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1 Opening items

1.1 Module introduction
What are functions? Dictionaries give the following definitions:

Function Math a variable quantity regarded in relation to other(s) in terms of
which it may be expressed or on which its value depends.
(one of four meanings)

Concise Oxford Dictionary, 8th Edition (1990) Oxford University Press.

Function (math) a relation that associates with every ordered set of numbers
(x, y, z …) a number f1(x, y, z …) for all the permitted values of x, y, z …
(one of six meanings)

Longmans English Larousse, (1968) Longmans.

Not very helpful, you may think. If the dictionaries cannot say anything clearer than that, how will you
understand? Of course the purpose of a dictionary is to define rather than explain.

This module is a first step into applicable mathematics beyond the most elementary arithmetic and algebra. The
idea of a function is a very wide one, wider than we shall need to deal with. In this module we shall see how
functions are used, and how they should be looked at, thought about and described.
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One very useful way of looking at and thinking about a function is to use its graph; this is a pictorial
representation of the function, and shows a substantial part of its behaviour at once. We shall devote a good deal
of time in this module to the study of graphs and how to draw them.

Subsection 2.1 of this module defines and explains the concept of a function in very general terms. Subsections
2.2 and 2.3 examine functions from a more mathematical point of view and introduce the terminology and
notation used to describe them. The rest of the module is mainly concerned with the representation of functions.
Subsection 2.4 deals with representation by tables and equations, and the whole of Section 3 is devoted to the
important topic of graphical representation. Subsections 3.1 to 3.3 are concerned with the principles and
conventions of graph drawing, while Subsections 3.4 to 3.7 present a catalogue of polynomial functions and also
cover related matters such as the analysis of straight-line graphs, the nature of (local) maxima, (local1) minima
and points of inflection, and the behaviour of reciprocal functions. Section 4 deals briefly with the more
advanced topics of inverse functions and functions of functions.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? The answers are given in Section 6.
If you answer the questions successfully you need only glance through the module before looking at the
Module summary (Subsection 5.1) and the Achievements  listed in Subsection 5.2. If you are sure that you can meet each of
these achievements, try the Exit test in Subsection 5.3. If you have difficulty with only one or two of the questions you
should follow the guidance given in the answers and read the relevant parts of the module. However, if you have difficulty
with more than two of the Exit questions you are strongly advised to study the whole module.

Question F1

Sketch a graph of the function f1(x)2=2x32–24x, where x is any real number.

Question F2

If H(x)2=2x22–24x2+26, where x is any real number, rewrite H(x) in completed square form and hence find the
coordinates of the vertex. Does the graph of H(x) intersect the x-axis? 
If so, where is the intersection located? Does H(x) have an inverse function?
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Question F3

Find the asymptotes of the graph of the function

g(x) = (x – 2)2/(x – 1)3where x ≠ 1

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to understand the following terms: element (of a set),
equation, fraction, inequality, integer, modulus, powers, real number, reciprocal, set, roots. If you are uncertain about any of
these terms you can review them now by referring to the Glossary, which will indicate where in FLAP they are developed. In
addition, you will need to be familiar with SI units, and be able to expand, simplify and evaluate algebraic expressions that
involve brackets. If you are uncertain about your ability to perform these operations, you should again refer to the Glossary
for further information. The following questions will help you to check that you have the required level of skills and
knowledge.

Question R1

Which of the following are integers, and which are real numbers: 2, 7.0, 7, 3.1, π?

Question R2

Which of the following inequalities are true:

(a) 12<24,3(b) 2.62>2–13.6,3(c) |1–12.61|2>21.2,3(d) |1x1|2≥20,3(e) –12≤2–12?
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Question R3

Evaluate the following:

(a) 52,3(b) (–114)3,3(c) 49 ,3(d) −2 0003 ,3(e) 0. 09 ,3(f) |151|,3(g) |1–13.21|.

Question R4

Simplify the following expressions:

(a) a122×2a,3(b) a132×2a12,3(c) b13/b12,3(d) c142×2c121/c16.



FLAP M1.3 Functions and graphs
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question R5

Simplify the following expression: a122+23a2–24a2+27.

Question R6

Expand the following expressions:

(a) (u2+23)(u2–23),3(b) (1p2+22)(1p2–24)2+2(1p2+21)2.
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2 Functions

2.1 The concept of a function
In mathematics, especially in its applications to physics, we are often interested in the relations and connections
between different numbers or sets of numbers. A function is a way of expressing such a connection. If we have
one set of numbers, values or items of any sort, and each of these is connected to a particular number, value or
item in another set by some kind of rule, then the second set is said to be a function of the first. This is a very
general statement1—1perhaps too general to be easily understood. So it is probably best to start with some
specific examples. Here are some pairs of sets together with rules that relate a single element of the second set to
each element of the first set.

1 Set 1:3{All possible values for the area of a square kitchen floor.}

Set 2:3{All possible numbers of standard sized floor tiles that you might buy.}

Rule:3Given any value for the area of the kitchen floor, the associated number of floor tiles is the number
that you would need to cover that floor.
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2 Set 1:3{All possible dates in June 1995.}

Set 2:3{All possible numbers of ice creams that a vendor might sell.}

Rule:3Given any date in June 1995, the associated number of ice creams is the number that a particular
vendor sold on that day.

3 Set 1:3{All possible temperatures measured in °C.}

Set 2:3{All possible temperatures measured in °F.}

Rule:3Given any temperature in °C, the associated temperature in °F is the equivalent temperature.

For each of the three examples given above, we can say that the second set is a function of the first; the number
of tiles bought is a function of the floor area to be covered, the number of ice creams sold is a function of the
date in June 1995, and so on. More generally:

A function is any combination of two sets and a rule that meets the following
conditions:
o the rule may be applied to every element of the first set
o the rule associates a single element of the second set with each element of

the first set.
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Note that although the rule allows us to go from any element of the first set to a single element of the second set,
the reverse need not be true. For instance, if 352 ice creams were sold on 10 June no other number could have
been sold on that day, but it is quite possible that 352 ice creams were also sold on 14 June.

✦ Is the time of sunrise at your home a function of the date?

Question T1

Is your height a function of the date?3❏

Question T2

Suppose you live within the Arctic Circle. Is the number of sunrises you can see on any date a function of that
date?3❏

Question T3

Is the date a function of the time of day?3❏
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2.2 Variables, constants and parameters
We can talk about numbers and quantities in various ways, depending on how they behave. A number or
quantity that never changes is called a constant; one that takes on a range of values is called a variable; and one
that remains constant throughout a particular discussion, but may change under different circumstances is called
a parameter. For example, consider the equation that relates the pressure P, volume V, and temperature T  of a
sample of ideal gas:

PV = NkT (1)

where N is the number of molecules in the sample and k is a constant (called Boltzmann’s constant  ☞).

