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1 Opening items

1.1 Module introduction
When the electric charge stored in a capacitor is discharged through a resistor, the rate of flow of charge through
the resistor is proportional to the charge remaining on the capacitor. In a population of breeding organisms, the
number of offspring produced in a given time, and hence the rate of population growth, is proportional to the
size of the population. These processes of electrical discharge and population growth both provide examples of
exponential change.

Exponential changes are the subject of Section 2 of this module. Subsection 2.1 introduces some more examples
of exponential change and uncovers some of their common characteristics. Subsection 2.2 concerns the rate of
change of a quantity and shows how this can be related to the gradient of the tangent to the graph of that
quantity. In particular, by requiring that the rate of change of a quantity should always be equal to the
instantaneous value of the quantity itself, we are led to define an exponential function, of the form y(x) = ex,
where e is an important mathematical constant, equal to 2.718 (to three decimal places). Subsection 2.3
examines the general mathematical properties of exponential functions, and in Subsection 2.4, exponential
functions are used to describe various examples of exponential change, including the decay of radioactive nuclei.
Section 2 ends with a more mathematical approach to the definition and evaluation of the number e that involves
the concept of a limit.
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In Section 3, logarithmic functions (logs) are introduced. We see how logarithms can be expressed in different
bases, how the logs of products, quotients and powers can be expanded, and how the base of a logarithm can be
changed. The antilog function is also introduced, and we look at how logs, antilogs and exponential functions
can be handled on a calculator. The module ends with a brief look at how logarithmic functions are used in
physics to analyse data that obey an exponential law or a power law.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements  listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Plot a graph of y = x2 by evaluating y when x = 0, ±1, ±2, ±3. Estimate the gradient (i.e. slope) at x = 2 by
drawing a tangent to the curve.
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Question F2

Explain what is meant by:

lim
x→∞

1
x

Question F3

State the usual symbol for the following expression, and give its value to three decimal places:

lim
m→∞

1 + 1 m( )m

Question F4

What is the gradient of the graph of y = exp1(kx) at x = 0?
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Question F5

Where possible, simplify the following expressions:

(a) loge1[(ex)y]

(b) loge1(ex + e2y)

(c) exp1[loge1(x) + 21loge1(y)]

(d) exp1[21loge1(x)]

(e) a a xlog ( )

Question F6

If P  = k1f11−0a, what are the gradient, and the intercept on the vertical axis, of the graph of log101(P) (0plotted
vertically) against log101(1f10)?
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to understand the following terms: constant of proportionality,
decimal places, dependent variable,  dimensions, function, independent variable, index,  inverse function, power,
proportional, reciprocal and root. You will need to be able to use SI units, perform simple algebraic and numerical
calculations (including using a calculator), plot the graphs of simple functions, and determine the gradient of a straight line
that may be specified graphically or algebraically. If you are uncertain about any of these terms you can review them by
referring to the Glossary, which will indicate where in FLAP they are developed. The following Ready to study questions
will allow you to establish whether or not you need to review some of the topics before embarking on this module.

Question R1

Write the following expressions in their simplest form:

(a) 

  

a × a × a × K × a
m factors

1 2444 3444

33(b) 50.
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Question R2

If a is any positive number, what is the value of x in the equation: (a4)5 × (a2)3 = ax.

Question R3

Write the following expressions in their simplest form:

(a) 16−1/4, (b) 163/4, (c) 45/2, (d) 27−2/3, (e) 1/(3–2).

Question R4

If y is a function of x, given by y = F(x), what is meant by saying that G(x) is its inverse function?

If F(x) = x3, what is G(x)?
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Question R5

Plot a graph of y = x2 by evaluating the right-hand side of the equation at the points x = 0, ±1, ±2, ±3.

Use your graph to find solutions of the equation x2 = 2.72.

Question R6

Which of the following expressions will give a straight line when y is plotted against x? For those that will give a
straight line, state the value of its gradient. (All symbols except y and x represent non-zero constants.)

(a) y = mx + c, (b) y = ax2 + b, (c) y + x = k, (d) y/x = p, (e) y/x = qx + r.

Question R7

What is the gradient of the straight line joining the points with Cartesian coordinates (1, 5) and (3, 13)?
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2 Exponential functions

2.1 Exponential growth and decay
In physics, and elsewhere, we are often concerned with how a quantity changes with time. The following
examples all have an important feature in common. As you read, think what that feature might be.

Suppose that you were to invest £100 with a bank at an interest rate of 5% per year. At the end of the first year
your money would have earned £5 in interest, and your total investment would be worth £105. To find the value
of your investment after a further year, you would add 5% of £105 (i.e. £5.25) to obtain a total of £110.251—1and
so on. Year after year, your total investment would increase, and so would the annual interest, since it would
grow in proportion to your total investment. Thus, on an annual basis, the rate of growth of your investment (i.e.
the interest gained per year) is proportional to your total investment.

When the electric charge Q stored in a capacitor is discharged through a resistor, the rate at which charge leaves
the capacitor and flows through the resistor is described by the electric current I through the resistor. The size of
this current is determined by the resistance R and the voltage V across the resistor: I = V/R. ☞ However, V itself
depends on the capacitance C and the charge Q remaining in the capacitor: V = Q/C. It follows that I = Q/(RC).
So, at any moment, the rate at which charge is lost from the capacitor, I, is proportional to the charge, Q,
remaining in the capacitor.
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The ‘activity’ of a radioactive sample is a measure of the number of atomic nuclei in that sample that
disintegrate per second. ☞ Since each disintegration effectively removes one unstable nucleus from the sample
it is also a measure of the rate at which unstable nuclei are lost from the sample. Now any individual nucleus is
equally likely to decay in each second of its lifetime, so the number of disintegrations occurring in a sample in
one second will be proportional to the number of unstable nuclei in that sample. Thus, at any time, the rate of
decrease in the number of the unstable nuclei in a sample is proportional to the number of unstable nuclei that
remain.

✦ What do the above examples have in common?

All the changes discussed above are examples of exponential changes. Such change may cause a quantity to
increase (e.g. to grow) or to decrease (e.g. to decay), and may be characterized in the following way:
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In an exponential change the rate of change of some quantity, y, at any time t, is directly proportional to
the value of y itself at that time:

{rate of change of y(t)} ∝ y(t) ☞

i.e.3{rate of change of y(t)} = ky0(t) (1)

where k is a constant of proportionality.

If k is positive, y increases with time1—1this kind of change is called exponential growth.

If k is negative, y decreases with time1—1this kind of change is called exponential decay.

