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1 Opening items

1.1 Module introduction
If you throw a stone, then to a good approximation, it follows a parabolic path. As a planet orbits the Sun it
traces out a closed path in a plane, and this closed path is an ellipse. When an α-particle approaches the nucleus
of an atom it undergoes a deflection, and the particle follows a hyperbolic path.

Parabolas, ellipses and hyperbolas are particular examples of a family of curves known as conic sections, for
the very good reason that they can be obtained by taking a slice through a cone (or more precisely a double
cone). The edge of the slice is called a conic section. We pursue this idea in Subsection 2.1, and then examine
each of the major classes of conic section in turn in the subsequent subsections.

In Subsections 2.2 to 2.5 we study the circle, the parabola, the ellipse and finally the hyperbola. In each case our
approach is very similar. First we introduce the equation of the curve in so-called standard form, which simply
means that we choose the axes so that the equation of the curve turns out to be particularly simple.
We investigate the tangents to the curve, and we consider parametric representations of the curve (this is
particularly relevant to applications in physics). At the end of each subsection we consider particular properties
of the curve under discussion; for example, an ellipse is a closed curve, ☞ whereas, at a great distance from the
origin, the points on a hyperbola approach one of two straight lines (called asymptotes).
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In spite of their very different shapes, it turns out that the various forms of conic section have a great deal in
common. In each case we introduce the polar form of the equation, and in Subsection 2.5 we show how this
form of the hyperbola may be applied to a well known experiment in nuclear physics.

For the equation of a conic in standard form one or both of the coordinate axes are aligned with an axis of
symmetry of the curve, and the origin of coordinates is placed at a point which ensures that the equation of the
curve is particularly simple. In Subsections 3.1 and 3.2 we introduce the general equation of a conic, and
consider the effect of moving the coordinate axes from the ‘standard position’. Finally in Subsection 3.3 we
consider an application of the general form of the equation of a conic to electrostatics.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements  listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

(a) Find the radius and the coordinates of the centre of the circle x2 + y2 − 2x − 6y + 6 = 0.

(b) Find the coordinates of the points P and Q at which the line y = x 2  meets the circle x2 + y2 − 8x + 6y − 15 = 0.
Also find the equation of the circle passing through P, Q and the point (1, 1).

(c) Find the equations of the tangents to the circle x2 + y2 = 25 which are parallel to the line 3x + 4y = 0.
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Question F2

(a) Find the equations of the tangents and normals to the parabola y2 = 16x at the points (16, 16) and (1, −04).
If these tangents intersect at T and the normals intersect at R show that the line TR is parallel to the x-axis.

(b) Write down the parametric representation of a point on a parabola. Show that the tangents to a parabola at the
ends of a chord which passes through the focus are perpendicular to each other.

Question F3

(a) Show that the tangent to the ellipse x2/16 + y2/9 = 1 at the point (16/5, 9/5) makes equal intercepts with the
coordinate axes.

(b) Find the equation of the tangent to the rectangular hyperbola xy = 12 at the point (3, 4).

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items . ☞
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: chord, coordinate
axes, graph, normal, repeated roots of quadratic equations, straight lines, tangent. You should also be familiar with
trigonometric identities (although the relevant formulae are repeated here). It would be helpful, but not essential, for you to
have some knowledge of differentiation. If you are uncertain of any of these terms you can review them now by referring to
the Glossary which will indicate where in FLAP they are developed. In addition, you will need to be familiar with SI units.
The following Ready to study questions will allow you to establish whether you need to review some of the topics before
embarking on this module.

Question R1

Calculate the distance between the points P(0, −2) and Q(3, 1) and the gradient of the line PQ.

Question R2

Find the equation of the line through the point (−2, 1) which has gradient 3. Find also the equation of the line
through the same point which is perpendicular to the first line.
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Question R3

Find the equation of the line passing through the points (2, −1) and (−1, 4) and find its point of intersection with
the line y = 3x.

Question R4

(a) Write down the condition that the quadratic equation Ax2 + Bx + C = 0 has a repeated root at x = −B/(2A).

(b) Show that the quadratic equation x2 + (mx + c)2 = a2 has a repeated root if the constants a, c and m satisfy the
equation c2 = (1 + m2 )a2 .
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Figure 13Double cone.