If we were to study the behaviour of a given sample at a fixed temperature, then P and V would be variables,
while N, k and T could be regarded as constants. However, if we were to study the relation between P and V in
the same sample at different temperatures, then we might call T a parameter, while k and N would still be
constants; if we were to use different samples then N also would become a parameter though k would remain
constant.

In a second series of investigations we might treat P and T as variables and V and N as parameters though k
would have to remain constant since it is, in fact, one of the fundamental constants of nature.
(Not every constant has such an exalted status.)
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The important point about the ideal gas equation (Equation 1) is that once we know the values of all the
constants and parameters concerned, it relates one variable to another. In the first series of investigations, those
carried out with a single sample of gas at a fixed temperature, Equation 1 allows us to associate a single value of
P with any given value of V. Thus, for a given sample at a given temperature we may say that pressure is a
function of volume. Similarly, in the second series of investigations1—those involving a fixed volume and a
variable temperature1—1we may say that pressure is a function of temperature in a given sample of fixed volume.

Clearly, the distinction between a parameter and a variable is somewhat arbitrary, since any parameter is
potentially a variable. For this reason it is often easiest to regard P, V, N and T as variables (even if some remain
constant under certain circumstances) and to say that in an ideal gas any one of them is a function of all the
others. Thus, we can say, for instance, that the pressure of a sample of ideal gas is a function of the volume,
temperature and number of molecules in that sample. This perfectly reasonable view raises an interesting
question.

✦ A function always involves two sets and a rule. In a given sample of ideal gas (where the number of
molecules N is constant) the pressure P is said to be a function of the volume V and the temperature T. What are
the two sets and the rule that define this particular function?
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2.3 Dependent and independent variables
When a function relates two sets, as described in Subsection 2.1, we call the first of those sets the domain of the
function and the second the codomain. Thus, a function associates each element in its domain with a single
element in its codomain. When the domain consists of the values of a variable we call that variable the
independent variable of the function. (The area of a kitchen floor, for example.) If the codomain also consists
of the values of a variable, we call that variable the dependent variable. (The number of tiles needed to cover
the floor, say.) These names make sense, since any allowed value of the independent variable will determine a
single value of the dependent variable via the rule of the function. A special notation is used to indicate this
relationship between the two variables: if the independent variable is denoted by x, and the dependent variable
by y then we say that ‘y is a function of x’ and we write y2=2f1(x), (read as ‘y equals f of x’). ☞
Of course, there is nothing sacred about the use of x and y to represent independent and dependent variables, or
the use of f to denote a function that relates them. If dealing with the pressure and volume of a given sample of
ideal gas at a fixed temperature, for example, you might well write P2=2h(V) or P2=2φ1(V). Any letter will do to
indicate the existence of a functional relationship between P  and V . Physicists, much to the horror of
mathematicians, tend to use the same symbol to represent both a dependent variable and the function that relates
that variable to some independent variable. Thus, a physicist might well write P2=2P(V) to show that P  is a
function of V, or y2=2y(x) to show that y is a function of x.



FLAP M1.3 Functions and graphs
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

✦ How would you interpret the equation V2=2V(I, R)?

A useful way of thinking about an expression such as y2=2f1(x) is to regard the symbol f1( ) as a sort of machine,
something like an electronic calculator, awaiting some specific numerical input. When you put a particular
number into the gap between the brackets, 2.6 or −1497 say, the ‘machine’ processes that value and produces a
specific numerical output, f1(2.6) or f1(−1497). It is this specific numerical output that is the value of the dependent
variable that the function associates with the input value of the independent variable. In fact, when using
expressions such as y2=2f1(x) or V2=2V(I, R) to show the existence of functional relationships, whatever appears
inside the brackets of a particular function is called the argument of the function. The important thing to
remember is that what we call the independent variable, x, X, z or whatever, makes no difference, it is the value
of the argument that really counts since that is what determines the corresponding value of the dependent
variable.
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2.4 Representing functions by tables and equations
 Table 1  Example of a function defined by a table.

Independent variable Dependent  variable

1 3

2 7

3 13

4 21

5 31

6 43

7 57

8 73

9 91

In order to have a detailed understanding of any particular
function you really need to know the two sets concerned
and the rule that relates them. In very simple cases  when
dealing with a discrete variable that can only take on
certain isolated values, it may be possible to tabulate
every possible value for the dependent variable alongside
the corresponding value for the independent variable.
An example of this kind is shown in Table 1.
Such a table of values certainly defines the function
concerned, but it is not a technique that can easily be
applied to cases where the independent variable can take
on a great many values. ☞
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In practice, most of the functions that you will meet in your studies will involve continuous variables that cover
an unbroken range of real values and therefore cannot be defined by a table. Such functions are usually
represented by equations. You have already seen (in Subsection 2.2) that an equation can provide the rule
needed to relate two sets of values, so it shouldn’t come as a shock to learn that this is how functions are usually
defined. For example, a statement such as

f1(x) = x 12 + x + 1 where the domain consists of all real numbers
and the codomain consists of all real numbers ≥13/4

is a perfectly good definition of a function; it identifies the two sets involved and explicitly states the rule that
associates a single element in the codomain with each element in the domain. In practice, you are more likely to
see functions defined by equations in the following way:

y = x 12 + x + 1 where x is any real number

The domain is still indicated, but all reference to the codomain is omitted since it is usually taken to be the full
range of y values that result from applying the rule to every allowed value of x.
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In a similar spirit the specific form of the function V2=2V(I, R) that we discussed earlier might have been defined
by

V = IR3or3V(I, R) = IR

where V is the voltage across an electrical resistor, I the current flowing through the resistor and R the resistance.
(You may recognize this as Ohm’s law.) Of course, the function relating V to I and R didn’t have to be Ohm’s
law, it might have been some other relation entirely, such as

V2=2πIR2

where V is the volume of a cylinder, I is its height and R its radius.

Although functions that involve continuous variables cannot be defined by tables of values it is sometimes useful
to compile such a table for some ‘typical’ or ‘representative’ values of the independent variable(s). Such a table
can often provide more insight into the nature of a function than the equation itself. For example, Table 1 (which
actually defines a function in its own right) can also be regarded as a representative table of values for the
function f1(x)2=2x122+2x2+21 that was introduced above. Naturally, the table is restricted to just a few of the
possible values of x, but it can be useful nonetheless, as you will see in the next section.
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 Table 1  Example of a function defined by a table.

Independent variable Dependent  variable

1 3

2 7

3 13

4 21

5 31

6 43

7 57

8 73

9 91

✦ Suppose that m may be any of the whole numbers in
the range 12≤2m2≤29, and n may be any of the whole
numbers belonging to the set:

{3, 7, 13, 21, 31, 43, 57, 73, 91}.