In our first example, the constant k was simply the interest rate, so, k = 0.051year0−1 (i.e. 5% per year). In the third
example, the case of radioactive decay, the rate of change in the number of unstable nuclei was negative since
the change reduced the number of such nuclei in the sample. ☞ In such cases the constant of proportionality is
usually written as −λ, where λ is a positive quantity called the decay constant1—1for example, a certain isotope
of polonium has a decay constant of λ = 0.01331s−1. Notice that the units of the decay constant reflect the units of
the time interval used to define the rate.
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Question T1

How many nuclear disintegrations per second would you expect from a sample containing 6.0 × 1018 polonium
nuclei (λ = 0.01331s–1)?3❏

Question T2

In the second example above, what is the constant of proportionality relating the rate of discharge, I, of a
capacitor to the charge Q remaining on the capacitor?3❏

There are many examples of exponential change in physics, some of which you will meet during this module.
All exponential changes have an underlying mathematical similarity, and later in this section we will develop
some powerful mathematical ideas and techniques relating to such changes. First, though, we need to have a
more careful look at the idea of a rate of change.
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2.2 Gradients and rates of change
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Figure 13The volume of water in a
bath that fills at a constant rate.

Figure 1 illustrates how the volume, V, of water increases with time
when a bath is filled. You can see from the graph that the water from the
tap is running at a constant rate, because the volume of water increases
by equal amounts in equal time intervals, i.e. by 2 litres in each
second1—1the rate of change of volume is therefore 21litres1s−1.

☞

✦ What is the gradient of the graph in Figure 1?
What is the relationship between the gradient and the rate of change of
volume?

✦ What would the graph look like if the bath were emptying at a
constant rate of 51litres1s−1?
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Figure 2  The volume of water in a bath emptying at a decreasing
rate. The lines (a) and (b) are used to estimate the flow rate at t = 101s.

We can generalize the above discussion to any
constant rate of change:

For any quantity y that changes at a
constant rate, the graph of y against time t
is a straight line with a gradient equal to
the rate of change of y.

In practice, a bath does not continue to empty,
unaided, at a constant rate. As the water level
falls, the water pressure also falls, and so the
rate at which water flows out of the bath
decreases. Figure 2 shows how the volume of
water in an emptying bath might change with
time. The graph drops steeply at first,
corresponding to a rapid flow, and gradually
becomes shallower as the flow rate diminishes.
☞
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Figure 2  The volume of water in a bath emptying at a decreasing
rate. The lines (a) and (b) are used to estimate the flow rate at t = 101s.

As before, we can relate the rate of change of
volume to the steepness of the graph, even
though the steepness is changing from moment
to moment, but how do we do this? What
feature of a curved graph such as in Figure 2
will let us work out the rate of change of the
plotted quantity at any time? We could get a
rough value for the rate of change of volume at,
say, t  = 101s by finding the change in the
volume of water in the bath between t = 61s and
t = 141s (about −71litres) and then dividing that
volume by the time interval of 81s (141s − 61s) to
get a rate of change of volume of about
−0.91litres1s−1. This is equivalent to finding the
gradient of the straight line joining the points
on the graph at t = 61s and t = 141s. Or we could
choose a shorter time interval, say 21s, between
t = 91s and t = 111s. You can see from the lines
(a) and (b) drawn on Figure 2 that a different
choice of time interval gives a straight line with
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Figure 33Finding the gradient at a point on a curve by
drawing a tangent.

a different gradient, and hence a different rate of change
of volume. The difference arises because the flow rate is
changing during the time intervals and what we have
calculated is an average rate of change of volume over
each of the specified periods. But how can we improve on
this to find the rate of change at a particular time?

If we make the time interval very small indeed, we can
hope that the flow rate hardly changes at all during that
interval. Instead of a line joining two well-separated
points on a curve, the situation is more like that shown in
Figure 3; there will be single straight line that just
touches the curve at t = 101s, the steepness of which
matches exactly that of the curve at that point. Such a line
is called a tangent to the curve. Using this idea we can
define the gradient of the curve, at any particular point, to
be the gradient of the tangent to the curve at that
particular point. This gradient tells us the instantaneous
rate of change at our chosen value of t, rather than the
average rate of change over an interval.
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So, if we have a change in volume ∆V in a time interval ∆t, the quantity ∆V/∆t will be equal to the average rate
of change of volume during the interval ∆t ☞. But if we make ∆t and ∆V smaller and smaller we can reasonably
expect that ∆V/∆t will provide an increasingly good estimate of the gradient of the tangent. Indeed, if ∆t and ∆V
are small enough ☞, we can expect ∆V/∆t to represent the (instantaneous) rate of change of V.

In the remainder of this module we will use the notation ∆V/∆t to represent the instantaneous rate of change of V
with respect to t ☞. In other words, no matter what value of t we are discussing, we will always assume that we
can find suitable values ∆t and ∆V to ensure that ∆V/∆t provides an accurate value for the gradient of the tangent
at that value of t. From a strictly mathematical point of view this is not always justified, nor is it a particularly
good use of notation, but we shall use it none the less.

When trying to find an instantaneous rate of change from a graph you will probably have to make your best
guess at an appropriate tangent, evaluate its gradient as accurately as possible, and accept that by working
graphically you are limited to making estimates of rates of change. (Fortunately, there are algebraic techniques
that enable us to work out rates of change accurately, but these too belong to the subject of differentiation and
will not be developed in this module.)
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Figure 33Finding the gradient at a point on a curve by
drawing a tangent.

Question T3

Find the gradient of the tangent at t = 101s1 shown in
Figure 3. Draw a tangent to the curve at t = 51s and hence
estimate ∆V/∆t when t = 51s.3❏

The above discussion can be generalized to the rate of
change of any quantity:

The rate of change of any quantity y, at a particular
time, can be represented by the quotient ∆y/∆t,
provided the changes ∆y and ∆ t are sufficiently
small. The value of such a rate of change is given by
the gradient of the tangent to the graph of y against t
at the time in question.

Furthermore, the idea of a gradient of a curved graph is
not confined to graphs showing variation with time.
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Figure 43A graph of the equation
y = x12.

✦ Figure 4 is a graph of the equation y = x2. By drawing tangents to the
curve, estimate ∆y/∆x when x = 0, x = 2, and x = −1.
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Figure 53Graphs of (a) the position
coordinate and (b) the instantaneous
velocity of an object moving along a
straight line.

Before we end this subsection, we will have a brief look at some more
rates of change and their physical interpretations. One example is shown
in Figure 5a, where the graph shows how the position coordinate, x, of
an object moving along a straight line, changes with time. This is called
linear motion ☞. Where the graph is steep, the position changes rapidly
with time1—1i.e. the object moves quickly1—1and shallower parts of the
graph correspond to the object moving more slowly. A negative gradient
corresponds to the object moving in the reverse direction.
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Figure 53Graphs of (a) the position
coordinate and (b) the instantaneous
velocity of an object moving along a
straight line.

