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Appendix E:  Lagrangian variational techniques 
in paraxial vortex dynamics 

 

In this Appendix, attention is paid to the evolution of an optical vortex solution of the 

NLS equation.  For simplicity, three cases of increasing complexity are considered 

which consist of a broad Gaussian background beam with (a) no singularity, (b) an 

on-axis singularity and (c) an off-axis singularity.  A Lagrangian method is employed 

since exact analytical vortex solutions of the (2+1)D governing equation, where the 

diffraction operator captures two transverse dimensions, are unknown.  Such varia-

tional descriptions are mathematically simpler and more physically transparent than 

other techniques, such as ‘matched asymptotics’ [Y. S. Kivshar et al., Opt. Commun. 

152, 198 (1998); B. Luther-Davies et al., J. Opt. Soc. Am. B 14, 3045 (1997); J. 

Christou et al., Opt. Lett. 15, 1649 (1996)]. 

 The NLS vortex problem has previously been analysed by Syed [K. Syed, 

MSc.thesis “Optical vorticies and spatial dark solitons in passive nonlinear media,” 

University of Strathclyde (1991)].  However, in one particular case, the published 

Euler equations of motion contain a small error.  The motivation behind this subse-

quent analysis is thus to verify the validity of the equations of motion for cases (a) 

and (b), reported by McDonald et al. [G. S. McDonald, K. S. Syed and W. J. Firth, 

Opt. Commun. 94, 496 (1992)], and to derive the correct coupled system for case (c). 

 

E1.  VARIATIONAL FRAMEWORK 

The NLS equation may be written as 

  22 0
2

F Fi F Fα σ
ζ ⊥
∂

+ ∇ + =
∂

,           (E1) 

____________________________________________________________________ 
 342. 



J. M. Christian  Appendix E 

where  is the two-dimensional transverse Laplacian, 2
⊥∇ α  determines the scale of 

the transverse coordinates and 1σ = ±  flags a focusing/defocusing Kerr non-

linearity.  Equation (E1) can be regarded as the Euler-Lagrange equation of motion 

for a Lagrangian density L, where 

{ }
*

2*

2 2
i F FL F F F F Fα σ

ζ ζ ⊥
 ∂ ∂

= − − ∇ + ∂ ∂ 

4

2
              (E2) 

satisfies the field equation * 0L F/ ∂/ =∂ , or  

        
( ) ( )* *

0L L L
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⊥
*

∂ ∂ ∂ ∂
−∇ ⋅ − =

∂∂ ∂ ∇ ∂ ∂
.                    (E3) 

To proceed with the analysis, an ansatz is chosen for the functional form of the vor-

tex field F, which is defined by a set of variational parameters { }β .  The total La-

grangian  is then obtained by integrating { }L F  over the transverse plane : Ω

{ }2  d L F⊥
Ω

≡ ∫∫ x ,                       (E4) 

where  is a suitable set of transverse coordinates.  From this quantity, the longitu-

dinal evolution of the parameter set 

⊥x

{ }β  can be calculated with recourse to the stan-

dard Euler equations of motion: 

0δ
δβ

= ,       or      
( )

0d
d d dβ ζ β ζ

∂ ∂
− =

∂ ∂
.                      (E5) 

In practice, it is sensible to adopt a coordinate system most appropriate for studying 

vortex dynamics, that is, one with obvious rotational symmetry in the transverse 

plane.  In this case, we use plane-polar coordinates ( ),r θ  and Eq. (E4) for the system 

Lagrangian becomes 

      .                         (E6) { }
2

0 0

 drd rL F
π

θ
+∞

= ∫ ∫
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E2.  GAUSSIAN BEAM 

In this case, the ansatz assumes a particularly simple form: 

     ( ) ( ) ( ) 2
0, expF Fζ ζ γ ζ⊥ r = − x ,                   (E7) 

where  and 0F γ  are the variational parameters of the problem, and are potentially 

complex functions of ζ .  They are rewritten explicitly in terms of their real and 

imaginary parts, 

     ( ) ( ) ( )0 R IF F iFζ ζ ζ= + ,                      (E8a) 

      ( ) ( ) ( )R Iiγ ζ γ ζ γ ζ= + .                     (E8b) 

In this case, the rotational symmetry means that the transverse gradient operator is 

ˆ r⊥∇ = ∂r .  By substituting Eqs. (E8) into Eq. (E6), the Lagrangian is found to be 

    
2

2 2
0 02 2

1 1 1 ,
2 42

R I I I
I R

R RR R

dF dF dF F F F F
d d d

π γ γα
γ ζ ζ ζ γγ γ

   
= − + − + +    

     

4
0

σ     (E9) 

where 2 2
0

2
R IF F F= + .  Variation with respect to Iγ , Rγ , IF  and RF , respectively, 

yields the set of equations, 

         0
0 02 R

I
R

Fd F F
d d

dγαγ
ζ γ ζ

= − + ,                   (E10a) 
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           ( )
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dF F d F d F F F F
d d d