Write down an equation relating n and m that defines the
same function as Table 1.

Thus, functions that involve continuous variables cannot be defined by a table, but they can be defined by an
equation, and representative values can be tabulated. Functions that involve a finite number of values of discrete
variables can be defined by a table of values or an equation.
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3 Graphs
‘Every picture tells a story’ and ‘a picture is worth a thousand words’. These are sayings that are worth
remembering in mathematics as well as in everyday life. Why? Because a picture is something which can be
looked at as a whole at once; it is an excellent means of investigating and summarizing the behaviour of a
function in its entirety. Physicists will often plot data as they collect it during an experiment, so that they can see
the general behaviour, and perhaps get early notice of any problems with the apparatus.



FLAP M1.3 Functions and graphs
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

0−1−2 1 2

−1

−2

2

1

x

y

O

E

BD

G

C

A

F

Figure 13A Cartesian coordinate system
and some points.

3.1 Cartesian coordinates
The framework used for drawing pictures of functions is that provided
by Cartesian coordinates. Its basic ingredient is a pair of lines, called
coordinate axes, at right angles to each other, as shown in Figure 1.
The two lines may be regarded as infinitely long, extending as far as we
like beyond the edges of the paper. By convention, the horizontal line
is called the x-axis, and the vertical line the y-axis; the two lines
intersect at a point called the origin. The lines are scaled to indicate the
displacement from the origin. For the x-axis, displacements to the right
of the origin are positive, and those to the left are negative; for the
y-axis displacements above the origin are positive, and those below are
negative. It is common to draw an arrowhead at the end of each axis to
show the direction of increasing x or y.
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and some points.

Any pair of values for x and y can be represented by a point in the
coordinate system. The pair (a, b) is represented by the point that is at a
displacement a from the origin, measured parallel to the x-axis and a
displacement b from the origin, measured parallel to the y-axis  ☞ .
The point corresponding to the pair (2, 1) is shown as the point A in
Figure 1; a perpendicular line from A to the x-axis meets it at x2=22,
and a perpendicular line from A to the y-axis meets it at y2=21.
Similarly  the number pairs (1, 1) and (−1, 2), represent, respectively,
the points B and C in Figure 1.

Question T4

What values of (x, y) represent the points D, E, F, G and O in
Figure 1?3❏
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3.2 Representing functions by graphs
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Figure 23The graph of the function
defined by Table 1.

Undoubtedly you will be familiar with the use of graphs to plot data;
scientists use them all the time, and so do newspapers, but the idea of
the graph of a function may be less familiar. Nonetheless, given a
function f1(x), any allowed value of x together with the corresponding
function value y2=2f1(x) forms a pair of numbers (x, y) that can be
represented by a point in a Cartesian coordinate system. Figure 2
shows the result of plotting all such points for the function defined by
Table 1. This plot is called the graph of the function. ☞
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Table 2  Table of values for  f (x) = 2x + 1.

x f1(x)2=22x + 1

−2.0 −3.0

−1.5 −2.0

−1.0 −1.0

−0.5 0.0

0.0 1.0

0.5 2.0

1.0 3.0

1.5 4.0

2.0 5.0

In science we are more often interested in continuous variables. 
If x is a continuous variable then there will be an infinite number of points
(x, f1(x)) which can be plotted on the diagram. Consider, for instance, the
function

f1(x)2=22x + 1 (2) ☞

and let y2=2f1(x). For every value of x we have a corresponding value of y.
For x2=20, y2=21; for x2=21, y2=23; for x2=2−1, y2=2−1 and so on; these
pairs of numbers can be used to compile a representative table of values
(Table 2) that can be used to help us plot the graph of the function f1(x).
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Figure 33Graph of the function
f 1(x) = 2x + 1.
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Figure 43Graph of the function
g(x) = x12.

After plotting just a few points it
soon becomes clear that all the
points lie on a straight line as
shown in Figure 3.

Similarly the function

g(x) = x2 (3)

will give the curve shown in
Figure 4. Here again we have
taken y 2=2g(x); this is the
customary way of proceeding, and
in future we shall draw the graph
of any function with an axis
labelled as the y-axis.

From this we can see that any
function may be characterized by its graph, and that a graph can show very simply many of the important
behavioural features of a function. It is, of course, for this reason that graphs are so commonly used both inside
and outside science.
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3.3 Drawing and sketching graphs
A graph should convey a visual message, either to you personally, or (more importantly) to anyone else who
may look at it ☞ . You should therefore make sure that the information it presents is as clear and
comprehensible as possible, just as you should do when writing something. Here are some points to pay
attention to when drawing a graph.

Using graph paper3Graph paper is necessary if any degree of accuracy is to be maintained, but it may not be
needed for a quick sketch. The grid provided by the paper will limit your choice of scale and hence the size of
the graph. You should not try to use the paper completely at the expense of a sensible scale. A 1 cm square, for
example, may conveniently represent an interval of 1, 2, or 5 scale units, but 4 and certainly 3 should be
avoided. A single experience of reading intermediate points from such a scale should convince you of this.

Selecting the size, scale and orientation3The most important thing to do is to choose the right scales for both
the horizontal and vertical axes. These should cover the whole range of interest, and a little more. The curves or
points on the graph will then cover the whole area, with no unnecessary large blank areas at any of the edges
☞.
You can orientate your paper whichever way you want, but it is conventional to assign the horizontal axis to the
independent variable and the vertical axis to the dependent variable.
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Marking and numbering the axes3Each axis should have the scale units indicated at reasonable intervals by
graduation marks (small lines at right angles to the axis). There shouldn’t be too many of these marks, but
enough so that the viewer can estimate the location of intermediate points without difficulty. Similarly, the
numbers written along the axes to show the scale values associated with some of the graduation marks should
not be too frequent1—1though you will usually need at least one number for every five graduation marks. Take
care to choose sensible sequences of numbers; choices such as 1, 2, 3, …, or 10, 20, 30, …, are obvious, but if
the whole range is large you might prefer to use 2, 4, 6, …, or 5, 10, 15, … . Avoid using sequences like
3, 6, 9, …; even intervals of 4 may be found irritating. In brief, only display useful numbers, and try to avoid any
appearance of ‘fussiness’ on the page.

