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1 Opening items

1.1 Module introduction
This module is concerned with representing functions and numerical constants by means of series. Examples of
numerical series are

1 + 2 + 3 + 4 + … + n

and
  

π = 4 1 − 1
3

+ 1
5

− 1
7

+ 1
9

− K







where the ellipsis ‘…’ indicates that the series continues, following the same pattern. An example of a series
which represents a function is

  

sin( x ) = x − x3

1 × 2 × 3
+ x5

1 × 2 × 3 × 4 × 5
− K

Notice that in the last two examples, both series carry on indefinitely.
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Many of the numerical constants that occur in mathematics (notably, π and e) can be written as series. Functions
represented by series occur throughout mathematics and physics and such series are frequently used to obtain
solutions to many types of equations and (though not in this module) to evaluate integrals. Moreover, series are
often used to approximate well-known functions. In fact, every time you use a computer or your calculator to
evaluate something like sin(x) or loge(x) you are probably using a series approximation.

The discussion of series contained in this module is divided into two parts; Section 2 deals with finite series and
Section 3 with infinite series. Within Section 2 are the basic definitions of sequence and series along with the
symbols and terminology that will be used elsewhere in the module. Section 2 also contains a survey of various
standard series, including arithmetic and geometric progressions and the binomial expansion. Subsection 2.6
also contains an introduction to the method of induction that can be used to prove various results relating to
series and their sums. Section 3 presents the series that represent various elementary functions (sin(x), cos(x),
etc.), considers the conditions under which the sum of terms in an infinite series can lead to a finite result and
discusses the many applications of the truncated series that provide approximations to the functions represented
by the full series.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? The answers are given in Section 5.
If you answer the questions successfully you need only glance through the module before looking at the
Module summary (Subsection 4.1) and the Achievements  listed in Subsection 4.2. If you are sure that you can meet each of
these achievements, try the Exit test in Subsection 4.3. If you have difficulty with only one or two of the questions you
should follow the guidance given in the answers and read the relevant parts of the module. However, if you have difficulty
with more than two of the Exit questions you are strongly advised to study the whole module.

Question F1

Explain what is meant by n! and use the method of induction to show that

(k !)
k =1

n

∑ k = (n + 1)! − 1
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Question F2

Write down the binomial expansion of (a + b)n and define the binomial coefficient nCr. Show that the binomial
coefficient satisfies

1 + nC1 + nC2 + nC3 + … + nCn = 2n

Question F3

(a) Write down the series for sin1(x) and cos1(x) in powers of x. (b) Using the first three terms of each of these
series, obtain approximate values for cos1(60°) and sin1(30°).

Question F4

Use an appropriate test to discover whether or not the following series converges:

1
2n nn=1

∞

∑
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Question F5

Write (1 + x)0r as a series in powers of x and use this series to calculate the positive square root 1.1  to four
decimal places. Compare the result with the answer given by a calculator.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?
Study comment To begin the study of this module you need to be familiar with the term mean and with the basic idea of a
function, and, in particular, with the functions exp1(x), sin1(x) and cos1(x). You should also be able to simplify, expand and
evaluate basic algebraic expressions, solve simple equations and use inequality symbols (<, ≤, ≥, >) to indicate ranges of
numerical values. If you are uncertain about any of these terms, you should consult the Glossary, which also indicates where
to look in FLAP for more complete explanations. The following Ready to study questions will help you to decide whether
you need to review some of these topics before embarking on this module.

A special note about x : Throughout this module we adopt the convention that x  is the positive square root of x.

Question R1

In your own words, explain the meaning of −1 ≤ x < 1. If y = 1 − x, what can you say about the possible values
of y over the given range of values of x?

Question R2

Show that

n(n + 1)(2n + 1)
6

− 30 = (n − 4)(2n2 + 11n + 45)
6
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2 Finite series

2.1 Sequences

In physics and mathematics we are often interested in a succession of numbers such as 
  

1
2

,
2
3

,
3
4

K and so on.

Such an ordered collection of numbers is known as a sequence. ☞

Sequences may also arise as the result of physical experiments (such as temperature measurements at hourly
intervals) in which case they are likely to consist of physical quantities (i.e. combinations of numbers and units,
such as 101°C, 81°C, 61°C, …), or they may even consist of algebraic expressions such as x, x 02, x 03, … . The
essential point is that a sequence is not just a collection of terms, but that it is an ordered collection of terms.
The principle that underlies the ordering may not always be as obvious as that in the examples we have quoted,
but it is an essential part of the definition of a sequence. Because the terms of a sequence are ordered we can, if
we wish, number them. For instance the sequence of temperatures could be denoted T1, T 2, T 3, …. The
temperatures themselves might vary in a complicated way, but the position of each in the sequence is made clear
by the subscript (that is, the small number written after the symbol). In general, a subscript may have a limited
range of possible values (such as 1, 2, 3) or an infinite range (such as 1, 2, 3, …).
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The subscripts may not necessarily start at one (zero is very common) and the difference between successive
subscripts is not always one. If, for example, we were only interested in the odd temperature readings, it might
be sensible to label them T1, T3, T5 and so on. Subscripts provide a handy way of describing all the terms in a
sequence together, since we can speak of ‘the sequence Ti where the subscript i runs from 1 to 24,’ or whatever.
☞

2.2 An introduction to series
One use of sequences is in describing the sum of sets of numbers. Suppose, for example, that we have 24 hourly
temperature readings, which we call Ti0, where i = 1, 2, 3, …, 24, then the mean or average temperature, 〈 1T1〉 ☞,
is given by

〈 1T1〉  = 
1
24

(T1 + T2 + T3 + T4 + … + T24)

Such a sum is called a finite series (or sometimes, more briefly, a series). It is clear that writing summations
explicitly can be rather cumbersome and so it is convenient to introduce the symbol, ∑ (the Greek capital letter,
sigma), to mean ‘sum all terms to the right’.
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Using this summation symbol we can rewrite the expression for 〈 1T1〉  as

