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ABSTRACT 
 

In this paper, we give an overview of new results in Helmholtz soliton theory. Firstly, fundamental considerations are made 

in terms of new contexts for Helmholtz solitons that arise directly from Maxwell's equations. We then detail applications 

involving a variety of different material interfaces and the role of Helmholtz solitons in these configurations. Finally, spe-

cific new families of solutions arising from the generalisation of the Manakov equation are reported.  
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1.  INTRODUCTION 
 

Previous research on the Non-Linear Helmholtz (NLH) equation has permitted the generalization of both bright [1] 

and dark [2] spatial solitons in Kerr media to the finite-angle regime, where oblique beam propagation may be at an arbi-

trarily large angle relative to the longitudinal axis.  In this approach, the intrinsic angular limitations of conventional Non-

Linear Schrödinger (NLS) analyses, imposed by the assumption of beam paraxiality, are eliminated.  Our analytical investi-

gations are complimented by well-tested numerical techniques, developed specifically for the accurate solution of NLH 

equations [3].   

 

The Kerr NLH equation is fully equivalent [1] to a non-paraxial Non-Linear Schrödinger equation 
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describing the evolution of the normalized complex envelope u of an optical beam.  Here, Dz Lζ = , 1 2

02 x wξ = , 

2

0 2DL kw= , ( ) ( ) ( )0, , expE x z E u x z ikz=ɶ  and 2k π λ= .  0n is the linear refractive index, 0 0nλ λ=  the optical wave-

length, ( )1 2

0 0 2 DE n k n L= , 2n  the Kerr coefficient and 2 2

01 k wκ =  is the non-paraxiality parameter.  The ±  sign flags a 

focusing or defocusing Kerr non-linearity.   Equation (1) retains the full spatial symmetry of the NLH model, and is a more 

convenient framework for comparing new results with those obtained from paraxial calculations.  The NLS equation can be 

recovered from Eq. (1) when the Helmholtz operator ζζκ∂  is neglected. 

 

In this paper, we give an overview of some recent new results in Helmholtz soliton theory.  Three topics have been 

selected for this purpose. We consider the modeling of the propagation properties of Helmholtz solitons directly using the 

full 2D Maxwell’s equations [4], the behaviour of solitons incident on non-linear interfaces at oblique angles [5], and fami-

lies of new exact analytical vector solitons arising from the proposed Helmholtz-Manakov (H-M) equation [6].   



 

The use of the full 2D non-linear Maxwell’s equations for analyzing the propagation properties of Helmholtz solitons 

provides a more general framework free of the restrictions encountered in other approaches.  The results support investiga-

tions based on Eq. (1) for TE-polarized optical beams in a quasi-2D medium, and allow us to extend previous work on 

Helmholtz solitons to non-paraxial regimes other than those arising solely from angular considerations. 

 

The reflection and refraction properties of soliton beams at non-linear interfaces have been analyzed extensively us-

ing the paraxial NLS equation [7].  Here, we present new results concerning the non-linear reflection and refraction proper-

ties of optical solitons, at arbitrary angles of incidence, using an NLH model.  Our work highlights the limitations of previ-

ous studies based on the NLS equation that are restricted, by the paraxial approximation, to consideration of vanishingly-

small incidence angles. 

 

The propagation of spatial vector soliton beams is often described by the Manakov equation [8].  We report the 

Helmholtz generalization of the Manakov model and present its exact analytical soliton solutions, derived for both focusing 

and defocusing Kerr media.  These results are accompanied by an overview of the dynamical properties of the new solu-

tions.  Helmholtz-Manakov solitons are found to exhibit non-trivial features that are absent from the corresponding paraxial-

based descriptions. 