Labelling the axes3Points that physicists need to pay particular attention to when drawing graphs are labelling
axes and indicating any units that have been used in the measurement of physical quantities. If you are plotting a
purely numerical variable (without physical units) you have nothing to worry about, just put the name of the
variable or the symbol representing it, (x or y or whatever) along the appropriate axis. However, if you are
plotting values of variables such as mass or length that do require units it is usually best to label the axis as
‘mass/kg’ or ‘length/m’, as though dividing the variable by the relevant unit, it is then logical to write pure
numbers along the axes rather than values that include units ☞.
If plotting very large or very small values it is generally a good idea to use multiples of units. For instance, if
you have to plot masses in the range 22×21061kg to 22×21071kg it is probably best to label the axis ‘mass/106 kg’,
so that the numbers are only in the range 2 to 20.
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Joining the dots3When drawing a graph, you will only be able to plot a finite number of points through which
the curve must pass, and you will then have to think about the best way of joining them up. As a general rule, the
points should be joined with a pencil line in the smoothest manner possible, and there should be no kinks or
discontinuities unless there are good mathematical or physical reasons for them. Knowing when to expect such
kinks or discontinuities is a skill that comes with insight and experience; this module is only the starting point
for the development of such a skill.

The figures in this module should give you an idea of how to set out a graph in the proper way. ☞
So far we have talked about how to construct an accurate graph. This is usually called plotting the graph.
However, very often this plot is not necessary. If you are asked to sketch the behaviour of a function, rather than
to draw or plot it, all that is needed is a rough diagram showing the main features. It should always be possible
to deduce some of the following from the defining equation of the function:

o How does the function behave as x becomes large and positive?

o How does the function behave as x becomes large and negative?

o What is the value at x2=20 (i.e. where does it cross the y-axis)?

These characteristics are unlikely to be enough, and you will probably have to compute one or two more points;
but on the whole you should try to do as few calculations as possible.
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Try to make use of the general characteristics of the particular type of function you are sketching; some of these
are described in the following subsections, others are discussed elsewhere in FLAP1—1particularly in the
modules devoted to differentiation.

Question T5

Draw a graph showing the cost of posting a first class letter as a function of its mass. (In August 1993 the rates
were: up to 601g, 241p; 601g to 1001g, 361p; 1001g to 1501g, 451p; 1501g to 2001g, 541p.)3❏

Question T6

Plot the graph of the function f1(x)2=2x22+2x2+21 for x2≥20.

(Hint: remember the relationship between this function and the values in Table 1 or Figure 2.)3❏
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3.4 Linear functions and straight-line graphs
In Subsection 3.2 you saw that the graph of the function f1(x)2=22x2+21 was a straight line (Figure 3). Of course,
this isn’t the only function to have a graph that is a straight line. In fact, there is an entire class of functions,
called linear functions, every member of which has a straight-line graph.

A linear function is any function that may be written in the form

f1(x) = mx + c (4)

where m and c are constants, called the gradient and intercept, respectively.
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✦ Which of the following are linear functions?
Give the values of the gradient m   (☞)  and intercept c for each of the linear functions.

(a) f1(x) = 1 + 2x

(b) f1(t) = −16.0t − 3.8 × 1014

(c) f1(x) = 6x + a3where a is a constant

(d) f1(x) = cx + b3where c and b are constants

(e) f1(x) = 3x 12 − 2.1

(f) f1(x21) = 3x12 − 2.13(Pay attention to the argument of this function)



FLAP M1.3 Functions and graphs
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

y

x

4

3

2

1

0 1 2 3 4−1−2−3
−1

−2

−3

−4

Figure 33Graph of the function
f 1(x) = 2x + 1.

The two constants that characterize any linear function are called the
gradient and intercept for good reasons. To appreciate these reasons look
again at Figure 31—1the graph of y2=22x2+21. Note that the straight line
crosses the y-axis at y2=21, the value of the intercept. Also note that
along the straight line the value of y increases twice as fast as the value
of x, this factor of 2 corresponds to the gradient of the function which
therefore determines the steepness or inclination of the graph.

These graphical interpretations of m and c are general properties, as we
now show.
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Given any linear function f1(x) the equation y = f1(x) will describe a straight line. Thus, we may define

the general equation of a straight line

y = mx + c (5)

where m and c are constants.
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Figure 53(a) The gradient–intercept form of a straight line, characterized by the constants m and c.
(b) Changing the gradient m alters the steepness of the line. (c) Changing the intercept c alters the value of y at x2=20.

In this general case, shown graphically in Figure 5a, any point on the y-axis is at x2=20, and substituting this
value of x into Equation 5 shows that the general straight line intersects the y-axis at y2=2c.
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Similarly, if x is increased by h (from x1 to x22=2x12+2h, say) then Equation 5 shows that y increases by mh from

y1 = mx1 + c3to3y2 = m (x1 + h) + c = y1 + mh

so
y2 − y1

x2 − x1
= mh

h
= m

This expression relating m to a change in y and to the corresponding change in x is very important. The symbols
∆x and ∆y, sometimes called the run and the rise, are used to represent the changes in x  and y, so the gradient
can be written in any of the following ways:

gradient = rise
run

= change in y
change in x

= y2 − y1

x2 − x1
= ∆y

∆x
= m (6) ☞
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Figure 53(a) The gradient–intercept form of a straight line, characterized by the constants m and c.
(b) Changing the gradient m alters the steepness of the line. (c) Changing the intercept c alters the value of y at x2=20.

Figures 5b and 5c show, respectively, the effect on the graph of different values of m and c. Note that if m is
zero the graph is horizontal whereas if m is negative the graph slopes downwards from left to right. The larger the
value of m the ‘steeper’ the incline. Also note that if c is negative the intercept with the y-axis is below the x-axis.
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✦

0 x0

y0

y – y0 = m(x – x0)

(a)

y

x

Given a straight-line graph, how would you determine (a) the gradient and (b) intercept of the
corresponding linear function?
The gradient–intercept form (Equation 5) is one of the commonest ways of representing the equation of a
straight line or the corresponding linear function, but there are other representations which are also useful. For
example, if we know the gradient m of a line and the fact that it passes through the point (x0, y0), then the
equation of the line can be written

y − y0 = m(x − x0) (7)

this is called the point–gradient form and is illustrated in Figure 6a.

Figure 6(a)3The point–gradient form of a straight line.
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Question T7

Rearrange Equation 7 to show that it is equivalent to Equation 5, and find the value of the intercept implied by
Equation 7.3

y − y0 = m(x − x0) (Eqn 7)

y = mx + c (Eqn 5) ❏
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Figure 6(b)3The two-point form of a straight line.

It is well known that given two points, (x1, y1) and (x2, y2) there is a unique straight line joining them; in other
words two points determine a straight line. This fact provides the basis of another way of writing the equation of
a straight line1—1the two-point form (illustrated in Figure 6b)

y − y1

x − x1
= y2 − y1

x2 − x1
(8)
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Question T8

Rearrange Equation 8 to show that it is also equivalent to Equation 5 and again find the implied value of the
intercept.3❏

Yet another standard form for the equation of the straight line is
x

a
+ y

b
= 1 (9)

This is known as the intercept form.