〈 T 〉 = 1
24

Ti
i=1

24

∑ 444☞

Notice that i, the quantity that increases by 1 as we go from one term to the next, is indicated below the ∑
symbol, along with its lowest value. This lowest value of i tells us the starting point or lower limit of the sum.
The value of i that determines the final term, the upper limit, is put above the ∑ symbol. In the above example, i
happens to be the subscript that distinguishes one term from the next, but as you will shortly see this is not
always the case. More generally, the variable that appears below the summation is called the summation
variable ☞ and should be presumed to change in steps of 1 from the lower limit to the upper limit.
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Some examples are given below: pay particular attention to (c), and note that the summation variable might start
from a value other than 1 as in case (d), or it might be decreasing, as in (e):

(a) i = 1 + 2 + 3 + 4 + 5
i=1

5

∑ = 15

(b) 2k + 1( )
k =1

3

∑ = (2 + 1) + (4 + 1) + (6 + 1) = 3 + 5 + 7 = 15

(c) a = a + a + a + a = 4a
i=1

4

∑ 4☞

(d)
  

2 i =
i=3

k

∑ 6 + 8 + K + (2k − 2) + 2k

(e) 3i =
i=4

0

∑ (3 × 4) + (3 × 3) + (3 × 2) + (3 × 1) + (3 × 0)  = 30
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Question T1

Evaluate n
n=3

7

∑ .4❏

Question T2

Two important statistical quantities that are often used to analyse a collection of data, such as x1, x2, …, xn, are
the mean

〈x〉 = 1
n

xi
i=1

n

∑

and the standard deviation σn

σn = 1
n

( xi − 〈 x 〉)2

i=1

n

∑

Find 〈 1x1〉  and σn for the data set x1 = 1.5, x2 = 2.0, x3 = 5.5.4❏
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2.3 Properties of the summation symbol ∑
Suppose we have evaluated a finite series of the form

xi
i=1

N

∑  = x1 + x2 + x3 + … + xN (1)

and we now want to know the result of

2 xi
i=1

N

∑  = 2x1 + 2x2 + 2x3 + … + 2xN (2)

In fact, it is clear from the right-hand sides of these two equations that the sum in Equation 2 is just twice that in
Equation 1, so we can say

2 xi
i=1

N

∑ = 2 xi
i=1

N

∑
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This is a particular example of a general rule for manipulating the ∑ symbol which, together with two other
similar rules, is explained in this subsection. In each case the general rule may be derived by writing out the
original sum explicitly, doing some (usually trivial) algebra and then expressing the result using the summation
symbol again. Here are the three rules together with their derivations.

The constant multiple rule axi
i=1

N

∑ = a xi
i=1

N

∑ (3)

Derivation

  

axi
i=1

N

∑ = ax1 + ax2 + ax3 + K + axN

= a(x1 + x2 + x3 + K + xN )

= a xi
i=1

N

∑
This is the generalization of the result given above, since if we put a = 2 we find

2 xi
i=1

N

∑ = 2 xi
i=1

N

∑
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The constant addition rule ( xi
i=1

N

∑ + b) = Nb + xi
i=1

N

∑ (4) ☞

Derivation

  

(xi
i=1

N

∑ + b) = (x1 + b) + (x2 + b) + K + (xN + b)

= Nb + (x1 + x2 + x3 + K + xN )

= Nb + xi
i=1

N

∑

The summation over addition rule ( xi
i=1

N

∑ + yi ) = xi
i=1

N

∑ + yi
i=1

N

∑ (5) ☞

Derivation

  

(xi
i=1

N

∑ + yi ) = (x1 + y1) + (x2 + y2 ) + K + (xN + yN )

= (x1 + x2 + x3 + K + xN ) + (y1 + y2 + y3 + K + yN )

= xi
i=1

N

∑ + yi
i=1

N

∑
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To summarize:

Rules for manipulating finite series

constant multiple rule axi
i=1

N

∑ = a xi
i=1

N

∑ (Eqn 3)

constant addition rule ( xi
i=1

N

∑ + b) = Nb + xi
i=1

N

∑ (Eqn 4)

summation over addition rule ( xi
i=1

N

∑ + yi ) = xi
i=1

N

∑ + yi
i=1

N

∑ (Eqn 5)

It is important to notice that the ∑ symbol means ‘sum the terms immediately to the right’, so

( xi + a)
i=1

3

∑  = (x1 + a) + (x2 + a) + (x3 + a) = x1 + x2 + x3 + 3a

but xi + a
i=1

3

∑  = x1 + x2 + x3 + a
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Sometimes you will see brackets put around the entire summation, but this is usually unnecessary.

For example a xi
i=1

N

∑






 = a0(x1 + x2 + x3 + … + xN)

but a xi
i=1

N

∑  has the same unambiguous interpretation.

As a second example, note that

xi
i=1

N

∑






+ yi
i=1

N

∑






 = (x1 + x2 + x3 + … + xN) + (y1 + y2 + y3 + … + yN) ☞

but xi + yi
i=1

N

∑
i=1

N

∑  has the same interpretation.
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Question T3

Use the rules for manipulating the summation symbol to simplify the following expressions; that is, rewrite the

expressions in terms of a, b, N, xi  
i=1

N

∑ and yi
i=1

N

∑ :

(a) a
i=1

3

∑ ,4(b) a
i=0

2

∑ ,4(c) (axi + b)
i=1

N

∑ ,4(d) (axi + byi )
i=1

N

∑ ,

(e) ( xi + 〈 x 〉)
i=1

N

∑ 4where 〈x〉 = 1
N

xk
k =1

N

∑ .4❏ ☞

Notice that there is nothing special about the particular summation variable used in a summation, so that, for

example, xi
i=1

N

∑  can be equally well rewritten as xk
k =1

N

∑ .
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Question T4

Evaluate the following:

2 xi
i=1

N

∑ − x j
j =1

N

∑ − xk
k =1

N

∑ 4❏ ☞

Question T5

Show that

(xi − 〈x〉)2

i=1

N

∑ = xi
2

i=1

N

∑ − N 〈x〉2

remember that, as in Question T2, the mean is defined by:

〈 x 〉 = 1
N

xi
i=1

N

∑ 4❏
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2.4 Sums of powers of positive integers
It is often an advantage to be able to simplify series such as

  

1 + 2 + 3 + K + n = i
i=1

n

∑

or
  

52 + 62 + 72 + K + n2 = i2

i=5

n

∑

or, more generally, series of the form 
  

iq

i=1

n

∑ = 1q + 2q + 3q + K + nq  where q is a positive integer ☞ .
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Although it is possible to derive a general expression for the sum of any such series, irrespective of the (integer)
values of q and n, the techniques needed are well beyond the level of this module and the results for the three
lowest values of q are probably all you will ever need, so here they are:

k
k =1

n

∑ = n(n + 1)
2

(6)

k2

k =1

n

∑ = n(n + 1)(2n + 1)
6

(7)

k3

k =1

n

∑ = n2 (n + 1)2

4
(8) ☞
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Question T6

k2

k =1

n

∑ = n(n + 1)(2n + 1)
6

(Eqn 7)

Write out the terms in the series k3

k =1

4

∑  and evaluate the sum. Does the result agree with the formula given

above?4❏
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k
k =1

n

∑ = n(n + 1)
2

(Eqn 6)

k2

k =1

n

∑ = n(n + 1)(2n + 1)
6

(Eqn 7)

k3

k =1

n

∑ = n2 (n + 1)2

4
(Eqn 8)

We will omit the proofs of Equations 7 and 8. However, it is easy to derive Equation 6 and doing so provides
some valuable practice in using summations.
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To begin the proof we consider 2 k
k =1

n

∑  and write it out as two separate sums on two lines (as an ascending and a

descending series) in such a way that the sums of various pairs of terms (written one above the other) can be
easily seen:

so

  

2 k
k =1

n

∑ = 1 + 2 + 3 + K + (n − 1) + n

+ n + (n − 1) + (n − 2) + K + 2 + 1

2 k
k =1

n

∑ = (n + 1) + (n + 1) + (n + 1) + K + (n + 1) + (n + 1)
n identical terms

1 2444444444 3444444444

☞

i.e. 2 k
k =1

n

∑ = n(n + 1)

By arranging the ascending series so that each term is above a complementary term in the descending series it is
clear that the sum of each such pair of terms is n + 1. Since there are n such terms it follows that the full sum is
n(n + 1), as stated. From this it follows that

k = n(n + 1)
2k =1

n

∑ (Eqn 6)
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It is often possible to use the summations given in Equations 6, 7 and 8 to solve related problems involving sums
of integers. Remember, you can use any other symbol you want in place of k or n provided you make the change
consistently throughout the equation.

k
k =1

n

∑ = n(n + 1)
2

(Eqn 6)

k2

k =1

n

∑ = n(n + 1)(2n + 1)
6

(Eqn 7)

k3

k =1

n

∑ = n2 (n + 1)2

4
(Eqn 8)

✦ Simplify the following:

(a) 
  

52 + 62 + 72 + K + n2 = k2       (n ≥ 5)
k =5

n

∑

(b) 
  

12 + 22 + 32 + K + (2n)2
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Question T7

Use rules for manipulating the summation symbol, together with the results for kq
k =1

n∑ , to show that

(a) (2k − 1) = n2

k =1

n

∑ 4

(b) (2k − 1)2 = n

3k =1

n

∑ (4n2 − 1)

In each case verify your answer for n = 4 by writing out the series and explicitly summing the terms.4❏     ☞
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2.5 Arithmetic progressions
A series such as 1 + 3 + 7 + 9 is an example of an arithmetic progression (or arithmetic series). Each term is
obtained from its predecessor by adding the same common amount, 2 in this case. Such series are of the general
form

a + (a + h) + (a + 2h) + … + [a + (n − 1)h]  which we can write as (a + kh)
k =0

n−1

∑ ☞

where a is called the first term, h is known as the common difference and there are n terms in the series. We
can derive a simple expression for the sum of any arithmetic series by using properties of the summation
symbol, together with the result for summing the positive integers

(a + kh) =
k =0

n−1

∑ a + h k
k =0

n−1

∑
k =0

n−1

∑ = an + h k
k =0

n−1

∑ = an + h
(n − 1)n

2

= n

2
[2a + (n − 1)h]

4☞
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The last term in the series is [a + (n − 1)h], so if we call this term, b, then we can rewrite the expression above
for the sum of an arithmetic progression as

n

2
[2a + (n − 1)h] = n

2
(a + b)

giving the result

the sum of an arithmetic progression

(a +
k =0

n−1

∑ kh) = n

2
[2a + (n − 1)h] = n

2
(a + b) (9)

where b = a + (n − 1)h

Notice that n(a + b)/2 is n times the mean (i.e. average) of the first and last terms of the series.
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2.6 Geometric progression
A series of the form

a + ar + ar02 + … + ar0n 1−11 = ark

k =0

n−1

∑

is known as a geometric progression (or geometric series) where r is known as the common ratio. Again, a is
called the first term and there are n terms in the series. The result of summing the series is

the sum of a geometric progression

ark

k =0

n−1

∑ = a(rn − 1)
(r − 1)

(10) ☞
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Question T8

(a) Write out in full the terms in the expression

ark −1

k =1

3

∑ + ark −1

k =4

4

∑

and then write the expression as a single sum.

(b) Write out the numbers representing the terms in the series

ark −1

k =1

n

∑

for a = 1, r = 2 and n = 4 and find their sum. Does the result agree with Equation 10?

ark

k =0

n−1

∑ = a(rn − 1)
(r − 1)

(Eqn 10) ❏
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The method of induction

One way of proving that Equation 10 is the correct formula for the sum of a geometric progression is to use the
method of induction. This is a widely applicable technique which consists of showing that if a result is true for
some value of a parameter, such as n, then it is also true for (n + 1). Completion of the proof then consists of
showing explicitly (and usually trivially) that the result is indeed true for some convenient allowed value of n
(usually the smallest allowed value).

ark

k =0

n−1

∑ = a(rn − 1)
(r − 1)

(Eqn 10)

To prove the result for summing a geometric progression, we start by assuming that the required result is true for

a particular, but unspecified, value of n; so that ark

k =0

n−1

∑ = a(rn − 1)
r − 1

 is assumed to be a true statement for this

value of n.