We can therefore say that, at any particular time, the gradient of this
position–time graph is equal to the instantaneous velocity vx of the
object. Figure 5b shows how the velocity, vx, of the object represented in
Figure 5a changes with time.

✦ Suggest a physical interpretation of the gradient of Figure 5b.

Using the notation introduced above, we can rewrite the condition for
exponential change (Equation 1) as:

In an exponential change, at any time  ∆y/∆t = ky (2)



FLAP M1.5 Exponential and logarithmic functions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1 2 3 4 50

5

10

15

20

N
/1

010

t/106s

Figure 6 shows an example of a quantity that is
changing exponentially: N, the number of
unstable nuclei in a radioactive sample, decays
exponentially with time t. The gradient of the
curve at any particular time is equal to the
number of disintegrations per second occurring at
that time. By drawing tangents to the graph at
various times and measuring their gradients it is
easy to see that the gradient is indeed
proport ional  to  N ,  a s  r equ i red .
When N = 10 × 1010, 6 × 1010 and 2 × 1010, the
measured gradients are −5 × 104

1s−1, −3 × 104
1s−1

and −1 × 104
1s−1.

Figure 63 The number of unstable nuclei in a
radioactive sample plotted against time, with tangents
drawn at N = 10 × 1010, 6 × 1010 and 2 × 1010. This is
an example of exponential decay.
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Figure 7 shows how the charge Q  (measured in
coulombs) stored in a capacitor changes with time.
By measuring the gradients of tangents at various
times, we can find the rate of flow of charge, i.e.
the current, at these particular times.

Question T4

By drawing tangents to the curve, estimate the
currents when Q = 21C, 11C and 0.51C, and hence
verify that Figure 7 shows exponential decay.3❏

Figure 73The charge remaining on a discharging
capacitor. Another example of exponential decay.
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Figure 83See Question T5.

Question T5

Figure 8 shows the graph of V = 8/x2. Explain how you would show that
this curve does not describe exponential decay.3❏
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2.3 Exponential functions and the number e
In this subsection, you will learn how to write functions representing the values of quantities that change
exponentially. We will begin with exponential growth, since we can then deal entirely with positive quantities
☞. We will look for a function y(x) such that, at any value of x, the rate of change of y is equal to the value of y
itself, i.e. we will look for a function y(x) such that ∆y/∆x = x. For the sake of simplicity we will treat x as a
purely numerical variable.

In Subsection 2.1, we saw that when there is a constant annual interest rate the value of an investment grows
exponentially. With an interest rate of 5% per year, the value after one year is found by multiplying the initial
sum by 1.05 and, after two years, by multiplying again by 1.05, i.e. in two years the value of the initial
investment increases by a factor of (1.05)2. If the investment is left for n years at the same interest rate, its initial
value will be multiplied by a factor of (1.05)n.

The above example suggests that we should look at functions of the form y(x) = y0ax, where y0 is the initial value
of y and a is some (positive) constant number. It may therefore be helpful at this point to have a brief reminder
of the properties of such functions.
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For any numbers a, x and y:

axay = ax1+1y (3)

(ax)y = axy (4)

a− x = 1
ax

(5)

ax/y = (a1/y)x (6) ☞

Also, recall that a0 = 1 and that by a1/k (for k a positive integer) we mean the kth root of a, i.e. a solution of the
equation xk = a.
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Figure 93The graph of y(x) = 2x.

Now let us look at a particular function: y(x) = 2x. Figure 9 shows the
graph of this function, and Table 1 shows its value for various values
of x.

Table 1   Values of the function y1(x) = 2 x.

x 2x x 2x

−3.5 0.09 0 1.00

−3.0 0.13 0.5 1.41

−2.5 0.18 1.0 2.00

−2.0 0.25 1.5 2.83

−1.5 0.35 2.0 4.00

−1.0 0.50 2.5 5.66

−0.5 0.71 3.0 8.00

✦ Find the gradients of tangents to the graph of y = 2x at x = –1, 0, 1
and 2. Is this function growing exponentially?
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In fact the gradient is consistent with ∆y/∆x ≈ 0.7y, not with ∆y/∆x = y. If you were to plot the graph of y(x) = 3x

you would find that it too grows exponentially, with a gradient approximately equal to 1.1 × 3x. This suggests
that there may be some number a between 2 and 3 such that if y(x) = ax, then the gradient would be exactly equal
to the value of y.

It turns out that there is indeed such a number. To three decimal places its value is 2.718, but like π and 2 , it is
an irrational number ☞ that cannot be accurately represented by any decimal with a finite number of decimal
places. For this reason it is conventional to represent its accurate value by the letter e and simply substitute an
appropriate numerical value whenever necessary. e is one of the most important numbers in physics and in
mathematics ☞.

e = 2.718128118281459105 … (to 14 decimal places)

If y(x) = ex (7) ☞

then the rate of change ∆y/∆x = y(x)
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Figure 103The graph of the function y(x) = ex.

✦ Figure 10 is a graph of y(x) = ex. Draw tangents at a
few different points on the graph and measure their
gradients. Confirm that at each point you examine the
gradient is equal to the value of y.
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The function ex is known as the exponential function, and to emphasize that it is a function of x it is often
written as exp1(x) ☞ . So far, we have used it to describe how something varies with x, where x can be any
variable without dimensions (since powers are always dimensionless numbers).

To evaluate exponential functions on a calculator, use the ex key (possibly labelled exp1(x)) or its equivalent ☞.
If your calculator does not have such a key, you may be able to calculate ex by using the yx key with y = 2.718,
but you are probably best advised to buy a new calculator ☞.

Question T6

Evaluate e2, e3, e1.43, e−1 and e0.3❏

2.4 Exponential functions and exponential change
So far, you have seen that the function y(x) = exp1(x) describes exponential changes in which the rate of change
is equal to y(x) at any given value of x. In this subsection, we will see how exponential functions can be used to
describe exponential changes that correspond to any value of k in ∆y/∆x = ky.
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Figure 113The graph of y(x) = exp1(3x).

✦ Table 2 gives some values for the function
y(x) = exp1(3x).
Figure 11 shows the graph of this function for the range
x = 0 to x = 0.6. 
Draw tangents at the points y = 2 and y = 3 and measure
their gradients. Suggest a relationship between the values of
y and the gradient.

Table 2   A table of values (to
three decimal places) for the
function y(x) = exp (3x).

x exp1(3x)

−1.0 0.050

−0.5 0.223

0 1.000

0.5 4.482

1.0 20.086

1.5 90.017

2.0 403.429
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You have just illustrated an important general rule about exponential functions:

For any function y(x) = exp1(kx), the gradient at any value of x  is k y(x), and so the rate of change
∆y/∆x = ky(x).

In other words, we seem to have found the function that satisfies the general condition for exponential change.
So far, though, we have looked only at examples where k is positive (i.e. exponential growth), whereas we also
need to be able to deal with exponential decay, where k is negative.
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Figure 123The graph of the function
y1(x) = exp1(−x).