Question T9

What is the graphical significance of the constants a and b in Equation 9?3❏
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3.5 Quadratic functions and turning points
Linear functions and straight-line graphs are very common in mathematics and physics, but there are many other
functions which are also important. The quadratic function, a function of x which contains no higher power of x
than x2 is one such function.

A quadratic function is any function that may be written in the form

f1(x) = ax2 + bx + c (10)

where a, b and c are constants.

A simple example of a quadratic function was shown in Figure 4; it was the function
g(x) = x12 (Eqn 3)

which is obtained by setting a2=21, b2=20 and c2=20 in Equation 10. Two other quadratic functions,
corresponding to different choices of a, b and c are shown in Figure 7, they are

h(x) = (x + 2)12 (11) ☞

and j(x) = –x12 – 3 (12)
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There are some important features that are common to all three of these examples of quadratic equations:
o For each function there is a turning point, i.e. a point at which the value of the function ceases to increase

or decrease and the graph turns back on itself. For quadratic functions the turning point is either a minimum
or a maximum value of the function. ☞

o For each function, the graph is symmetrical about a vertical line drawn through the turning point.

The graphical curve defined by a quadratic function is called a parabola and the turning point is called the
vertex of the parabola.

✦ What are the values of a, b and c (as given in Equation 10) for the functions h(x) and j(x)?

For any quadratic function, the values of the constants a, b and c determine the precise shape and location of the
corresponding parabola.
For instance, if a is positive the vertex is at the ‘bottom’ of the parabola and thus represents the minimum value
of y. If a is negative, the vertex is at the ‘top’ of the parabola and corresponds to a maximum value of y.
Moreover, the precise value of a determines the ‘width’ of the parabola. The function

k ( x ) = x

2






2

(13)

is twice as ‘wide’ as the function g(x) = x12 for a given value of x.
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Figure 73Graphs of the quadratic
functions h(x) = (x + 2)2 and
j(x) = −x12 − 3.

Question T10

Sketch the graphs of k(x) and g(x) (Equations 13 and 3, respectively)
and thus confirm the claim made above about the role of a  in
determining the ‘width’ of the parabola.3

g(x) = x2 (Eqn 3)

k(x) = x

2






2

(Eqn 13) ❏

The constants a, b and c also determine the location of the parabola’s
vertex.

Inspecting the graphs of Figure 7, you should be able to convince
yourself that:
o the vertex of h(x) = (x + 2)2 is at the point (−2, 0)
o the vertex of j(x) = −x12 − 3 is at the point (0, −3).

These are two special cases of a more general result, namely that the
vertex of any quadratic function of the form a(x2–2p)2 is at (1p, 0) and
the vertex of any quadratic function of the form ax22+2q is at (0, q).



FLAP M1.3 Functions and graphs
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T11

(a) Write down a general expression for a quadratic function with a vertex at the point (1p, q). ☞
(b) Write down the quadratic functions with a2=21 which have vertices at the points (i) (1, 3)

(ii) (−2, 1) and (iii) (2, −1). Sketch the graphs of these functions.3❏

Given any quadratic function f1(x), or the equation of the corresponding parabola y2=2f1(x), the items of
information most often of interest are the position of the vertex and the locations of any points at which the
parabola intersects the x and y axes. The position of the vertex can always be found by a process known as
completing the square, the intersections (if they exist) can be found by factorization. We will deal with these
processes in turn.

The completed square form of a quadratic function is:

f1(x) = a(x – p)2 + q (14)

where a, p and q are constant.

As indicated in the answer to Question T11, the graph of this function has its vertex located at the point (1p, q).
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The process of completing the square allows us to rewrite any given quadratic f1(x)2=2a1x122+2bx2+2c 
in the completed square form of Equation 14. To see that this is possible just note that

ax2 + bx + c = a x2 + b

a
x + c

a




 = a x + b

2a






2

− b2

4a2
+ c

a









 ☞

and thus, ax2 + bx + c = a x + b

2a






2

− b2

4a
+ c (15)

We have now managed to isolate x within the brackets, just as in the completed square form (Equation 14).
Comparing Equations 14 and 15 you should be able to see that they are the same if we make the following
identifications

p = −b

2a
3and3q = −b2

4a
+ c

Thus, the vertex of the parabola y2=2a1x 122+2bx2+2c is located at the point

−b

2a
,

−b2

4a
+ c






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We now turn to the problem of determining the points at which the parabola y2=2a1x122+2bx2+2c intersects the
x and y-axes.

The intersection with the y-axis occurs when x2=20, so it follows from the equation of the parabola that at the
point of intersection, y2=2c.

The parabola does not necessarily intersect the x-axis at all1—1the graph of j(x) in Figure 7 has no such
intersection, though h(x) meets, rather than intersects, the axis once and one of the parabolas you drew in
answering Question T11 has two such intersections. However, if the graph of f1(x)2=2a1x122+2bx2+2c does cross the
x-axis at two points, let’s say at x2=2α  and x2=2β, then it is always possible to find those points by writing the
quadratic in the so called factorized form:

f1(x) = a(x − α)(x − β1) (16)

where a, α and β are constant.

Expanding this expression certainly gives a quadratic, since

f1(x) = a[x12 − (α + β1)x + α 1β1]

Moreover, if we substitute x2=2α  into Equation 16 you can see that f1(α)2=20 and similarly if  x2=2β, f1(1β1)2=20.
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So the graph of this particular quadratic does indeed intersect the x-axis at x2=2α  and x2=2β.
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A general quadratic may always be written in the factorized form of Equation 16. The process by which the
factorized form of a quadratic is determined is called factorization. Sometimes, in very simple cases, it is
possible to deduce the factorized form simply by ‘inspecting’ the original quadratic (this becomes easier with
experience). More generally, it is always possible to use the following formula to find the values of x at which
points of intersection occur, and hence the values of α and β.

If the parabola y = a1x12 + bx + c intersects the x-axis, it does so at the points

x = −b ± b2 − 4ac

2a
(17)

The symbol ± is read as ‘plus or minus’ and reminds us that this single equation generally provides two values
for x. ☞

It is worth noting that this formula provides the values of α and β in the factorized form of a quadratic (Equation
16) even when α  and β do not correspond to distinct points of intersection with the x-axis. The quantity b22−24ac
that appears under the square root symbol in Equation 17 is called the discriminant and it is this that determines
the number of times the graph of the quadratic function ax22+2bx2+2c meets or crosses (intersects) the x-axis.
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x = −b ± b2 − 4ac

2a
(Eqn 17)

o If b22–24ac2>20, there will be two crossing points with x-coordinates given by Equation 17.

o If b22–24ac2=20, there is only a single meeting point at x2=2−b/(2a).

o If b22–24ac2<20, there is no real number equal to b2 − 4ac  and the parabola will not meet or cross the
x-axis at all.