We then attempt to show that this implies that the same result must be true for the next value, i.e. n + 1.
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We consider the sum with (n − 1) replaced by n, in other words, ark

k =0

n

∑ , and split it into two parts 

(as in part (a) of Question T8)

ark

k =1

n

∑ = ark

k =0

n−1

∑ + ark

k =n

n

∑ = ark

k =0

n−1

∑ + arn

Notice that the first of these two parts is the sum that we know can be expressed in the desired form, and so

ark

k =0

n−1

∑ + arn = a(rn − 1)
(r − 1)

+ arn = a(rn − 1) + arn (r − 1)
(r − 1)

= a[(rn − 1) + (rn+1 − rn )]
(r − 1)

= a(rn+1 − 1)
(r − 1)
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The final result is the same as that given for the sum of a geometric progression, except that (n − 1) is replaced
by n. So if the result is true for any particular value of n, it is also true for (n + 1). But, for n = 1, the result is
obviously true since

ark

k =0

0

∑ = a

Consequently, the formula is true for n = 2 and therefore n = 3 and therefore n = 4 and so on. Hence the formula
for summing a geometric progression has been proved by induction.

Question T9

Simplify the sum ark

k =0

n−1

∑  if a = 1 and r = 1/3. As n increases, this sum approaches ever closer to a particular

value. What is this value?4❏
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2.7 The binomial expansion
If we have an algebraic expression of the form (a + b)2, then we can easily expand the brackets and collect
similar terms

(a + b)2 = a2 + 2ab + b2

Expanding the expression (a + b)3 is a little harder and gives us

(a + b)3 = (a + b)(a2 + 2ab + b2)

= (a3 + 2a2b + ab2) + (a2b + 2ab2 + b3)

= a3 + 3a2b + 3ab2 + b3

But what about other expressions of the form (a + b)n? When n is a large integer (i.e. whole number) we clearly
need a different technique in order to avoid the tedium of multiplying pairs of brackets and collecting similar
terms. We notice that in the expression (a + b)2, if we sum the powers of a and b in each term they are equal to
2. In the same way, for (a + b)3 the sum of the powers of a and b in each term are equal to 3. If we were to
continue with (a + b)4, etc. we would always find that the sum of the powers of a and b in each term was equal
to the power to which (a + b) was raised.
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So, we would find that the expansion of (a + b)n would consist of a series of terms with a and b raised to various
powers such that for each term, the sum of the powers of a and b was equal to n. The general term would be
arbn1−1r, multiplied by a coefficient to be determined. Fortunately there exists a general result, known as the
binomial expansion, ☞ which allows us to find these coefficients and which we quote here without proof.

  

(a + b)n = nCn an + nCn−1 an−1b + nCn−2 an−2 b2 + K

+ nCn−r an−r br + K + nC1abn−1 + nC0 bn
4☞

i.e. the binomial expansion (a + b)n = nCn−k an−k bk

k =0

n

∑ (11)
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We must now make a brief diversion in order to understand this result. The symbol, nCr 0, ☞ where n and r are
integers and r ≤ n, is known as a binomial coefficient and is defined by

binomial coefficient

  

nCr = n(n − 1)(n − 2) K (n − r + 2)(n − r + 1)
r(r − 1)(r − 2) K × 2 × 1

4where n ≥ r (12)

✦ Calculate the values of 3C2, 4C2 and 8C3. Why can’t you evaluate 2C3?

Notice that the n in nCr is a superscript (that is n is above the C) and is placed in front of the C. You may have
already come across the binomial coefficient in another context, since nCr is also the number of ways of
choosing r items from n items, irrespective of the order. ☞
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The definition of the binomial coefficient can be written more compactly by using the idea of a factorial.
For any positive integer, factorial n (written as n!) is defined by

n! = n(n − 1)(n − 2)(n − 3) … × 2 × 1 for n ≥ 1 (13a)

The definition is completed by defining 0! to be equal to 1.

0! = 1 (13b) ☞

Notice that the factorial of a negative integer is undefined.

Question T10

Calculate n! for n taking each of the values, 0, 1, 2, 3, 4, 5. Describe any feature you can see in these results for
n!4❏
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One important property of the factorial is that

(n + 1)! = (n + 1)n! (14)

Notice that the factorial symbol, !, only refers to the immediately preceding expression, so that (n + 1)n! means
(n + 1)(n!) and not [(n + 1)1n]!

Question T11

Prove the identity ☞

(n + 1)! = (n + 1)n!4❏
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nCr = n(n − 1)(n − 2) K (n − r + 2)(n − r + 1)
r(r − 1)(r − 2) K × 2 × 1

4where n ≥ r (Eqn 12)

Having introduced the factorial, the binomial coefficient (Equation 12) can now be rewritten as

nCr = 
n!

r!(n − r)!
(15)

We can verify this result by writing the right-hand side of this expression as

  

n!
r!(n − r)!

= n(n − 1) K (n − r + 1) × (n − r)!
r!(n − r)!