✦ Figure 12 shows a graph of the function y(x ) = e−x

(i.e. k = −1). What is the sign of the gradient at any point on
the curve? What is the relationship between the gradient and
the value of y?
(Draw tangents and measure their gradients if you have to,
but you can probably guess the answer.)

The above example illustrates that the exponential function
y(x) = exp1(kx), with a suitable value of k, can describe both
exponential growth and exponential decay. So we now have
an almost complete description of any exponential change.
Why ‘almost’? So far, we have neglected the initial value of
y. If y = exp1(kx), then when x = 0, y = 1. Clearly, this is not
necessarily true in all physical situations. Also, since the start
of Subsection 2.3 we have been treating x and y as a purely
numerical variables, without any associated units. In practice
we are certain to be interested in situations where y and x are
physical quantities that involve units of measurement.
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Dealing with these remaining conditions is actually very straightforward. All we have to do to represent a
general exponential change is to use a function of the form y0 exp1(kx). Thus:

For any exponential change, i.e. any change in which ∆y/∆x = ky

y(x) = y0 exp1(kx) (8)

where y0 is the value of y when x = 0.

As far as units are concerned, y will have the same units as y0, and the product kt must be a pure number
(i.e. dimensionless), so if x is a time in seconds, say, then the units of k should be seconds–1. ☞
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Figure 133Graphs of the function y1(x) = y0ekx for various values of y0 and k.

Figure 13 shows the
graphs  of  the
exponential function
y  = y0ekx for various
values of y0 and k.
If you measured the
gradients of tangents
to any of these graphs
you would find that in
each case they satisfy
the equation
∆y/∆x = ky
at every value of x.
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This illustrates the general rule that for exponential functions the initial value of y does not alter the relationship
between the value of y and the gradient.  So, we now have a complete ‘recipe’ for describing exponential
change.

Question T7

When a capacitor discharges, ∆Q/∆t = −Q/(RC). If the initial charge is Q0, write an equation that describes how
Q changes with time (i.e. write a definition of Q as a function of time).3❏

Question T8

Radioactive decay may be described by the equation N = N0ekt. What are the values of N0 and k for the decay
shown in Figure 6?3❏

We will now consider some specific examples of exponential change.



FLAP M1.5 Exponential and logarithmic functions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Half-lives and decay absorption coefficients
Apart from the proportionality between the function and the value of its gradient, y(t)  =  y0ekt has another
interesting property. To see this, consider the effect of increasing t in a series of equal steps, say from 0 to 1/k, to
2/k, to 3/k, and so on. What are the corresponding values of y(t)? They are y0, y0e, y0e2, y0e3, and so on. Clearly,
equal additions to t cause y(t) to change by equal multiplicative factors. This is true whatever the size of the
additions to t may be (though different sized increments naturally correspond to different multiplicative factors),
and it applies to exponential decay as well as exponential growth. In fact, the best known example of this is
probably the use of half-life to characterize the decay of radioactive nuclei. Such decays are described by an
exponential function of the form N(t) = N0e−λt, so in any time interval of length 1/λ the number of nuclei will
decrease by a factor of e−1. Similarly, in any interval of length 0.693/λ  the number of nuclei is reduced by a
factor of 0.5. That’s why this is called the half-life. ☞
So far we have been concentrating on changes with time, but we have already noted that an exponential function
is not limited to such changes. For example, when a parallel beam of electromagnetic radiation passes through
matter, its intensity I  ☞ is related to the distance x that it has travelled through the medium by an exponential
function: I = I0 1exp1(−µ0x) where µ is called the absorption coefficient. It also depends on the nature of the
radiation and the nature of the matter. For every additional distance 1/µ that the beam travels through the matter,
its intensity is reduced by a factor of e–1.

✦ What are the dimensions of µ?
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The function at

Throughout the last two subsections, we have been mainly concerned with functions of the form y(x) = y0ekx.
But we have also seen that functions such as 2x and 3x also satisfy the requirement that their gradients are
proportional to their values at any given value of x. Clearly then, the exponential function exp1(x), or ex, is just
one special example of the kind of function that can describe exponential change. More generally, any function
of the type y(x) = y01akx (where a is any positive number) will describe exponential change, though it will not
satisfy the equation ∆y/∆x = ky. For instance, in Subsection 2.3, you saw that the gradient of the graph of
y(x) = 2x is approximately ∆y/∆x ≈ 0.7y while that of y(x) = 3x is approximately ∆y/∆x ≈ 1.1y, so in both of these
cases, where k = 1, it is certainly not the case that ∆y/∆x = ky even though ∆y/∆x is proportional to y. What really
distinguishes the function y(x) = y0ekx is the fact that for it alone we can assert that ∆y/∆x = ky for all values of k.

Although the functions y(x) = y0ekx and y(x) = y0akx are different (provided a ≠ e), there is a simple relationship
between them. Because it is always possible to find a number c such that a = ec, for any positive value of a, it is
always possible to write

y0akx = y0(ec)kx = y0eckx
3(a > 0)

Thus, any function that describes exponential change can always be rewritten in terms of the exponential
function, all we have to do is find the value of c that satisfies the equation a = ec. We will return to this in
Subsection 3.2, where you will see how it is done.
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A note on terminology3In an expression such as q0p (where p and q are either constants or variables), the power
p is sometimes called the exponent of q ☞. Correspondingly, some authors use the term ‘exponential function’
to mean all functions of the type y(x) = ax. Those authors still use exp1(x) to represent ex, but they sometimes call
it the natural exponential function (since it arises from descriptions of naturally-occurring processes) in order
to distinguish it from other functions of the type ax. However, in FLAP the term exponential function is
generally used to mean a function of the form y(x) = ex or y(x) = ekx. Variables related by functions of the form
y(x) = y0ekx are generally said to satisfy exponential laws. Such laws arise in many areas of physics.

2.5 Evaluating the number e
In Subsection 2.3, the value of e was produced more or less out of a hat, and was then shown to have the
necessary properties to describe exponential change. Now we will show how the value of e can be calculated
from first principles.

We start from the requirement that we want a number e such that if y(t) = y0ekt, then ∆y/∆t = ky. In order to avoid
having to deal with negative numbers, we will consider an example of continuous exponential growth. Our
original example of the growth of an investment is now not a very good one, since the interest is added only
once a year and so the value goes up in steps rather than continuously. A better example would be the growth of
a large population of organisms (aphids, perhaps, or bacteria) where the population changes over even a very
short time interval.
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Suppose the number of organisms at time t is N(t), and that at any time t the instantaneous rate of change is
∆N/∆t = kN(t). Even if we do not have an expression for N(t) in terms of t, we can still use the given information
to draw an approximate graph of N against t. To do this we note that the increase in the population over a small
time interval ∆t will be approximately ∆N = kN(t)∆t. 
(This is only an approximation because the equation ∆N/∆t = kN(t) will not be completely accurate for any finite
value of ∆t, no matter how small.)

