exactly cancel each other.

6. Solitons at Nonlinear Interfaces
Solitons incident on nonlinear or mixed interfaces tend to undergo self-reshaping oscillations in the second 
medium because the focusing properties of the media are different on either side of the boundary.  A small but 
illustrative range of simulations is shown below.  One can see that the qualitative features of nonlinear refraction 
can depend strongly on the exponent q.  When  > 1, one tends to always find an externally-refracted beam (the 
threshold energy-flow for soliton formation in medium 2 is always exceeded – see Fig. 3).  However, when  < 1, 
beam stability is reduced (the threshold energy-flow requirement for soliton formation in medium 2, which is now
higher than in medium 1, is not always crossed).  This effect tends to become more pronounced as q increases, 
where a beam encountering a nonlinear interface may break up into radiation (see Fig. 4).

7. Conclusions
Our work here comprises two-fold novelty, combining for the first time Helmholtz propagation effects (i.e., 
oblique incidence of solitons at interfaces) with non-Kerr nonlinearities. Our model can also describe regimes 
where  < 0, while paraxial theory [1–4] is confined to  > 0.  Extensive computations have tested the analytical 
predictions of the Helmholtz-Snell law against direct numerical integration of Eq. (1); excellent agreement has 
been found in a range of different of parameter regimes.  Simulations have considered scenarios such as purely 
linear interfaces (defined by  = 1), purely nonlinear interfaces (defined by  = 0), and mixed interfaces (with 
arbitrary values of  and ).  New qualitative phenomena have been uncovered, with beam robustness tending to 
decrease as q increases. 

FIG. 2. Comparison of theoretical predictions made 
by the Helmholtz-Snell law (solid lines) and full 
numerical computations (points) for linear interfaces 
( ) with 0 = 1 and  = 10–4.  Excellent quantitative 
agreement has been uncovered (these particular 
plots are for q = 1.0)  Left: internal refraction ( =  > 
0), where the four curves lie below the line t = i and 
a critical angle clearly exists.  Right: external 
refraction ( =  < 0), where the four curves lie above
the line t = i.  Beams at larger (i.e., nonparaxial) 
incidence angles tend to suffer less deviation than at 
low angles because the interface perturbation is 
distributed over a much shorter propagation length. NL
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FIG. 1. Left: Schematic diagram illustrating 
the geometry used in the mathematical 
analysis of the Helmholtz interface problem.  
Right: In computations, one works in the 
frame of reference (x0, z0) in which the 
incident beam travels along the reference 
(longitudinal) axis (i.e., where the interface 
is rotated with respect to the incident beam).  
The two representations are physically 
equivalent, as they must be.

FIG. 3. Simulations showing external refraction for a nonparaxial incidence angle.  A soliton of unit amplitude (0 = 1) is 
incident at i = 30º on a nonlinear interface ( = 0) with  = 2.0, and is refracted away from the interface.  Oscillations in the 
beam parameters (amplitude, width, and area) are more rapid (in z) as q increases.  Left: q = 1, middle: q = 2 (Kerr 
nonlinearity); right: q = 3.  White line marks the interface. 

FIG. 4. Simulations showing internal refraction for a nonparaxial incidence angle.  A soliton of unit amplitude (0 = 1) is 
incident at i = 30º on a nonlinear interface ( = 0) with  = 0.5, and is refracted toward the interface.  Oscillations in the 
beam parameters are slower (in z) as q increases (compare this with Fig. 3, where  > 1). Left: q = 1, middle: q = 2 (Kerr 
nonlinearity); right: q = 3. White line marks the interface.
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