It is also worth noting that, since y2=20 when the parabola intersects the x-axis, the two values of x given by
Equation 17 must satisfy an equation of the following form. ☞

a1x12 + bx + c = 0 (18)

Equations of this kind are called quadratic equations, they are common in physics and are dealt with in more
detail elsewhere in FLAP.
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Question T12

For each of the following quadratic functions, determine the number of times its graph meets or crosses the
horizontal axis, rewrite the function in completed square form and thus determine the location of the vertex:

(a) f1(x) = 3x2 − 9x + 11,3(b) f1(t) = –t2 − 2t − 6,3(c) f1(R) = −3R2 + 15R − 183❏

Question T13

For each of the following quadratic functions, determine the points (if there are any) at which its graph intersects
the horizontal axis:

(a) f1(1y) = y2 + 5y − 1,3(b) f1(t) = 2t12 − 3t + 4,3(c) f1(Z) = 3Z 12 + 
Z

2
− 1

4
,3

(d) f1(x) = x2 − 5x + 63❏
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3.6 Polynomial functions and points of inflection
Linear and quadratic functions are simple examples of a wider class of functions that may involve higher powers
of a variable.

A polynomial function of degree n is any function of the form

f1(x) = a0 + a1x + a2x12 + … + an1−12 x1n1−12 + an 1−11x1n1−11 + anxn1 (19)

where n is an integer, and the n2+21 constants a0, a1, a2, … an 1−12, an 1−11 and an
are called the coefficients of the polynomial, with an 1 not equal to zero.    ☞

Thus, a polynomial function of x of degree n involves powers of x up to and including x1n but no higher powers.
A linear function is a polynomial of degree 1, and a quadratic function is a polynomial of degree 2.

✦ Polynomial functions of degree 3 and degree 4 are called cubic functions and quartic functions,
respectively. Write down general expressions for such functions similar to those given earlier for linear and
quadratic functions, Equations 4 and 10, respectively.
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Figure 83The cubic function
f 1(x) = x3.

Such functions, not surprisingly, are much more complicated, and show
more varied behaviour, than linear and quadratic ones. The simplest cubic
function:

f1(x) = x3 (20)

has the graph shown in Figure 8. The two features to note about this are:

1 The behaviour of the graph far from the origin, where f1(x)2"20 for
x2"20, and f1(x)2:20 for x2:20. ☞

2 The behaviour near the origin, where the graph changes from a
downward turning curve for x2<20, to an upward turning curve for
x2>20. This behaviour is typical of cubic functions and is often seen
in other polynomials; the point at which the change of curvature
occurs (the origin in this case) is called the point of inflection.

☞
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Figure 93The cubic function
g(x) = x3 – 4x.

Other cubic functions with different coefficients can show more
complicated behaviour. For example, consider the cubic function

g(x) = x3 − 4x (21)

The graph of this, shown in Figure 9, has the extra features of a (local)
minimum near x2=21 and a (local) maximum near x2=2−1, in addition to
the point of inflection at x2=20 ☞. 
This is the greatest degree of complication which arises with cubic
functions; different choices for the coefficients a, b, c and d would alter
the detailed shape of the curve and the locations of the point of
inflection and the turning points (if there are any), but no choice of
coefficients results in more than one point of inflection and two turning
points.
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Clearly when dealing with higher degree polynomials the complications will become even worse, so we shall not
pursue individual cases any further here.

The only general points to be noted are that for a polynomial function of
degree n:

o There will be at most a total of (n − 1) local maxima and local minima.

o Between every local minimum and its neighbouring local maximum there
will be a point of inflection.

o If n is even there will always be at least one maximum or minimum.

o If n (greater than 1) is odd there will always be at least one point of
inflection.
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Figure 103The hyperbola R(x) = 1/x.

3.7 Reciprocal functions and asymptotes
Although polynomial functions are important, they are not the only kind
of function you are likely to meet. Another very common function is the
reciprocal function

R(x) = 1/x33where x ≠ 0 (22) ☞
the behaviour of which is shown in Figure 10. The shape of this curve is
known as a hyperbola and shows a number of interesting features:
o The function R(x) is not defined for x2=20. So in this case the

argument x may be any real number except 0.
o The curve consists of two separate pieces, one for x > 0, and one for

x < 0.
o As x approaches zero, R(x) becomes large and positive if x > 0, but

it becomes large and negative if x < 0.

The y-axis in Figure 10 forms a sort of limit which the curve approaches but never meets, no matter how far it is
extended in either direction. Such a limiting line is called an asymptote, and the curve is said to approach it
asymptotically. In this case the x-axis also forms an asymptote, since the curve never meets that either, though it
approaches the asymptote more and more closely as x becomes increasingly positive or negative.
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Figure 113The graph of
g(x) = x12/(x – 1) and its asymptotes.

Asymptotes do not have to be vertical or horizontal. 
Consider the function

g(x) = x12/(x – 1)333where x ≠ 1 (23)

and its graph in Figure 11. From what was said above it should be clear
that x2=21 is a vertical asymptote. There is no horizontal asymptote in
this case, but if we make x  very large and positive, then the
denominator (x2–21) is very nearly equal to x, so that g(x)2≈2x, ☞
and the larger x becomes, the closer the curve comes to the line y2=2x,
which is an asymptote.
We can use the same argument as x becomes large and negative.

When investigating the asymptotes of a function we are bound to be
interested in some quantity (either x or y, usually) that is becoming
either very large and positive or very large and negative. To aid such
discussions it is useful to introduce the infinity symbol ∞ which is
usually read as ‘infinity’. This symbol should not be thought of as a
number; rather it represents a quantity that is much larger than any
other quantity that is likely to be considered. When discussing
asymptotes we can then discuss the behaviour as x or y approaches ∞ or −1∞. For simplicity this is often written
x2→2∞ or x2→2−1∞. You should avoid writing x2=2±1∞ since, as already stated, ∞ is not a number.
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Question T14
(a) Sketch the curves and asymptotes for the function

f1(x) = x/(x + 1)33where x ≠ –1 (24)

(b) What are the asymptotes of g(x) = 2x2/(3x + 1)?3❏

4 Inverse functions and functions of functions

4.1 Inverse functions
The statement y2=2F(x) clearly indicates that y is a function of x, but sometimes it is very useful to look at things
the other way round, and treat x as a function of y. As you will see shortly, it is not always possible to do this,
but if it can be done the process will define a new function called the inverse function of F(x). Formally:

The inverse function of F(x) is a function G(1y) such that if y2=2F(x), then x2=2G(1y) for every value of x in
the domain of F(x).

