Propagation of Helmholtz Solitons at Nonlinear Interfaces
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Abstract: The refledion and refraction properties of soliton beams at nonlinear interfaces and arbitrary
angles is analyzed using the nonlinear Helmholtz equation. The results highlight limitations of previous
studies based on the paraxial nonlinear Schrédinger equation.
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1. Introduction

The behaviour of spatial solitons at nonlinear interfaces has been analysed bath analytically and numerically [1].
However, previous gudies have been based on the nonlinear Schrodinger equation (NSE) and their validity is
restricted to the paraxial limit and, thus, vanishingly small angles of incidence

In recent years, the use of the nonlinear Helmholtz equation (NHE) has provided a more general non-paraxial
theory [2,3] which permits the study of soliton propagation at arbitrary angles. In thiswork, agenerali zed nonlinear
Helmholtz equation (NHE) for studying the behaviour of Helmholtz solitons at the interface of two Kerr focusing
media is presented and the behaviour of the Helmholtz soliton solutions is analysed by using analytica
considerations. The results are supported by simulations using well -tested numerical methods [4].

2. Generalized NHE and Helmholtz solitons.

We mnsider the propagation of soliton beams in an inhomogeneous 2D space where two distinct focusing Kerr
media ae separated by an interfaceat x=0 as described in Figure 1.
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Fig.1. Coordinate axesused in the analysis. Theinterface separating the two Kerr mediais found at x=0

In Figure 1, 9 isthe angle of incidence of a bright soliton at theinterface, n; +a;l, i =1,2, is the total refractive
index of the medium iand | is the optical intensity. The complex envelope A of a CW optica fied
E(x,2=A(X,2exp(ikz) evolves according to the generalized nonlinear Helmholtz equation
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where H(¢) isthe Heaviside function and x=1/(kw) is a non-paraxiality parameter [2]. The relations between the
linear and nonlinear contributions to the refractive index at both sides of the discontinuity are given by 4 and «,
respectively.




Eq. 1 isageneralisation for the spatially inhomogeneous case of a nonparaxial nonlinear Schrédinger (NNLS)
equation which isfully equivalent to the NHE [2]. The eact soliton solution in the second medium reads
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where _
ny'=npVa™. (4)

When a=1 and A=0, Eq. 3 gvesthe soliton solution for the first medium [2] by making the substitutions n,—n, and
V,—V,. Theparaxial soliton solution isrecovered in thelimit k—0, K\>—0 and k17>—0 [2]. Since 2KV*=tan’6[2)],
where 6 is the propagation angle in the unscaled reference frame, the second condition forces vanishingly small
propagation angles for the paraxial approximation to be valid.
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3. Discontinuitiesin the linear refractive index.

When the nonlinear response is continuous across the interface, =1, the soliton refraction angle is determined by
the effect of the discontinuity in the linear refractive index. The continuity of the phase of the solitons at =0,
assuming that kn?<<1, gives the condition

V, = V2(@1-4) - %. ©

By using the expression tan%@)=2xJ%, Eq. 5 can be written in terms of the propagation angles in the unscaled
reference frame as Snell’s law of refraction, nicos(@1)=nycos(@,). Thisresult is confirmed by the numerical results
obtained from the integration of (1), as shown in Fig. 2.
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Fig.2. Refraction angle for different values of x and A: numerical results (points) and valuesfrom Eq. 5 (solid lines).

Whereas paraxial analyses [1] are restricted to 4>0, solitons propagating at wide angles resulting from the
refraction when A4<0 can aso be studied in the NHE framework.

Figure 3 shows the power reflection coefficient in various situations. For A4>0, the condition for total internal
reflection can be written in terms of soliton parameters as Vi<Vc, where Ve=(2k (1- A4)/4)™2. In the paraxial case,
the refledion coefficient for linear propagation of optical beams coincides with Fresnel’s formula (dashed line) [1]
since the finite beam width is negleded. In the full Hemholtz analysis, the results for linear beam propagation
(points) diverge from the result for plane waves as K is increased from zero. The numerical results show how the
reflection coefficient for the solitons (lines-points) deviates from the predicted linear result including the effect of
the finite beam width (points) as the incident soliton becomes narrower (larger ), showing a transition from a
quasi-linear behaviour for small « to a highly nonlinear regime as 4/4x approaches 1.
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Fig.3. Reflection coefficient showing the transition from the quasi-linear behaviour to the highly nonlinear regime asx changes (4=4.107%).
4. Discontinuitiesin the nonlinear refractive index.

When the linear part of the refractive index is continuous across the interface, 4=0, the saliton in the second
medium preserves the propagation direction but changes substantially its width depending on a2 Asthe nonlinear
refractive index of a medium increases (a™>1), the soliton becomes narrower and its associated power decreasesin
relation to ™. The opposite effect is obtained when o '<1.

Therefore, when a soliton propagates in a nonlinear medium and crosses into a second one with a; <aj, the
soliton splitsinto a series of narrower beams due to its excess power. The number and amplitudes of the resulting
solitons depend on o™ On the other hand, when o<1, the power of the incident soliton may not be high enough to
create a soliton in the second medium, thus leading to a progressive diffractive broadening of the resulting beam in
the second medium.

The numerical integration of (1) in the case ™*>1 evidences one important difference with the paraxial theory
[1], which establishes that the number of solitons depends uniquely on the strength of the nonlinearity. In the
Helmholtz framework, the soliton pattern created in the second medium is determined by both « and the soliton
angle of incidence 6. Figure 4 shows how the number and trajectories of the resulting beams are modified when the
angle of incidence isincreased (from left to right) and the strength of the nonlinearity is fixed.
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Fig.4. Formation of different soliton patterns when o* isfixed and the angle of incidencevaries.
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