 

2.  HELMHOLTZ SOLITONS AND MAXWELL EQUATIONS 
 

The evolution of a TE-polarized optical field, propagating in a non-magnetic two-dimensional medium with elec-

tric field ( ) ( ), , , ,yx z t E x z t=E y
⌢

,  is described by the 2D Maxwell equations 
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for beam propagation that takes place in the x-z plane.   In a Kerr medium, the refractive index is 
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braces indicate temporal average over a large number of optical cycles [9].  Such behaviour can be implemented by supple-

menting Eqs. (2) and (3) with a Debye type of equation for the nonlinear contribution to the refractive index [10].  In either 

case, we report that, for a continuous-wave beam, a NLH equation can be derived from Eqs. (2) and (3).  This equation gov-

erns the evolution of the complex amplitude ( ),E x zɶ  of the optical field, where ( ) ( ) ( )0, , Re , expyE x z t E x z i tω = − 
ɶ .  

Equation (1) is obtained as the corresponding evolution equation for the field envelope. 

 

The behaviour of multi-soliton solutions of the NLS equation can be strongly influenced by the presence of perturba-

tions.  Helmholtz-type non-paraxiality acts as such a perturbative contribution during the initial focusing stages of periodic 

evolution [11].  Equation (1) predicts that the Helmholtz operator ζζκ∂  
modifies the soliton period [11] of a two-soliton 

bound state, and this has been confirmed by numerical solution of the full Maxwell equations [4,12]. 

 

When even stronger non-paraxiality is present, a launched high-order soliton can become unstable and undergo a 

fission effect, whereby the bound state breaks up into its individual components [11].  Figure 1 illustrates the splitting of a 

third-order soliton beam into three fundamental Helmholtz solitons, as given by Eq. (1) when 0.005κ = [9].  Figure 2.a 

displays the electric field amplitude at a given time t0, obtained by solving the full Maxwell’s equations assuming an instan-

taneous nonlinearity.  Whereas the two results agree qualitatively in the description of a fission process, there are noticeable 

differences in the detailed evolution for the two cases.  This differences have their origin in the presence of parametric con-

version to the third harmonic in the strong focusing stages when the full time domain Maxwell equations are used to de-

scribe the problem.  This effect, which is not taken into account in Eq. (1), where a single spectral component is considered, 



acts as a loss mechanism on the fundamental frequency component beam and, thus, introduces an additional perturbation 

which modifies the propagation properties of the optical beam.  

 

 

 
 

Figure 1.  Evolution of an optical beam showing the splitting of a third-order soliton [11] as obtained from the numerical integration 

of Eq. (1). 
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Figure 2.  E field magnitude ( )0, ,yE tξ ζ  computed from the time-domain Maxwell’s equations for a nonlinear instantaneous re-

sponse medium (a) and a slow response nonlinear medium (b).  In the calculations, equal scalings have been used for the 1 2

02 x wξ =  

and 1 2

02 z wζ =  coordinates.  The ζ  coordinate has been adjusted to that of Figure 2 by using ( )1 2
2ζ κ ζ′ = . 

 

  

The third harmonic generation due to four-wave mixing (FWM) can be prevented by assuming a slow nonlinear re-

sponse.  Figure 2.b shows the computed electric field at t0 amplitude for a medium with an arbitrary second order response 

of the nonlinear contribution of the refractive index which has been designed to prevent the generation of FWM terms and, 

at the same time, provide a controllable response time.  We find that the description of the fission process at a given instant 

and in the region of space shown in Figure 2 is in excellent agreement with the results obtained using the CW Eq. 1.  Never-



theless, the detailed temporal evolution is found to exhibit rich dynamics, dominated by the selected response time for the 

nonlinear refractive index, which shows a deep contrast with the straightforward evolution found for an instantaneous re-

sponse medium.   

 

3.  HELMHOLTZ SOLITONS AT NON-LINEAR INTERFACES 
 

The oblique evolution of solitons at the interface separating two Kerr-type media can be described by a generalized 

NLH equation [5].  Our numerical simulations show that, when there is a mismatch only in the linear part of the refractive 

index, the incident solitons are governed by Snell's law [5].  In general, it has been found that the reflection and refraction 

characteristics of optical solitons possess key features that cannot be adequately described by paraxial theory [7].   