So, if N0 is the number of organisms at the start of a time interval ∆t, the approximate number at the end of that
interval will be N0 + ∆N = N0 + kN0∆t. This process can be repeated for the next interval ∆t, by taking
N1 = N0 + kN0∆t as the new starting value and ∆N = kN1∆t as the increment over that second interval. This can
be continued until we have built-up a complete (though approximate) graph of N(t) over any desired period of
time.
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Figure 14a shows such a graph for k  = 0.11s−1 and
N0 = 105, drawn using a time interval of ∆t = 51s. If a time
interval of ∆t = 1s were used (still with k = 0.11s−1), then
the graph would not only be smoother but it would also
climb more steeply, as shown in Figure 14b. The
increased steepness arises because, instead of using the
same rate of change for a whole 51s, based on the value of
N at the start of that interval, we calculate a new rate of
change after only 11s, based on a slightly larger N.

✦ Which graph in Figure 14 is the better approximation
to the real situation? How could the graphs be made even
more realistic?

Figure 143An approximate graph of N  against t where
N0 = 105, k = 0.11s−1 and (a) ∆t = 51s, (b) ∆t = 11s.
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�
�

t/s (a) N/104

when ∆t = 51s
(b) N/104

when ∆t = 11s

0 10.000 10.000

1 11.000

2 12.100

3 13.310

4 14.641

5 15.000 16.105

6 17.716

7 19.487

8 21.436

9 23.579

10 22.500 25.937

Table 3 shows the values used to plot Figure 14.

Table 33Values of N calculated using
(a) ∆t = 51s, and (b) ∆t = 11s. 
(Remember that N/104 in the column heading
means that each entry in the column has been
divided by 104.)



FLAP M1.5 Exponential and logarithmic functions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

N

ttt/20
∆t∆t

N2

N1

N0 A

B

C

Figure 153Estimating N(t) by dividing a
the time t into small intervals. The curve
represents the actual variation of N with t.

Let us now see what happens as we make ∆t smaller and smaller.
Figure 15 illustrates the procedure. N0 is the initial number of
organisms and t is some arbitrary period of time which can be
subdivided into intervals. If we divide t into 2 equal intervals of length
∆t = t/2, and if N1 is the approximate number after the first interval of
length t/2, then

N1 = N0 + kN0t

2
= N0 1 + kt

2




 (9)

and after the second interval of length t/2

N2 = N1 + kN1t

2
= N1 1 + kt

2




 (10)

Combining Equations 9 and 10, we find

N2 = N0 1 + kt

2






2

(11)
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Now, if we had chosen to use 10 smaller intervals, each of length t/10, we would have obtained a somewhat
different, and more accurate, estimate of the total number of organisms after time t:

N10 = N0 1 + kt

10






10

Similarly, if we had used n equal intervals, then we would have found

Nn = N0 1 + kt

n






n

(12)

If we now let the value of n become larger and larger we can expect the value of Nn to get closer and closer to
the true final value (which we know to be N0ekt). Thus, as n becomes larger the following approximation
becomes increasingly accurate:

N0ekt ≈ N0 1 + kt

n






n
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For reasons that will soon become apparent, it is useful to eliminate n from this relationship in favour of a new
variable m defined by m = n/kt. In making this substitution it is important to remember that the final power of n
must be replaced by mkt, and the statement that the approximation becomes increasingly accurate as n becomes
larger should also be restated in terms of m. Thus, as m becomes larger the following approximation becomes
increasingly accurate:

N0ekt ≈ N0 1 + 1
m







mkt

= N0 1 + 1
m







m









kt

(13)

It follows from Equation 13 that e ≈ (1 + 1/m)m, and that this approximation becomes increasingly accurate as m
becomes larger and larger. This statement can be made more concise by using the mathematical idea of a limit.
We say that e is the limit of (1 + 1/m)m as m tends to infinity. This is conventionally written as:

e = lim
m→∞

1 + 1 m( )m (14) ☞
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Table 4   See Question T9.

m a

2 2.2500

5 2.4883

10 2.5937

102 2.7048

103

104

105

Question T9

Given that a = (1 + 1/m)m, complete Table 4 (using a calculator) and thus confirm
that (1 + 1/m)m provides an increasingly good approximation to e as m becomes
larger and larger.3❏
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3 Logarithmic functions
In Section 2, you saw how exponential changes can be described by a function of the general form y(t) =
y01exp1(kt). Given values for y0 and k, this function provides a unique value of y for any given value of t. In this
section our main aim is to investigate the inverse function, that tells us the value of t corresponding to any given
value of y. However, we begin our investigation by examining a slightly different question: given that x = 10y,
what is the value of y that corresponds to a given value of x? In other words, given that x = 10y, we want to know
the inverse function that will enable us to write y as a function of x.

3.1 Logarithms to base 10: the inverse of 10x

For some values of x, we can find y such that x = 10y, without really thinking about inverse functions at all. For
example, if x = 100 then, since 100 = 10 × 10 = 102, y must be equal to 2.

✦ If x = 10y, what is y when, (a) x = 101000, and (b) x = 0.1?
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Figure 163(a) A graph of the function x = 100y with
the x-axis vertical and the y-axis horizontal.

Figure 16a is a graph of the equation x = 10y, plotted with
the x-axis vertical and the y-axis horizontal. This may look
odd, but when plotting graphs it is conventional to plot
values of the independent variable along the horizontal axis
and values of the dependent variable along the vertical
axis, and that is exactly what we have done. It is the choice
of names for the variables that is unconventional in this
case, not the graph plotting. In any event, it is clear from
Figure 16a that each value of x corresponds to a different
value of y, and that means it will be possible to define an
inverse function to x = 10y. The graph of this inverse
function (with conventional x- and y-axes orientation) is
shown in Figure 16b. It was obtained by re-plotting the
data from Figure 16a so as to show y as a function of x.
(This process is equivalent to reflecting the curve in Figure
16a in an imaginary mirror placed along the line y = x .)
This shows that we can, in principle, find y for any positive
value of x.
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Figure 163(b) A graph of the inverse
function, y = log101(x), plotted on axes with
the conventional orientation.

The function of x shown in Figure 16b is usually denoted by
y  = log101(x) and its value for a given value of x is called the
logarithm to base 10 of x, or the common logarithm of x. This is
an example of a logarithmic function1— 1you will meet others in
Subsection 3.2. As you can see from Figure 16b, it is only defined
for positive values of x.

The logarithm to base 10 of x is the number y which satisfies
the equation x = 100y, i.e.

y = log101(x) (15)

In other words, log101(x) is the power to which we must raise
10 to obtain x.