Loosely speaking the effect of the function F(x) is ‘undone’ by its inverse function G(1y). ☞
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Figure 33Graph of the function
f 1(x) = 2x + 1.

Examples of inverse functions are easy to find. 
For instance in Subsection 3.2 we examined the function

f1(x) = 2x + 1 (Eqn 2)

the graph of which was shown in Figure 3. The inverse function of f1(x) is

g( y) = 1
2 ( y − 1) (25)
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Figure 123The graph of the function

g(y1)2=2(y − 1)/2, the inverse of the
function f1(x)2=22x + 1 shown in
Figure 3. (Note the axes.)

✦ Confirm the claim that g(1y) (Equation 25) is the inverse of
 f1(x) (Equation 2) for the specific values x2=2−2, x2=20 and x2=23.

g( y) = 1
2 ( y − 1) (Eqn 25)

f1(x)2=22x + 1 (Eqn 2)

The relationship between the functions f1(x) and g(1y) is perhaps more
easily understood by noting that if

y = 2x + 1 (26)

then, x = 1
2 ( y − 1)

So, in this particular case the form of the inverse function can be found
by simply rearranging Equation 26. (Not all cases are so simple.)
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Figure 33Graph of the function
f 1(x) = 2x + 1.
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Figure 123The graph of the function

g(y1)2=2(y − 1)/2, the inverse of the
function f1(x)2=22x + 1 shown in
Figure 3. (Note the axes.)

More significantly, if you examine
the graph of g(1y), shown in Figure
12, and compare it with the graph
of f1(x), shown in Figure 3, you will
see that the two graphs are related
by a simple interchange of axes.

Although the inverse of f1(x) has
been called g(1y) and its graph in
Figure 12 has been plotted with y
(the independent variable in this
case) along the horizontal axis
there is no need to show it in that
way. Remember, given any
function, its value is determined by
the value of its argument1—1what
you call the argument makes no
difference.
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Figure 133The function f1(x)2=22x2+21
and its inverse g(x)2=2(x2–21)/2. These
two lines are mirror images of each other
in an imaginary mirror along the line
y2=2x.

Thus, given

g( y) = 1
2 ( y − 1) (Eqn 25)

we can represent exactly the same function by

g( x ) = 1
2 ( x − 1)

Thanks to this, there is no need to introduce unconventional axes, such
as those in Figure 12, when drawing the graph of an inverse function.
In fact, given a function f1(x) and its inverse function g(x) we can plot
both functions on the same axes. ☞

Doing so, as in Figure 13, reveals an interesting phenomenon1—1the line
y2=2g(x) representing the inverse function can always be obtained by
‘reflecting’ the line y2=2f1(x) in an imaginary mirror placed along the
line y2=2x. (This imaginary mirror is also indicated in Figure 13.)
This ‘reflection symmetry’ between a function and its inverse is a
general property, so given the graph of any function you can easily
visualize the graph of its inverse1—1if that inverse exists. The proviso ‘if
that inverse exits’ is an important one. Any graph may be ‘reflected’ but
not every such reflection is the graph of an inverse function.
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For example, the function g(x) = x2 (Eqn 3)
was introduced in Subsection 3.2. (Do not confuse this function with the linear function g(x) that was considered
above. This is a different example.) The graph of Equation 3 is the parabola that was plotted in Figure 4. The
reflection of that graph in an imaginary mirror along the line y2=2x is shown in Figure 14a.

y

x0

y

x0

y

x0

(a) (b) (c)

x =
 y 

m
irr

or

Figure 143(a) The curve y = x . (b) The curve y = x  for x ≥ 0. (c) The curve y = − x  for x ≥ 0.
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Now you might be tempted to say that this is the graph of the function

f1(x) = x (27)

and that it is the inverse of g(x) since it ‘undoes’ the effect of g(x). However, a little more thought soon shows
that the latter part of this claim cannot be true; f1(x) does not really ‘undo’ the effect of g(x). If x2=2−12 then
g(−12)2=2(–12)22=24 but f1(4)2=2 4 2=22 or −12 so we are not unambiguously led back to the initial value of x.
Moreover, the graph itself (Figure 14a) makes it clear that there are two values of y for each positive value of x
and no values of y at all corresponding to negative values of x. The fact that two different value of y correspond
to a single value of x means that Equation 27 does not actually define a function at all (since a function relates
each value of the independent variable to a single value of the dependent variable). In fact, the function
g(x)2=2x12 does not have an inverse. We have not shown this, but we have certainly demonstrated that f1(x)2=2 x
is not the inverse.

Although f1(x) = x  is not really a function at all, such expressions are, mainly for historical reasons, often
called multi-valued functions. This term is used to contrast them with true functions which can be described as
single-valued functions. Of course, according to the definition given in Subsection 2.1, all functions are single-
valued, so the term ‘single-valued function’, is actually a tautology and ‘multi-valued function’ is a misnomer.
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Although f1(x)2=2 x  is not a function it is fairly easy to find related expressions that can be used to define
functions. For example

f+1(x) = x for all x ≥ 0 ☞

and f−1(x) = − x for all x ≥ 0

are both well defined (single-valued) functions. Their graphs are shown in Figures 14b and 14c, respectively.
Furthermore, you should be able to convince yourself that f+1(x) is the inverse of

g+1(x) = x233where x ≥ 0

while f−1(x) is the inverse of the function

g−1(x) = x233where x ≤ 0

The need to restrict the domain of the function in this way is a common feature of the definition of many inverse
functions.

The general conclusion to be drawn from the above discussion is this:

In order for a function F(x) to have an inverse, a necessary condition that must be satisfied is that each value
of F(x) must correspond to a unique value of x.
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Question T15
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Figure 83The cubic function
f 1(x) = x3.
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Figure 93The cubic function
g(x) = x3 – 4x.