= n(n − 1)(n − 2) K (n − r + 2)(n − r + 1)
r(r − 1)(r − 2) K × 2 × 1

4 ☞

which is our original definition for the binomial coefficient, nCr.
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Question T12

Calculate the values of 1C0, 1C1, 5C3, 10C7, by using Equation 15.4❏

The binomial coefficient has many properties; some of the most useful are

nCn = 1 (16)

nC0 = 1 (17)

nCn−r = nCr (18)

nCr = n−1Cr + n−1Cr −1 (19)
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This is the end of our brief diversion, but before we return to the binomial expansion, try the following exercise

Question T13

Prove the following identities:

nCn = 1

nC0 = 1

nCn 1−1r =  nCr4❏

Now that we understand what is meant by the nCr symbol, we can use the binomial series of Equation 11 to write
down the expansion of any expression of the form (a + b)n. For example, (1 + x)6 can be written

(1 + x)6 = 6!
k !(6 − k)!k =0

6

∑ xk

= 1 + 6x + 6 × 5
2 ×1

x2 + 6 × 5 × 4
3 × 2 ×1

x3 + 6 × 5
2 ×1

x4 + 6x5 + x6

= 1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6

(20)
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Question T14

(1 + x)6 = 6!
k !(6 − k)!k =0

6

∑ xk

= 1 + 6x + 6 × 5
2 × 1

x2 + 6 × 5 × 4
3 × 2 × 1

x3 + 6 × 5
2 × 1

x4 + 6x5 + x6

= 1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6

(Eqn 20)

Verify this result by explicitly multiplying out brackets and collecting similar terms.4❏
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3 Infinite series
Infinity is not a number but this does not prevent us from using phrases such as ‘sum to infinity’ and ‘infinite
series’, nor does it prevent us from using an infinity symbol ∞ to represent infinity, provided that we have a
clear understanding of what they mean.

For example, for any specified integer n, the sum

  

1
2k −1

k =1

n

∑ = 1 + 1
2

+ 1
4

+ K + 1
2n−1

(21)

represents a specific number. When n is 1 this number is 1, when n is 2 the number is 3/2, and so on. Now, the
series represented by Equation 21 is a geometric progression with first term 1 and common ratio 1/2, so,
according to Equation 10, its sum is

1
2k −1

k =1

n

∑ =

1
2n

− 1





1
2

− 1





= 2 1 − 1
2n






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Notice that 
1

2n
 can be made as small as we please by choosing n sufficiently large. In other words, we can make

the sum as close to 2 as we please provided that we take a sufficiently large number of terms in the series. In
such a case we write

1
2k −1

k =1

∞

∑ = 2

and we say that the left-hand side is ‘an infinite series’ and ‘the sum to infinity is 2’.

We may also write

  

1 + 1
2

+ 1
4

+ 1
8

+ L = 2

We are not suggesting that an infinite ‘number’ ☞ of additions will give the number 2, but merely that we can
get as close to 2 as we like by performing a sufficiently large number of additions.
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3.1 Some standard infinite series
Infinite series, or even parts of infinite series, are of great importance in physics since they can often be used to
represent functions, including such basic functions as exp(x), loge(x), sin(x) and cos(x). The infinite series
corresponding to a particular function can often be derived from a very general series called a Taylor series
(or Taylor expansion) ☞. This powerful technique for finding series representations requires a good knowledge
of calculus and is therefore beyond the scope of this module, though it is treated elsewhere in FLAP.
Nonetheless, some of the results that Taylor series provide are well within the coverage of this module and they
are quoted below without proof.
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Some useful infinite series ☞

  

exp(x) = xn

n!n=0

∞

∑ = 1 + x

1!
+ x2

2!
+ x3

3!
+ K for all x (22)

  

sin(x) = (−1)n x2n+1

(2n + 1)!n=0

∞

∑ = x − x3

3!
+ x5

5!
− x7

7!
+ K  for all x (23)

  

cos(x) = (−1)n x2n

(2n)!n=0

∞

∑ = 1 − x2

2!
+ x4

4!
− x6

6!
+ K for all x (24)

  

loge (1 − x) = − xn

nn=1

∞

∑ = −x − x2

2
− x3

3
− x4

4
− K for −1 ≤ x < 1 (25)

and for any real number r

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K for  −1 < x < 1 (26) ☞
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(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K for  −1 < x < 1 (Eqn 26)

The final result in this list is often known as the binomial series. Notice that the series for (1 + x)0r is similar to
the binomial expansion, but is more general in the sense that r is not necessarily an integer. ☞ In each of the
above cases we are claiming that, for a fixed value of x in the allowed range, any desired accuracy may be
obtained by taking a sufficiently large number of terms in the series.

All the series given above are series in powers of x; that is, each term in the series involves a factor of the form
x0n, for some whole number n. Such series are often referred to as power series or series expansions. Series
which involve powers of expressions are also possible. For example, replacing x by (1 − x) in the series for the
logarithmic function gives

  

loge ( x ) = − (1 − x )n

nn=1

∞

∑

= −(1 − x ) − (1 − x )2

2
− (1 − x )3

3
− (1 − x )4

4
+ K

and the series on the right-hand side of this equation can be used to approximate the values of loge(x) provided
that 0 < x ≤ 2.
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✦

  

loge (x) = − (1 − x)n

nn=1

∞

∑

= −(1 − x) − (1 − x)2

2
− (1 − x)3

3
− (1 − x)4

4
+ K

Why are the values of x in this form of the logarithmic series limited to the range 0 < x ≤ 2? ☞
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Question T15

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K for  −1 < x < 1 (Eqn 26)

Use the binomial series for (1 + x)r given in Equation 26 to express the function

f(x) = (1 + x)−1

as a series in powers of x, simplifying the resulting expression as far as you can. Can this series be used to

approximate the value of 
1

1 + π
 by putting x = π?4❏
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The series given in Equations 22 to 26 allow us to derive many useful properties of the functions that they
represent. Indeed, it is often convenient to take the view that the series actually define the associated functions.
So, if you want to know the meaning of a specific quantity such as exp(2) = e2, a perfectly legitimate answer is

  

exp(2) = 2n

n !n=0

∞

∑ = 1 + 2
1!

+ 22

2!
+ 23

3!
+ K = 1 + 2 + 2 + 4

3
+ K

Whatever value your calculator gives for exp(2) will be reproduced by the series, provided you add up enough
terms. (Indeed, your calculator probably evaluates exp(2) by summing such a series internally.)