 

In this paper, we focus primarily on the analysis of soliton behaviour when the linear refractive index is continuous 

across the interface. The general solution shows that, when a soliton enters a medium with a weaker non-linearity, the out-

going beam may suffer diffractive spreading without limit unless the input power exceeds some critical value (see Fig. 2(a)).  

On the other hand, when the second medium is characterized by a stronger non-linearity, any excess power associated with 

the incident soliton causes the beam to break up into a distribution of narrower solitons (see Fig. 2(b)). 

 
  

  
  

Figure 3. Numerical results corresponding to soliton evolution at the interface between two Kerr-type media when the magnitude of the 

non-linear refractive index in the second medium is (a) lower and (b) higher than in the first medium. 

 

The Helmholtz-interface framework yields important quantitative corrections to paraxial predictions [7] that can ex-

ceed 100%.  Moreover, significant qualitative differences between the two descriptions appear when the magnitude of the 

non-linearity is higher in the second medium.  In the paraxial regime, the number of secondary solitons increases depending 

on the magnitude of the square root of an expression involving the two non-linear indexes.  Helmholtz modelling shows that 

a more restrictive number of solitons are actually formed.  We also find that the multi-soliton structure that develops de-

pends not only on the aforementioned index relationship but also on the angle of incidence.  In a pending publication [5], we 

present a full characterization of the soliton pattern generated in the second medium based on extensive numerical simula-

tion. 

 

4.  HELMHOLTZ-MANAKOV SOLITONS 
 

When the electric field confined to an isotropic quasi-2D waveguide has only a single transverse field component, the 

NLH equation (1) provides an accurate description of scalar wave propagation.  When the guided field has two orthogonal 

transverse components, the appropriate model is the Helmholtz-Manakov (H-M) equation [6], 
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The physical scalings are identical to those used in Eq. (1), but now the wave field U is the single-column two-component 

vector ( ) ( ) ( ), , , ,
T

A Bξ ζ ξ ζ ξ ζ=   U , where T denotes the transpose.  As in the scalar case, the familiar (paraxial) Mana-

kov equation [8] can be recovered in the limit that the consequences of the Helmholtz operator ζζκ∂  are negligible with 

respect to other terms.  The H-M equation possesses U(2) symmetry, and the evolution of the two perpendicular field com-

ponents involves a non-linear coupling due to the Kerr effect. 

 

 Equation (4) admits four new exact analytical soliton solutions, which have been deriving by combining ansatz 

techniques and Hirota’s method [13] with the physical geometry of the propagation problem [2,11].  In both focusing and 

defocusing cases, there are two distinct solution families.  In a focusing Kerr medium, we find bright-bright and bright-dark 

solitons, where the primary component A is always a bright (sech-type) Helmholtz soliton, and the secondary B is a bright 

and a black (tanh-type) structure, respectively.  In the defocusing case, we have dark-bright and dark-dark solitons.  The 

new vector solutions capture all the generic physical attributes of Helmholtz scalar solitons [1,2].  These include angular 

beam broadening, modifications to the beam phase and non-trivial corrections to intrinsic velocities.  An important point to 

note is that the bright-dark and dark-bright solutions are not equivalent; they have very different stability properties.  

 

4.1  New families of Helmholtz solitons 

 

 We first consider the solutions for a focusing medium.  These can be derived using an ansatz approach to find the 

on-axis beam, and then applying an orthogonal transformation to generate the desired off-axis solution.  Taking the +ve sign 

in Eq. (4), we find that the bright-bright family comprises a Helmholtz bright soliton in each component, 
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The matrix ( ) ( )1 2exp cos ,exp sin
T

i iδ α δ α=   C  is a complex polarization vector obeying † 1=C C .  The free parameter α 

is the polarization angle, determining the relative strength of the excitation in each component, and jδ  ( 1, 2j = ) are phases.  