γ γ γ σα
γ ζ ζ ζ γγ γ γ

 
− + + − + + + 

 
.=   (E10d) 

This system can be solved to yield three relatively simple equations of motion for the 

amplitude, waist and phase of the propagating spatial beam: 
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4R
I R

d
d
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ζ

= ,        (E11b) 

( ) 22 2
02
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I

R I R
d F
d
γ σα γ γ γ
ζ

= − − + .                   (E11c) 

 

E3.  GAUSSIAN BEAM WITH ON-AXIS PHASE SINGULARITY 

In this case, the beam has a seed at the origin, so that the vortex field may be de-

scribed by 

( ) ( )( ) ( ) 2
0, expF F iζ ζ ξ η γ ζ⊥ r = + − x .                      (E12) 

Following the same method, the Lagrangian is found to be 
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γ σ
γ

 (E13) 

The variational procedure can then be carried out, leading to the equations 

  0
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Again, the system can be simplified, and equations of motion derived for the beam 

amplitude, waist and phase: 
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0
04 I

d F
F

d
αγ

ζ
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   4R
I R

d
d
γ αγ γ
ζ

= ,        (E15b) 

    ( ) 22 2
02

16
I

R I
d F
d
γ σα γ γ
ζ

= − − + .            (E15c) 

These results can be generalized to the case of a vortex with an arbitrary topological 

charge.  By recasting ansatz (13) into the form 

        ( ) ( ) ( ) ( )2
0, exp expF F r r imζ ζ γ ζ⊥  = − x θ , 

where  labels the vortex charge, and repeating the analysis with the 

transverse diffraction operator expressed as 

1, 2,...m = ± ±

1ˆ ˆr rθ θ
−

⊥∇ = ∂ + ∂r e , variational equa-

tions (E15a) and (E15b) are recovered.  The topological charge m appears explicitly 

only as a coefficient in the phase equation, whereby Eq. (E15c) is replaced by 

   
2

22 2
0

12
2 1

I
R I

d m F
d
γ α γ γ
ζ

 +
= − − + 

  6
σ .           (E15d) 

 

E4.  GAUSSIAN BEAM WITH OFF-AXIS PHASE SINGULARITY 

In this case, the ansatz has the notable property of symmetry-breaking in the 

azimuthal coordinate θ , where 

( ) ( ) ( ) ( ) (2
0 0, exp exp expF F r r i r )iζ ζ γ ζ θ⊥  = − − φ   x .        (E16) 

The phase singularity is located at a position ( ) ( )0
0 0 0, r ,ξ η⊥ = ≡ φx  in the complex 

plane, where these two parameters are to be treated as additional generalized coordi-

nates.  Substitution of Eq. (E16) into Eq. (E6) yields the Lagrangian, 
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ζ
   (E17) 

In this example, there are six variational parameters, rather than the four of the pre-

vious two cases.  The corresponding equations of motion are found to be 
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(E18f) 

The variational equations of motion (E18) demonstrate a much greater com-

plexity than in the previous two cases.  The system captures the effect of vortex drift, 
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whereby an off-axis phase singularity orbits the beam centre throughout propagation.  

Equations (E18) can still be solved, yielding 

        0
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d F
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d
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=                         (E19b) 
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 
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                (E19d) 

It can be seen that inclusion of the additional generalized coordinates ( )0
0 ,r φ⊥ =x , 

denoting the location of the phase singularity in plane-polar coordinates, leads to an 

additional conservation law for the system, Eq. (E18a).  Equation (E19d) is a cor-

rected version of Eq. (11) published in by McDonald et al..  It contains two sign 

changes in the square parenthesis, the middle factor of 2
0 2r  replaces the published 

factor of 2
0 2Rrγ , and there is an additional factor of Rγ  in the denominator of the 

final term. 

 

E5.  CONCLUSIONS 

The evolution of a phase singularity, seeded on a Gaussian beam, has been 

investigated analytically through a straightforward application of the principle of 

least action.  Three physically distinct regimes have been examined, where there is 

initially no vortex (e.g. a purely Gaussian beam), a central singularity, then an off-

centre singularity.  As the complexity of the problem increases, the equations of mo-
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tion for the beam’s amplitude and waist remain unchanged.  However, the equation 

for the phase becomes more complicated, and this influences the other parameters of 

the system via non-linear coupling. 

The variational analysis presented here captures the phenomenon of vortex 

drift.  The breaking of rotational symmetry by an off-centre singularity leads to net 

forces in the transverse plane (related to transverse gradients of the intensity) that 

cause the singularity to circulate around the beam centre (intensity maximum).  This 

phenomenon is facilitated by the inclusion of a pair of additional generalized coordi-

nates (the location of the singularity in the transverse plane), which leads ultimately 

to a new conservation law, Eq. (E18d), not seen with the previous cases where azi-

muthal symmetry is not violated. 
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