Moreover, the series are not only limited to providing numerical results, but they can also provide insight of a
more algebraic nature.

For example, the sine function is an odd function, i.e. it has the property that sin(−x) = −sin(x), and this is
reflected in the power series for sin(x) which contains only odd powers of x that will also change sign if x is
replaced by −x.

Similarly, cos(x) is an even function since cos(−x) = cos(x) and its series is composed of even powers of x.   ☞
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Apart from transforming a given series by substituting some algebraic expression in place of x it is also possible
to change the appearance of the series by altering the summation variable and adjusting the upper and lower
limits of the summation. Here is an example.

If we have 
xn−1

(n − 1)!n=1

∞

∑  then we can introduce a new summation variable, m, defined by m = n − 1; the series can

then be written as 
xm

m !m=0

∞

∑  where the summation starts at 0, since n = 1 corresponds to m = 0.

There is nothing special about the symbol m, any other symbol would do equally well, so we may replace m by n

and obtain 
xn

n !n=0

∞

∑ .
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Question T16

Write the following series so that the summations start at n = 0. Identify which well known functions are
represented by each series.

(a) nCn−k +1 an−k +1

k =1

n+1

∑ bk −1

(b) − (−1)n x2n−1

(2n − 1)!n=1

∞

∑ 4❏

Question T17

Using the series you have already been given, find a power series for 
1

1 − x
. Write down the first four terms

explicitly and then write down the series in a compact way using the ∑ symbol with a lower limit of 0.4❏
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3.2 Convergence and divergence: the ratio test ☞

Study comment This subsection is rather more technical than the rest of the module. Its main conclusions are that not all
infinite series are well defined and that those infinite series which do represent functions are often only well defined when the
variable is restricted to a specific range of values. In fact, this subsection provides only a brief introduction to its topic. In
particular, it does not deal with what are known as oscillating or conditionally convergent series and it gives only one of
many possible tests for convergence.

In order to discuss in more detail the circumstances for which infinite series are meaningful, we need to
introduce the concept of a partial sum. If we consider an infinite series

ak
k =1

∞

∑  = a1 + a2 + a3 + a4 + …

then the sum of the first n terms is known as a partial sum. Such a sum may be denoted by Sn, in which case

Sn = ak
k =1

n

∑  = a1 + a2 + a3 + a4 + … + an
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So, for example, if we have the infinite series

  

1
2







k =1

∞

∑
k −1

= 1 + 1
2

+ 1
(2)2

+ 1
(2)3

+ K

then the first few partial sums are

S1 = 1.0

S2 = 1.5

S3 = 1.75

S4 = 1.875

S5 = 1.906125
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Question T18

It can be shown that the constant, π02, is given by the following infinite series

π02 = 6 
  

1
n2

n=1

∞

∑ = 6 1 + 1
22

+ 1
32

+ 1
42

+ 1
52

+ K







Evaluate the first five partial sums S1 = 6
1
n2

n=1

1

∑ , S2 = 6
1
n2

n=1

2

∑  and so on, and comment on the difference

between these partial sums and the value of π02 given by your calculator.4❏
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S5

S4

S3

S2

S1

0 21

1.90625

1.875

1.75

1.50

1

Figure 14Sequence of terms, Sn, defined by Sn = 
1

2






k −1

k =1

n

∑ .

Convergent and divergent sequences

We can now define what we mean by a convergent
sequence. The infinite sequence, a1, a2, a3, a4, … is
said to converge if we can always find some member
of the sequence such that all other members beyond
it are as close as we choose to some particular value.
This value is called the limit of the sequence.

This is a very formal definition, but some insight
can be obtained by looking at Figure 1, which shows
the sequence of partial sums we worked out earlier,
S1, S2, S3, …. In this particular case, if we examine
the members of the sequence one after the other,
then we move progressively to the right, with the
difference between each step being half the previous
step. We saw earlier (at the beginning of Section 2)
that the limit of this sequence is equal to 2, and if we choose a particular value as close as we wish to 2 (say
1.90) then we can find a member of the sequence Sn such that all later members of the sequence, i.e. all Si with i
> n, are between 1.90 and 2. In this particular case n = 5, but if we had chosen some other value closer to 2, such
as 1.99, there would still have been some corresponding value of n. ☞
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S3

S2

S1

0 21

3.0

2.0

1.0

3

Figure 24Sequence of terms, Sn, defined by Sn = n.

Some sequences do not converge. A sequence
which does not converge is known as a
divergent sequence. As an example, the
sequence defined by

Sn = n 4for n = 1, 2, 3, …

is divergent.

If you look at Figure 2 you can see that this
sequence diverges since the members of the
sequence are equally spaced along a line, with
no sign of any limit (in contrast to Figure 1).

✦

What is the limit of the sequence Sn = (n + 1)2

n2
?
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Convergent and divergent series

Now that you know what is meant by a convergent sequence and a partial sum, we can define a convergent
series. An infinite series is said to converge if the partial sums of the series form a convergent sequence. The
limit of the sequence of partial sums is known as the sum of the series. So the series

  

1
2







k =1

∞

∑
k −1

= 1 + 1
2

+ 1
(2)2

+ 1
(2)3

+ K

is an example of a convergent series and the sum of this series is 2.

Not all series are convergent; any series which does not converge is said to be a divergent series.

An example of a divergent series is

1
n=0

∞

∑  = 1 + 1 + 1 + 1 + 1 + 1 + 1 + …

since the partial sums increase without limit.
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It is evident that for a series an
n=1

∞

∑ to converge the individual terms must approach zero as n tends to infinity. We

can use a piece of standard mathematical notation to signify this requirement by writing, lim
n→∞

(an ) = 0 .

(This may be read as ‘an tends to 0 in the limit as n tends to infinity’.)

However, the converse is not true, there are many divergent series for which lim
n→∞

(an ) = 0 .

How then can we tell if a series is convergent or divergent? For example, does the following series converge?

  

1
n !n=1

∞

∑ = 1 + 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ 1
5!