We have written x in brackets in log101(x), to emphasize that we are
dealing with a function, but the brackets are often omitted in
practice. Note, too, that log101(x) is sometimes written as log1(x).
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From our definition we see that:

log10 (10) = 1 since 101 = 10

log10 (1) = 0 since 100 = 1

log10
1

10




 = −1 since 10−1 = 1

10

Question T10

Without using your calculator, work out the values of:

(a) log101(100), (b) log101(1000), (c) log101(0.1), (d) log101(0.001), (e) log101(101/2),

(f) log101(10), (g) log101(1), and (h) log101(101.52).3❏

✦

Use the x 0y key on your calculator to find 100.397194 and 10–2.301103, and hence find values for log101(2.5) and
log101(0.005) to five decimal places.
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The values of log101(x) are harder to calculate directly when x is not an obvious power of 10. However, they can
be read from graphs such as that in Figure 16b, or found using the ‘log’ key on a calculator. For example, to find
log101(3.7), key in 3.7 then press the ‘log’ function key1—1you should obtain the answer 0.56812017.

✦ Use your calculator to find log101(100), log101(10), log101(1), log101(0.001), log101(2) and log101(3.16).

Question T11

Use the log function key on your calculator to find x when (a) 10x = 6.8, (b) 10x = 537, (c) 10x = 0.34.
(Give your answers to four significant figures.)3❏

Question T12

Use your calculator to find (a) log101(4.725), (b) log101(47.25) and (c) log101(472.5). (d) Without further use of the
calculator, find log101(4725) and log101(4.725 × 107).3❏
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We have already established that taking the logarithm to base 10 ‘undoes’ the operation of raising 10 to a power
(see part (e) of Question T10, for example). Likewise, raising 10 to a power ‘undoes’ the operation of finding the
logarithm to base 10. This can be expressed another way. If we eliminate y from Equation 15 we find

10log101(x) = x

therefore log101(10x) = x (16)

The function 10x is sometimes called the antilog or antilogarithmic function. Antilogs can be found on a
calculator using the ‘inverse’ and ‘log’ function keys. ☞

✦ Use the function keys on your calculator to find antilog1(x) for x  = 2, x  = –1, x = 0.397194 and
x = –2.3011031—1key in the number, then press ‘inv’ and ‘log’.
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3.2 Logarithms to base e and other bases
In Subsection 3.1, we looked at logarithms based on powers of 10. It is possible to use numbers other than 10 as
the base for logarithms1—1in fact it is possible to have logarithms to any base a that is greater than zero:

The logarithm to base a of x is the number y such that x = ay.

In other words, the logarithm to base a of x is the power to which we must raise a to obtain x, i.e. if x = ay

then

y = loga1(x) (17)

Just as the functions 10x and log101(x) are the inverse of each other, so the functions ax and loga1(x) are the inverse
of each other. This can be expressed by eliminating y from Equation 17 to obtain x = a loga ( x ) , or alternatively by
eliminating x to obtain y = loga1(ay). Replacing y by x throughout the second of these results (which we are free
to do since we can always rename a variable) we see that for any base a:

if a loga ( x )  = x

then loga1(ax) = x (18)
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✦ Given that N/N0 = 2kT, find an expression for T.

(Hint: Start by taking appropriate logs of both sides of the given equation.) ☞

The most widely-used logarithms and logarithmic functions are those based on powers of 10 or on powers of the
number e.

The logarithm to base e of x is the number y such that x = ey, i.e.

if x = ey

then y = loge1(x) (19)

and hence

exp1[loge1(x)] = x

and loge1[exp1(x)] = x (20)
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Since the number e arises from the description of naturally-occurring processes (radioactive decay), the
logarithmic function based on powers of e is often known as the natural logarithm and loge1(x) is sometimes
denoted by ln1(x) ☞. Note that loge1(x) can be found on a calculator, in the same way as finding log101(x), the key
is usually marked loge1(x) or ln1(x). (You may have to press ‘inv’ followed by ‘ex’ if your calculator doesn’t have
a ‘loge’ or ‘ln’ key.)

✦ Given that e = 2.718 (to three decimal places), use the yx key on a calculator to find e1.5041, and hence write
down an approximate value for loge1(4.5).

Question T13

Without using your calculator, what are the values of loge1(1) and loge1(e)?3❏

Question T14

Using your answers to Question T13, and the value of loge1(10) found using your calculator, sketch an
approximate graph of the function loge1(x) on the same axes as a graph (such as that in Figure 16b) of
log101(x).3❏



FLAP M1.5 Exponential and logarithmic functions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Natural logarithms can, as you have just seen, be handled on a calculator in a similar way to common
logarithms. Their inverse function, too, can be dealt with similarly. ☞

✦ Suggest how to find exp1(x) on a calculator using the ‘inv’ (i.e. inverse) and ‘log’ keys ☞.
Use this method to find e1.5041.

We are now able to solve the problem posed at the start of Section 31—1namely, to write t as a function of y
given that y(t) = y01exp1(kt). If we divide both sides of this equation by y0 we obtain y/y0 = exp1(kt) = ekt. We can
then use Equation 21 (or take loge of both sides) to deduce that:

if y = y01exp1(kt)

then loge1(y/y0) = kt (21)

so that t = (1/k)1loge1(y/y0)
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When dealing with exponential decay, the constant k will be negative, and care will need to be taken when
dealing with signs. For example, when a capacitor discharges through a resistor, the charge Q on the capacitor is
given as a function of time by Q = Q01exp1(−t0/RC0). To find the time at which Q reaches a certain value, divide
both sides by Q0 to obtain Q/Q0 = exp1(−t0/RC0), and then take loge of both sides to see that loge1(Q/Q0) = −t/RC.
So, t = −RC1loge1(Q/Q0).

We can also now solve the problem encountered at the end of Subsection 2.4, where we wanted to find a number
c such that akt = exp1(ckt). In other words, since eckt = (ec)kt, we wanted to find the value of c such that a = ec.
If we take loge of both sides of this equation we find c = loge1(a). You will recall that this is an important result
since it enables us to rewrite any function of the form y(t) = y0akt in terms of the exponential function
y(t) = y0eckt.

Question T15

Use your calculator to find x when (a) ex = 4.8, (b) ex = 10, (c) ex = 0.56.3❏
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Question T16

The number of organisms, N, in a certain population increases exponentially: N = N01exp1(kt) where k = 0.021h−1.
If N0 = 1000, how long does it take for the population to double, i.e. what is t when N = 2000? Without doing
any further calculation, write down the time taken for N to increase from 2000 to 4000.3❏

Question T17

In a sample of radioactive material, the number, N, of polonium nuclei decays exponentially: N = N01exp1(–λt)
where λ = 0.01331s−1. How long does it take for the number of polonium nuclei to halve?3❏

Question T18

By finding a suitable value of k, rewrite the function y(x) = 3x in the form y(x) = ekx . Check your answer by
finding 3x and exp1(kx) when x = 2.3❏
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3.3 Properties of logarithms
In this subsection we examine some further properties of logarithms that can be deduced from the relationships
we have already discussed together with the rules for manipulating indices that were summarized in Equations 3
to 6.