In the limit that 0α → , or 2π , the NLH bright soliton [1] is recovered.  The bright-dark soliton solution is, 
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where 2 2aη > .   Solution  (6) consists of a bright soliton in the primary component, and a dark-type tanh solution (with a 

phase shift of π  across its transverse dimension) in the secondary component.  The bright soliton of Eq. (1) can be recov-

ered in the limit a η→ .  The transverse velocity V of the beam is directly related to the propagation angle θ . This particu-

lar relation takes the same form as that linking the analogous properties of the dark-bright soliton discussed below. 

 

 For a defocusing medium, where the –ve sign is taken in Eq. (4), we have derived dark-bright and dark-dark soliton 

solution families.  The dark-bright soliton is, 
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The transverse velocity V is related to the propagation direction θ , relative to the longitudinal z axis, of the background 

plane wave through tan 2 Vθ κ= .  The intrinsic velocity 0V  is related to the propagation direction 0θ , relative to the 

plane-wave background, of the grey “dip” through 0 0tan 2 Vθ κ= .  W is the net velocity of the beam, where 

( )0tan 2 Wθ θ κ− = .  It can then be shown that, 
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where 2 2

0Aχ ≡ .  Inspection of Eq. (7d) shows that there is a maximum phase shift (that is, “greyness”) that the solution can 

support, depending upon the non-paraxial parameterκ , the background intensity 2

0A  and the free parameter a.  That is, 
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The physical origin of this effect is the requirement that the refractive index must remain positive, or, equivalently, that the 

non-linear phase shift must not exceed the linear one [2].  There is no analogue of this effect in paraxial theory, since con-

ventional Manakov solitons may possess any arbitrary 0 2φ π≤ ≤   [14].  Solution (7) is also constrained by 

2 2 2

0 cosA aφ ≥ .  When the equality is satisfied, the bright component vanishes and dark soliton of Eq. (1) is recovered [2]. 

 

 The dark-dark soliton of Eq. (4) is, 
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where 2 2 2

0 0A Bχ ≡ + .  The structure of this solution is the most complicated, with two possible transverse velocity parame-

ters jV  ( 1, 2j = ) and two intrinsic velocities given by Eq. (7d), where ( ) ( )0 0j j jV Vφ φ φ= → .  However, there must be a 

common net velocity W.  Again, each component of the solution can sustain a maximum greyness, given by Eq. (8).  

 

 In each of the four new solutions presented above, the corresponding Manakov solitons [8,14] can be recovered in 

the simultaneous multiple limits 0κ →  (broad beams), 0Iκ →  where { }2 2 2

0 0, ,I A Bη≡  (low intensity), and 2 0vκ →  



where { }0, ,v V V W=  (negligible propagation angles).  This is a physical requirement of Helmholtz soliton theory, since 

paraxial solutions must be found when the system behaves paraxially.  The simultaneous limits are completely equivalent to 

0ζζκ∂ → . 

 

4.2  Helmholtz-Manakov soliton stability  

 

 We now present an overview of the stability properties of the new families H-M solitons, with respect to perturba-

tions to their angular spectra.  In focusing media, we examine the stability of bright-bright solitons by considering initial 

conditions of the form ( ) ( ) ( )0,0 sech exp iSξ ξ ξ= −U C , that corresponds to launching an exact solution of the (paraxial) 

Manakov equation when 1η =  [8].  For such beams, with 1κ <<  and 2 1κη << , rotational transformation (that gives a new 

longitudinal axis coinciding with the propagation axis) shows that each initial condition may be regarded as an exact Mana-

kov soliton whose width has been reduced by the Helmholtz factor ( )1 2
2

1 2 Vκ+ , where ( ) 1 2
2

0 01 2V S Sκ
−

= −  [11].  For 

0 5,  10S =  and 15, with a typical value of 310κ −= , the non-paraxial propagation angles are 12.9θ = ° , 26.6°  and 42.1° .  

The peak amplitude exhibits monotonically-decreasing oscillations of the same nature as those reported for scalar Helm-

holtz solitons [2,11].  As ζ → ∞ , the oscillations disappear, leaving a stationary beam.  This final, propagation-invariant, 

state is an exact H-M soliton.  We have also considered similar initial conditions for the bright-dark soliton (6) and have 

found that such perturbed beams are always unstable. 