+ K

It is not always easy to tell if a series converges but there are a number of possible tests. Here we only consider
one test, limited to series that consist of positive terms, as an example of the techniques involved.
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D’Alembert’s ratio test

Suppose we have a series of positive terms of the form an
n=1

∞

∑ , then d’Alembert’s ratio test ☞ requires us to

calculate the ratio of successive terms, an+1/an, and then determine the limit of this quantity as n tends to infinity.
If we call this limit R we can write

R = lim
n→∞

an+1

an







and the ratio test then tells us that:

if R < 1 the series is convergent,

if R > 1 the series is divergent,

and if R = 1 the test fails.
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✦ Use the d’Alembert’s ratio test to determine which of the following series converge

(a)
  

1
2







n=1

∞

∑
n

= 1 + 1
2

+ 1
(2)2

+ 1
(2)3

+ K

(b)
  

n!
n=1

∞

∑ = 1 + 2! + 3! + 4! + K

(c) n
n=1

∞

∑

Question T19

Use d’Alembert’s ratio test to discover whether or not the following series is convergent

  

n

(n + 1)!n=1

∞

∑ = 1
2!

+ 2
3!

+ 3
4!

+ 4
5!

+ K4❏



FLAP M1.7 Series expansions and approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T20

For what non-negative values of x does the following series converge?

  

exp( x ) = xn

n !n=0

∞

∑ = 1 + x

1!
+ x2

2 !
+ x3

3!
+ K

Give reasons for your conclusion.4❏
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3.3 Approximations to infinite series
If we truncate (i.e. terminate) a series at some point, then it may provide a useful approximation to the complete
series, but the truncated series is only useful if the discarded terms are in some sense ‘small’. For example, it can
be shown that the constant, π, is given by

  

π = 4 1 − 1
3

+ 1
5

− 1
7

+ 1
9

− K







Truncating the series at the third term, we get

π ≈ 4 1 − 1
3

+ 1
5





 ≈ 3. 47

This is a rather poor approximation to the value of π, but can be improved by including further terms in the
series. Alternatively, there are other series which give good approximations to π by summing comparatively few
terms.



FLAP M1.7 Series expansions and approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T21

It can be shown that the constant, π, is also given by

  

π4

96
= 1

(2n + 1)4
n=0

∞

∑ = 1 + 1
34

+ 1
54

+ 1
74

+ 1
94

+ 1
114

+ K

Use the first five terms in this series to obtain an approximation to π. What is the percentage error in your value
when compared with the value of π given on your calculator?4❏
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Series can also give useful approximations to functions. For example, from Subsection 3.1 (Equation 23) we
have the following series for sin(x)

  

sin( x ) = x − x3

3!
+ x5

5!
− x7

7!
+ K for all x

The series converges for all values of x. However for large values of x we may have to take a considerable
number of terms in order to obtain a good approximation. On the other hand, for small values of x we need very
few terms. The simple approximations

sin(x) ≈ x (27)

cos(x) ≈ 1 − 
x2

2
(28)

have applications in many areas of physics. By ‘small values of x’ in the context of Equation 27, for example,
we mean that x 03 is much smaller than x (which we sometimes write as x03 << x). Whether or not this rather crude
approximation is justified in a particular case will depend on the application you have in mind.
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Question T22

Using your calculator plot a graph of

E( x ) = 100%( x − sin( x ))
sin( x )

44for 0 < x ≤ 0.3

E(x) is the percentage error that occurs in the value of sin(x) if you assume that sin(x) ≈ x. From your graph
estimate the value of a such that if x > a then the percentage error in the approximation sin(x) ≈ x is more than

1%. By approximating sin( x ) ≈ x − x3

3!
, or otherwise, find an algebraic estimate for a.4❏

✦ Use the power series given in Equations 22 to 26 to find a series expansion of sin(2x)1cos(x) up to and
including terms involving x3.



FLAP M1.7 Series expansions and approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Note that in obtaining the last result it was important to use approximations that included the appropriate number
of terms. For instance, if we had simply approximated sin 0(2x) by 2x we would have obtained a different
(incorrect) result. However, if we had included any additional terms in the approximations to sin0(2x) or cos(x)
they would not have made any difference to the final result (up to terms in x3).

✦ Considering only terms up to (and including) x02, find an approximate solution to the equation

ex + cos(x) = 1
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Another approximation which is often useful can be obtained by taking the first two terms of the binomial
theorem

(1 + x)r = 1 + 
  

rx

1!
+ r (r − 1) x2

2 !
+ r (r − 1)(r − 2) x3

3!
+ K4for − 1 < x < 1

i.e. (1 + x)r ≈ 1 + rx for |1x1| < 1 (29)

As a simple example, we can use this expression to relate the so-called linear and volume coefficients of thermal
expansion (α and β, respectively) ☞. The length l, of an object at temperature T, is given by

l = l0(1 + α 0T 0)

where l00 is the length when the temperature is zero and α  is a constant for the material. If we consider the
volume V of a cube with each side of length l, at temperature T, we find

V = l3 = l0
3 (1 + αT )3

and if we let V0 = l0
3 , the volume at temperature zero, we have (using Equation 29)

V = V0 (1 + αT )3 ≈ V0 (1 + 3αT )

Mike Tinker
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But the volume V, of an object at temperature T, is also given by

V = V0(1 + β0T) ☞
and therefore we have the relation

β ≈ 3α

Question T23

According to Einstein’s special theory of relativity, the total relativistic energy E, of a particle of mass m,
moving freely with speed v is given by:

  

E = mc2

1 − v2

c2

where m and c are constants (c is the speed of light in a vacuum). Use the first two terms in the series expansion
of (1 + x)r to show that, for v2 < c2, E can be written as

E ≈ E0 + T

where E0 is a constant and T is a function of v, whose form you should determine.4❏
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4 Closing items

4.1 Module summary

1 The summation symbol, as for example in 
  

n
n=1

N

∑ = 1 + 2 + 3 + K + N , is a convenient shorthand notation

and it has the following properties

axi =
i=1

N

∑ a xi
i=1

N

∑ (Eqn 3)