Products and quotients

First, let us look at the result of multiplying two numbers together where each is expressed as 10 raised to a
power ☞. Suppose that x = 100p and y = 10 0q. By definition then, log101(x) = p and log101(y) = q (see Equation 15).

Now, xy = 10 0p × 100q = 10 0p1+1q

so log101(xy) = log101(100p 1+1q) = p + q = log101(x) + log101(y)

thus log101(xy) = log101(x) + log101(y)

Of course, instead of working to base 10, we could equally well have written x and y as powers of some other
number a, and then taken logs to base a. If we had done so we would have found the following general result:

loga 1(xy) = loga 1(x) + loga 1(y) (22)
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You can illustrate this rule with the aid of a calculator. For example, log101(3) = 0.477, log101(7) = 0.845 and
log101(21) = 1.322 (all to three decimal places), i.e. log101(21) = log101(3) + log101(7).

✦ Confirm that loge1(21) = loge1(3) + loge1(7).

You have in fact already met another example of this rule. In Question T12, you saw that 
log101(4.725 × 10n) = n + log101(4.725)1—1which follows from Equation 22 because log101(10n) = n.

The next example demonstrates some properties of logs of quotients and reciprocals. ☞

✦ (a) By writing x = 100p and y = 10q, find an expression for log101(x/y) in terms of log101(x) and log101(y).
(b) Use your answer to express log10 1(1/x) in terms of log10 1(x).
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The example above suggests the following general rules, which apply to logs to any base a:

loga1(x/y) = loga1(x) − loga1(y) (23)

loga1(1/x) = −loga1(x) (24)

✦ Check Equations 23 and 24 with the aid of your calculator. For example, try x = 24, y = 8, using 
(a) logs to base 10, and (b) logs to base e.
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Powers and roots

Suppose we have some number y = xn where n is an integer, then

  

y = x × x × xK× x
n factors

1 244 344

It follows from Equation 24 that

  

loga (y) = loga (x) + loga (x) +K+ loga (x)
n terms

1 2444444 3444444

☞

thus, loga1(xn) = n1loga1(x).

This is indicative of a more general result that applies to any power of x, not just integer powers:

loga1(xb) = b1loga1(x) (25)
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You can check Equation 25 with the aid of a calculator.

loga1(xb) = b1loga1(x) (Eqn 25)

For example, you can show that log101(32) = log101(9) = 21log101(3); that log101(491/2) = log101(7) = [log101(49)]/2
and that log101(41.73) = log101(11.004) = 1.73 × log101(4).

☞

✦ By taking logs to base 10 of both sides of the equation, find the value of x when 2x = 3 × 5x.

loga 1(xy) = loga 1(x) + loga 1(y) (Eqn 22)

loga1(x/y) = loga1(x) − loga1(y) (Eqn 23)

loga1(1/x) = −loga1(x) (Eqn 24)

As you will see in Subsection 3.4, Equations 22 to 25 enable logs to be used in tackling a wide variety of
problems in physics. But before we end this subsection, we will extend our discussion and show how to convert
between different bases for logarithmic functions.
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Changing the base of logarithms

In Subsection 3.2 we derived the following expression involving loga(x):

a loga ( x ) = x (Eqn 18)

Now suppose we take logs to another base, b, of both sides:

log logb
x

ba xalog ( ) ( )( ) = (26)

loga1(xb) = b1loga1(x) (Eqn 25)

From Equation 25,

loga1(x) × logb1(a) = logb1(x) (27)
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So we have a relationship between the log of x to two different bases1—1most usefully, it enables us to convert
between the two most widely-used bases:

log101(x) × loge1(10) = loge1(x) (28) ☞

To three decimal places, loge1(10) = 2.303, and so loge1(x) = 2.303 × log101(x). Using your calculator, you can
verify that Equation 28 describes the relationships between loge1(x) and log101(x) for various values of x. But if
you look at the answer to Question T14 you will see that the graph of loge1(x) can be obtained from the graph of
log101(x) by re-scaling the y-axis by a factor of loge1(10), just as Equation 28 implies.

Question T19

Use logs to base ten to find the value of x when 6 = 2x.3❏

Question T20

By finding log101(5) and log101(2) on a calculator, calculate log21(5).3❏
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Figure 173Experimental measurements
of a quantity y that varies with time.

3.4 Using logarithms in physics
We have already seen one use of logarithms in physics1—1given that
y  = y01exp1(kt) we can find t in terms of y , i.e. t = [loge1(y/y0)]/k.
(See Subsection 3.2, in particular Questions T16 and T17.)
Now consider another problem related to exponential change. Suppose
an experiment gives the results shown in Figure 17. Does this graph
follow an exponential law? And if so, what is the value of k? It is hard
to see whether or not Figure 17 really does represent an exponential
function1—1you can measure gradients at various points, as we did in
Subsection 2.2 (e.g. in Question T4), but this is time-consuming, and
there are always uncertainties involved with drawing tangents.Let us
consider an easier approach. If y does follow an exponential law, we
must have y = y01exp1(kt), and hence

loge1(y/y0) = kt (Eqn 21).
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We can use Equation 23

loga1(x/y) = loga1(x) − loga1(y) (Eqn 23)

to write loge1(y) − loge1(y0) = kt, and hence

loge1(y) = kt  + loge1(y0) (29)

If we recognize loge1(0y) as a simple variable (call it Y if you like) then we see that Equation 29 has the general
form of the equation of a straight line (0y = mx + c), so if we plot loge1(0y) against t, we should expect to get a
straight line with gradient k that intersects the vertical axis at loge1(0y0). If the results do not follow an exponential
law, the graph will not be a straight line. ☞
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Figure 183See Question T21.

Question T21

Figure 18 shows graphs of the
results from two (hypothetical)
experiments. Which graph
shows that the relationship
between y  and t follows an
exponential law, and what is the
value of k in that case?3❏
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Similar techniques can be used for variables that obey a power law, i.e. a relation of the form y  = k x0p
(or y = kt1p) where the power, p, is some constant number. For example, suppose you think that variables F and r
might obey a power law of the form

F = k

r2
(30) ☞

where k is an unknown constant. How can you test your hypothesis experimentally? And how can you find the
value of k? The properties of logarithms, as summarized in Equations 22–25, provide a way. First, write the
expression F = k/r2 in terms of log101(F0) and log101(r), using Equation 23:

loga1(x/y) = loga1(x) − loga1(y) (Eqn 23)

log101(F0) = log101
k

r2




  = log101(k) − log101(r12) (31)

Then, using Equation 25

loga1(xb) = b1loga1(x) (Eqn 25)

we find: log101(F) = −21log101(r) + log101(k) (32) ☞
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✦ Suppose you were to plot a graph of log101(F0) against log101(r). What would be its gradient and its intercept
☞ on the vertical axis?