 

 For defocusing media, we consider the canonical dark-bright initial condition, 

 

( ) ( ) ( )0,0 tanh expA a iSξ ξ ξ= − ,                             (10a) 

          ( ) ( ) ( )2

0,0 1 sech expB a a iSξ ξ ξ= − − .                     (10b) 

 

Figure 4 illustrates the evolution of the beam amplitude and width for two values of a.  An H-M soliton is always found to 

emerge asymptotically from initial condition (10). 

(a) (b) 

 

 
 

Figure 4.  Reshaping curves for initial condition (10) with (a) a = 0.8 and (b) a = 0.2. 

Solid curves: S0 = 5, dashed curves: S0 = 10, dot-dash curves: S0 = 15. 

 

 We have also considered dark-dark initial conditions for defocusing media, 

 

( ) ( ) ( )0 0,0 tanh expA A iSξ ξ ξ= − ,                    (11a) 

          ( ) ( ) ( )2

0 0,0 1 tanh expB A iSξ ξ ξ= − − ,                (11b) 



 

Figure 5 illustrates the reshaping process, and demonstrates the relatively rapid emergence of full H-M solitons from such 

initial conditions.  The asymptotic width of the beam in these cases is given by ( )1 2
2

1 2 Vκ+ , and is independent of the am-

plitude 0A , so long as the quasi-paraxial condition 2

0 1Aκ <<  is satisfied. 

 

 
 

Figure 5.  Universal reshaping curves for initial condition (11).  Solid curves: S0 = 5, 

dashed curves: S0 = 10, dot-dash curves: S0 = 15. 

 

 

CONCLUSIONS 
 

 Firstly, we have shown that exact analytical Helmholtz soliton solutions satisfy a governing evolution equation that 

follows exactly from 2D Maxwell’s equations. This result generalizes significantly the domain of applicability of Helmholtz 

soliton theory to beyond non-paraxial considerations arising from oblique propagation effects. These analytical conclusions 

are substantiated by comparisons of the numerical solutions of the appropriate non-linear Helmholtz equation and those of 

Maxwell’s equations.  

 

 We then presented results from the first analysis of solitons incident at non-trivial oblique angles on interfaces 

separating two different Kerr media.  This regime is of fundamental interest and, as is shown in Fig. 2, is clearly outside the 

scope of approaches based on the paraxial approximation [7].  These preliminary interface results can be generalized in a 

systematic way by considering solitons in other classes of media, such as power-law and polynomial-type media [15]. 

 

 Finally, we reported a new soliton-bearing vector wave equation for describing the propagation of spatial optical 

beams in isotropic Kerr media.  Hirota’s method and geometrical considerations have allowed us to derive families of four 

new exact analytical soliton solutions. The known Manakov solitons, along with scalar paraxial Kerr and scalar Helmholtz 

Kerr solitons, emerge as particular limits of these more general Helmholtz solutions.  A numerical perturbative analysis has 

allowed us to examine the stability of these new vector solitons.  With the exception of the bright-dark class of soliton, they 

all behave as robust attractors and can be classified as stable fixed points of the system (in a non-linear dynamical sense). 

 

 We expect the new Helmholtz-Manakov equation, and its soliton solutions, to form the basis for a thorough 

understanding of how multiple spatial vector beams interact with each other at arbitrarily large angles [16].  Furthermore, 

these considerations are likely to play a central role in the analysis of other experimentally relevant configurations, such as 

the oblique propagation and interaction of spatial solitons at arbitrary angles in birefringent waveguides.  Helmholtz-type 

models provide an ideal framework for investigating the finite-angle dependence of many vectorial phenomena, that include 

beams incident obliquely on non-linear interfaces, polarization scattering effects, and polarization instabilities (transfer of 

energy from the fast to the slow mode) in birefringent slab waveguides [17,18]. Our considerations are also likely to be of 

central importance in the design of any futuristic all-optical devices that exploit multiplexed spatial solitons for their opera-

tion. 
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