Look at Figures 8 and 9, illustrating
the cubic functions defined by
Equations 20 and 21, respectively.
Do these functions have inverses?
If so, how might they be
defined?3❏

Question T16

Would you expect a general
quadratic function of the form
f1(x)2=2a1x122+2bx2+2c  to have an
inverse? Explain your answer.3❏
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4.2 Functions of functions
It is often convenient to combine functions together; that is to start with an independent variable x, find the value
of some function y2=2f1(x) and then use that value of y as the argument of some other function z2=2g(1y). This
two-step process allows us to relate a single value of the dependent variable z to each value of the independent
variable x, so z is related to x by a function. We can indicate this by writing z2=2h(x) where

h(x) = g(1f1(x))

The function h(x) is said to be a function of a function or a composite function. The idea is more common and
more straightforward than it sounds; for example,

if f1(x) = x23and3g(1y) = 1/y33where y ≠ 0

then h(x) = g(1f1(x)) = g(x2) = 1/x233where x ≠ 0

Note that in the final step we have simply taken the reciprocal of the argument of g(x12)1—1this is what the
function g(1y)2=21/y tells us to do1—1it doesn’t matter that the argument has been called x12 rather than y, simply
take its reciprocal!
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Question T17

Find g(1f1(x)) and  f1(g(x)) if f1(x)2=2x2+22 and g(x)2=21/x. What is the largest possible domain for such a function,
given that x is real?3❏

Question T18

Find g(h(1f1(1y))) for the same f1(x) and g(x) as in Question T17, and h(x) = x2.3❏

Question T19

Suppose G(x) is the inverse of F (x), write down an explicit expression for the composite function
H(x)2=2G(F(x)). (You do not need to know the explicit form of either function to answer this question.)3❏
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5 Closing items

5.1 Module summary
1 A function consists of two sets and a rule, related in such a way that every element of the first set (the

domain) is associated with a single element of the second set (the codomain).

2 The rule involved in a particular function is often presented in the form of an equation that may involve a
number of variables, constants and parameters.

3 The sets involved in a particular function are often the sets of values of specific variables which may be
continuous or discrete. Under these circumstances the values belonging to the first set (the domain) are said
to be values of the independent variable(s) while the associated values belonging to the second set (the
codomain) are said to be values of the dependent variable. This sort of functional relationship may be
indicated by the equation y2=2f1(x).

4 A table of values may be used to define a function of a discrete variable or to provide insight into the
behaviour of a function of a continuous variable.

5 A graph, in which corresponding values of the independent and dependent variables are plotted as points on
a pair of mutually perpendicular coordinate axes, provides a useful way of representing functions and
equations. There are many standard conventions that apply to the drawing of graphs.
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6 Linear functions of the form y2=2mx2+2c, where m is the gradient and c the intercept, have graphs that are
straight lines. Graphically, m (= rise/run) determines the gradient of the line and c determines the point at
which it intersects the y-axis. A straight line can be represented using a number of other forms, i.e. the
gradient–intercept, point–gradient, two-point and intercept forms.

7 Quadratic functions of the form f1(x)2=2a1x122+2bx2+2c, have parabolic graphs that each have a single turning
point known as the vertex of the parabola. The constants a, b and c determine the location of the vertex,

−b

2a
,

−b2

4a
+ c







, and the precise shape of the graph, including any values of x at which the curve meets or

crosses (intersects) the x-axis, x = −b ± b2 − 4ac

2a
.

8 Polynomial functions of degree n have the form

f1(x) = a0 + a1x + a2x2 + … + an1−12 x1n1−12 + an 1−11x1n1−11 + anx1n  (with an1≠ 0)

Their graphs generally exhibit (local) maxima and (local) minima separated by points of inflection.
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9 The reciprocal function, y2=21/x, has a graph that is a hyperbola and which exhibits asymptotes1—1lines that
are approached by the graph as x or y approach large positive or negative values.

10 Given a function F(x), its inverse function G(x) ‘undoes’ the effect of F(x). So, if F(x)2=2y then G(1y)2=2x for
every value of x in the domain of F(x). For such a function to exist, each value of F(x) must correspond to a
different (unique) value of x.

11 A function of a function or a composite function is a function of the form h(x)2=2g(1f1(x)).
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe the essential features of a function.

A3 Explain the roles of constants, parameters and variables in a function.

A4 Use equations to define functions and identify the independent and dependent variables in such definitions.

A5 Set up a Cartesian coordinate system and use it to represent the properties of a function.

A6 Plot an accurate graph of a given function.

A7 Draw the graph of a linear function given the gradient and intercept, and find the gradient and intercept of a
given graph.

A8 Draw the graph of a linear function given either one point on the line and the gradient, or two points.

A9 Sketch the graph of a quadratic function, rewrite the function in completed square form and hence identify
the coordinates of its vertex, determine the number and location of any points at which the graph intersects
the axes.
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A10 Sketch the graph of a cubic polynomial function, identify its point of inflection and any local maximum, or
local minimum that it may have.

A11 Draw the graph of the reciprocal function, and identify asymptotes in simple cases.

A12 Recognize inverse functions (in simple cases), and distinguish between functions that may or may not have
inverse functions.

A13 Describe and identify the domain and codomain of a function.

A14 Combine functions to produce a function of a function (in simple cases).

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A4 and A5)3A function f1(x) is defined by f1(x)2=2x for x2≥20, and f1(x)2=2–x for x2<20. Plot a graph of f1(x) for
values of x between – 4 and + 4.

Question E2

(A5 and A7)3Sketch graphs of the following functions:

f1(x)2=22x,3f1(x)2=22x2+23,3f1(x)2=22x2–21,3 f ( x ) = − 1
2 x
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Question E3

(A8)3What is the equation of the straight line (in the form y2=2mx2+2c) which passes through the point (3, 5)
with gradient 3?

Question E4

(A8)3Give the equation (in gradient–intercept form) of the straight line which passes through the points (−1, 5)
and (2, −1).
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Question E5

(A9)3Three quadratic functions are defined by the following:

f ( x ) = 1
2 x2 − 33 g( x ) = − 1

2 x2 + 13 h( x ) = x2 + 2 x + 2

What are the coordinates of their vertices? Which of the curves intersect the x-axis and where do such
intersections occur? Sketch the graphs of the three functions on a single pair of axes.

Question E6

(A10)3Sketch the graphs of y2=2(x – 1)3 and y2=2x3− 9x.

In each case, how many times does the curve cross the x-axis? Where are the points of inflection located?
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Question E7

(A5, A6 and A7)3The vertical velocity of a stone, thrown vertically upwards from the ground, is given by

v = u0 − gt

where u0 is the initial velocity of the stone and g is a constant. Assuming g2=2101m1s1−12 and u02=2201m1s1−11

upwards, draw a properly labelled graph showing v as a function of t for the first 4 seconds of flight.

Question E8

(A5 and A9)3At time t, the stone mentioned in Question E7 is at a height h above the ground where

h = u0t − 1
2 gt2

Draw a graph of h as a function of t and find (a) the maximum height the stone reaches, (b) the time before it hits
the ground. What features of the graph determined your answers?
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Question E9

(A11 and A12)3Sketch the graph of the function

f ( x ) = x2 + 1

Does this curve have asymptotes? Does f1(x) have an inverse function?

Question E10

(A13 and A14)3If f1(x)2=2(x2−21)2 and g(x)2=2x2+21, what are f1(1g(1y)) and g(1f1(1y))? If y is real, what are the
largest possible domains for these functions?
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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