Plotting a graph using logarithms thus enables you: to test the data to see whether they follow the expected
exponential law, and to find the value of the constant k. Note that you do not have to use logs to base 10, since
Equations 22–25 apply to logs to any base a. This technique can be summarized as follows:

if y = kx0p

then loga1(0y) = p1loga1(x) + loga1(k) (33)

so a graph of loga1(0y) against loga1(x) has gradient p and intercept loga1(k). The logs may have any base,
though bases 10 or e are generally used.
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Question T22

According to one of Kepler’s laws of planetary motion ☞, the orbital period, T, of a planet is related to its
(average) distance, R, from the Sun: T12 = kR3. What would be the gradient of a graph of log101(T0) against
log101(R)? What would be the gradient if log to base e was used rather than base 10?3❏

Question T23

An experimenter measures the period of oscillation, T, of various masses m supported by a spring and suggests,
on theoretical grounds, that T ∝  m . How could the experimental data be tested to see whether T ∝  m ?3❏
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4 Closing items
4.1 Module summary
1 If the graph of some function y(t) is a straight line, then the rate of change of y is constant, and is equal to

the gradient of the graph. If the graph is a curve, then the rate of change at any point is defined by the
gradient of the tangent to the curve at that point.

2 If the rate of change of a variable is always proportional to the current value of that variable, then we can
say that variable changes exponentially. If we represent the variable by y, and its rate of change by ∆y/∆t,
we can write ∆y/∆t = ky, where a positive value of k characterizes exponential growth, and a negative value
of k characterises exponential decay.

3 If ∆y/∆t = ky, then y(t) = y01exp1(kt), where the exponential function exp1(kt) = ekt. The units of k are such that
kt is a dimensionless quantity.

4 The following relationships are a consequence of the general properties of powers:
exey = e0x1+1y

(ex)y = exy

e− x = 1
ex

ex/y = (e1/y)x

Mike Tinker
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5 Exponential functions are not restricted to describing changes with time. For example, the function exp 1(kx)
(with k such that kx is dimensionless) could describe how a quantity varies with position or any other
quantity.

6 The constant, e, is given in terms of a limit by:

e lim= +( ) =
→∞m

m
m1 1 2 718.  (to three decimal places)

7 The logarithm to base a of x is the power to which we must raise a to obtain x. So, if x  = ay, then
y = loga1(x). The function loga1(x) is thus the inverse of the function ax, hence a loga ( x ) = x  and loga1(ax) = x.

8 The most widely-used logarithmic functions have a = 10 and a = e.

9 Any function ax can be written in terms of the exponential function: ax = exp1(cx), where c = loge1(a).

10 The following relationships arise from the definition of a logarithmic function and the rules for combining
indices:

loga1(xy) = loga1(x) + loga1(0y) (Eqn 22)

loga1(x/y) = loga1(x) − loga1(0y) (Eqn 23)

loga1(1/x) = −loga1(x) (Eqn 24)

loga1(xb) = b1loga1(x) (Eqn 25)

Mike Tinker


Mike Tinker
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11 The base (a or b) of any logarithmic function can be changed using the relationship

loga1(x) × logb1(a) = logb1(x) (Eqn 27)

So loga1(x) = loge1(x)/c, where c = loge1(a).

12 If y = y01exp1(kt), then loge1(0y) = loge1(0y0) + kt, and a graph of loge1(0y) against t has gradient k and intercept
loge1(0y0).

13 If y and x are related via a power law, y = kx0p, then

loga1(0y) = p1loga1(x) + loga1(k) (Eqn 33)

and a graph of loga1(y) against loga1(x) has gradient p and intercept loga1(k).

Mike Tinker
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Recognize examples of exponential change.

A3 Estimate the gradient at a point on a curved graph by drawing a tangent.

A4 Sketch a graph of y = y01exp1(kt) and describe its significant features.

A5 Write down an expression for the rate of change of y, where y = y01exp1(kt), for any given value of t or y.

A6 Recognize and interpret the common expression for the number e written in terms of a limit.

A7 Explain the relationships between the functions loga1(x), ax and antilog1(x) and know that many common
applications of such functions use a = e or a = 10.

A8 Sketch graphs of y = loge1x and y = log101x and describe their significant features.

A9 Find the value of c such that at = ect.

A10 Manipulate and simplify expressions involving logarithmic and exponential functions of products,
quotients and powers.
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A11 Change the base of a logarithmic function and find the value of c such that loga1(x) = loge1(x)/c.

A12 Use a calculator to evaluate exponential functions, and logarithmic functions in base e and base 10.

A13 Use logarithmic functions to test whether experimental data obey an exponential law or a power law, and
to find the values of unknown constants in such relationships.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.



FLAP M1.5 Exponential and logarithmic functions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

0 1 2 x−1

y

100

80

60

40

20

Figure 193See Question E1.

4.3 Exit test

Study comment Having completed this module,
you should be able to answer the following
questions, each of which tests one or more of the
Achievements.

Question E1

(A2 and A3)3Figure 19 shows how a certain
variable y changes with x. 
By drawing tangents, estimate the gradient
∆y/∆x at y = 20, y = 40 and y = 60. 
Are your answers consistent with y being an
exponential function of x?
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Question E2
(A4, A5 and A11)3For the function y = y01exp1(kt) with y0 = 3 and k = 0.1, (a) state a general expression for the
gradient of the graph at any value of t, (b) calculate the gradient of the graph when t = 0 and when t = 2, and
(c) sketch a graph of the function.

Question E3

(A9)3Rewrite the equation y = 10bx in terms of the exponential function exp1(x).

Question E4

(A10)3Given that log101(3) = 0.477 and log101(2) = 0.301, evaluate the following without using a calculator: (a)
log101(300), (b) log101(6), (c) log101(60).

Question E5

(A7 and A10)3Without using your calculator, simplify

(a) exp1[loge1(π)], (b) loge1(eπ), and (c) logπ π 2( ) .
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Question E6

(A11 and A12)3Find loge1(π) and loge1(2) on your calculator and hence evaluate
log21(π).

Question E7

Table 5   See Question E7.

A T

1 0.70

3 1.46

6 2.31

10 3.25

20 5.16

30 6.76

45 8.86

(A12 and A13)3The results of an (hypothetical) experiment are given in Table 5.
Suppose the data obey a law of the form T = kAα. Find k and α  by plotting a
suitable graph.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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