(xi + b) =
i=1

N

∑ Nb + xi
i=1

N

∑ (Eqn 4)

(xi + yi
i=1

N

∑ ) = xi
i=1

N

∑ + yi
i=1

N

∑ (Eqn 5)
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2 Standard sums that are frequently of use include:

k
k =1

n

∑ = n(n + 1)
2

(Eqn 6)

k2

k =1

n

∑ = n(n + 1)(2n + 1)
6

(Eqn 7)

k3

k =1

n

∑ = n2 (n + 1)2

4
(Eqn 8)

the arithmetic progression with common difference h

(a +
k =0

n−1

∑ kh) = n

2
[2a + (n − 1)h] (Eqn 9)

the geometric progression with common ratio r

ark

k =0

n−1

∑ = a(rn − 1)
(r − 1)

(Eqn 10)
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and the binomial expansion

(a + b)n = nCn−k an−k bk

k =0

n

∑ (Eqn 11)

with binomial coefficients

nCr = n!
r!(n − r)!

(Eqn 15)

where factorial n is defined by n! = 1 × 2 × 3 … (n − 1) × n and 0! = 1.

3 Useful properties of the binomial coefficient include

nCn = 1 (Eqn 16)

nC0 = 1 (Eqn 17)

nCn−r = nCr (Eqn 18)

nCr = n−1Cr + n−1Cr −1 (Eqn 19)
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4 Useful infinite series include

  

exp(x) = xn

n!n=0

∞

∑ = 1 + x

1!
+ x2

2!
+ x3

3!
+ K for all x (Eqn 22)

  

sin(x) = (−1)n x2n+1

(2n + 1)!n=0

∞

∑ = x − x3

3!
+ x5

5!
− x7

7!
+ K for all x (Eqn 23)

  

cos(x) = (−1)n x2n

(2n)!n=0

∞

∑ = 1 − x2

2!
+ x4

4!
− x6

6!
+ K for all x (Eqn 24)

  

loge (1 − x) = − xn

nn=1

∞

∑ = −x − x2

2
− x3

3
− x4

4
− K for −1 ≤ x < 1 (Eqn 25)

The binomial series

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K for −1 < x < 1 (Eqn 26)

5 If the series an
n=1

∞

∑  converges then lim
n→∞

(an ) = 0 , though the converse is not necessarily true.
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6 D’Alembert’s ratio test is one of many tests that can be used to investigate convergence. To apply this test

to a sum of positive terms an
n=1

∞

∑ , we write R = lim
n→∞

an+1

an







, there are then three possible outcomes:

if R < 1 the series is convergent,

if R > 1 the series is divergent, and

if R = 1 the test fails.

7 The correctness of formulae for the sums of series can sometimes be established by the method of induction.
To apply this method first show that if a result is true for some value of a parameter, such as n, then it is also
true for (n + 1). Then complete the proof by showing that the result is true for the smallest allowable value
of n.

8 Useful approximations obtained by truncating infinite series include:

sin( x ) ≈ x − x3

3!

cos(x) ≈ 1 − x2

2!
4and4(1 + x)0r ≈ 1 + rx4for |1x1| < 1



FLAP M1.7 Series expansions and approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Define a sequence and describe how a sequence may be used to define a series.

A3 Describe how the summation symbol, ∑, may be used to define series.

A4 Use rules for manipulating the summation symbol.

A5 Use formulae for the summation of powers of the positive integers.

A6 Define the arithmetic progression, geometric progression and binomial series and use formulae for their
sums.

A7 Define the factorial and the binomial coefficient and recall useful identities for them.

A8 Use the method of induction to verify appropriate formulae.

A9 Recall series for some of the elementary functions, such as exp(x), sin(x), cos(x), loge(1 − x) and (1 − x)r.

A10 Explain what is meant by convergent and divergent series.

A11 Apply the d’Alembert’s ratio test for convergence of an infinite series.

A12 Use series to provide approximations to functions and numerical constants.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)4Define what is meant by the terms sequence, finite series, infinite series and sum of an infinite series.

Question E2

(A2 and A3)4Given a sequence of n numbers, xi1, and a constant, c, what is 〈 1y1〉  (the mean of yi1) in terms of 〈 1x1〉
(the mean of xi0) in the following cases:

(a) yi = x0i + c4(b) yi = c0xi
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Question E3

(A2, A5 and A6)4Identify which of the following series are examples of a binomial series, geometric
progression or arithmetic progression. In each case, use the appropriate formula to work out the sum of the
series. ☞
(a) 3 + 7 + 11 + 15 + 19

(b) 3 + 12 + 48 + 192 + 768

(c) x04 + 4x3y + 6x2y2 + 4xy3 + y4

Question E4

(A3 and A4)4Use the formulae for summing powers of the positive integers, given in Subsection 2.4, to show
that

k (n2

k =1

n

∑ − k2 ) = n2 (n2 − 1)
4
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Question E5

(A4 and A6)4Show that, for n > 0,

(−1)k

k =0

n

∑ nCk = 0

(Hint: Consider the binomial expansion of (1 − 1)n with n an integer greater than zero.)

Question E6

(A8)4Use the method of induction to show that

(2k − 1) = n2

k =1

n

∑
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Question E7

(A9)4The following expression for the interaction energy U  occurs in the study of an ionic crystal
(such as sodium chloride)

  

U = − 2q2

a
1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ K







where q and a are constants.

Use the series given in Subsection 3.1 to write this expression in terms of a well known function (or functions).

Question E8

(A9 and A12)4Use the series for exp(x) as powers of x to find the number e (that is, exp(1)) to two decimal
places.

Check that the result is consistent with that given by your calculator.

Use a series to approximate exp(1/2) and then use your calculator to verify that exp(1/2) ≈ exp(1) .
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Question E9

(A10 and A11)4Use d’Alembert’s ratio test to examine the convergence of the series 
n !
2n

n=0

∞

∑ .

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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