2 Conic sections

2.1 What are conic sections?
Figure 1 shows a double cone; it looks like one cone placed upside down on top
of another. It is to be understood that this shape extends infinitely upwards and
downwards.

To generate this figure we take the line of which AOB is a part and rotate it
about a vertical axis through O in such a way that the point B traces out a circle
which is perpendicular to the axis POQ and which has Q at its centre. The point
A traces out a similar circle with P as its centre. The line of which POQ is a part
is called the axis of symmetry of the double cone. P and Q are the centres of the
circles traced out by A and B, respectively. The line through A, O and B is a
generator of the double cone.

The curves we produce by cutting the double cone with a plane are called conic
sections or, more simply conics. These curves are the boundaries of the sections
exposed by the cuts.
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(d)

(a)

(b)

(d)

(c)

Figure 2 shows the possibilities.
(a) When the plane making the cut is perpendicular to the axis, the curve
produced is a circle.

(b) When the cutting plane is inclined at an angle between the horizontal
and that of a generator the boundary curve is an ellipse.

(c) When the cutting plane is parallel to a generator the resulting curve is
a parabola.

(d) If the cutting plane meets both parts of the cone at any angle the curve
produced is in two parts called branches and is a hyperbola.

In Subsections 2.2 to 2.5 we derive the equations of these four curves from
quite different starting points. We shall not prove that the two approaches lead
to the same curves in each case; rest assured that they do.

Figure 23Conic sections. Note that the section
representing the hyperbola (d) does not have to be
parallel to the vertical axis1—1any angle of inclination
steeper than (c) will suffice.
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The conics of various kinds have a common property that we have
illustrated in Figure 3. There is a fixed point called the focus, and a fixed
line called the directrix, such that for any point P on the conic, the
distance to the focus and the distance to the directrix have a constant ratio,
called the eccentricity and denoted by e.

In other words,333

FP
PN

= e (1)

It is the value of the eccentricity that determines the nature of the conic,
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Figure 43(a) Circle;
(b) parabola

and Table 1 contains a short summary of some important results, 
which you may find useful as a quick reference.

Table 1a3Summary of the properties of conic sections.

Conic Circle Parabola

eccentricity e = 0 e = 1

0standard
equation

x2 + y2 = a2 y2 = 4ax

graph see Figure 4a see Figure 4b
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Table 1b3Summary of the properties of conic sections.

Conic Ellipse Hyperbola

eccentricity 0 ≤ e < 1 e >1

0standard
equation

x2

a2
+ y2

b2
= 1

x2

a2
− y2

b2
= 1

graph see Figure 4c see Figure 4d

Figure 43(c) ellipse; (d) hyperbola.
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The circle can be regarded as the limiting case of an ellipse as the directrix moves further from the origin, e

approaches 0, and the foci ☞ approach the centre of the circle. It corresponds to putting b = a in the equation

x2 a2 + y2 b2 = 1 . In this module when we refer to ellipses we mean to exclude circles, unless we say
otherwise. The equations given in Table 1 will be known as the standard equations or standard forms of the
conics. (We will see later that it is sometimes convenient to represent the conics in various other forms.)

✦

Table 1b3Summary of the properties of conic sections.

Conic Circle Parabola Ellipse Hyperbola

eccentricity e = 0 e = 1 0 ≤ e < 1 e >1

0standard
equation

x2 + y2 = a2 y2 = 4ax x2

a2
+ y2

b2
= 1

x2

a2
− y2

b2
= 1

graph see Figure 4a see Figure 4b see Figure 4c see Figure 4d

Loosely speaking, a curve is symmetric about a line if it can be folded onto itself with a fold along the line.
Which of the standard equations in Table 1, represent conics which are symmetric about (a) the x-axis,
(b) the y-axis?
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Figure 53The circle and the angle θ.

2.2 The circle
A circle is a collection of points which are at a constant distance from a
fixed point. The fixed point is called the centre of the circle.
Refer to Figure 5, where the fixed point O is the origin of coordinates.
The point P is an arbitrary point on the circle and the distance OP is the
radius of the circle denoted by a; as P moves around the circle, the length
of OP is constant.

If the coordinates of P are (x,1y) then the distances ON and PN are x and
y, respectively, as shown in the figure. If the distance OP is denoted a
then by applying Pythagoras’s theorem to the right-angled triangle ONP
we find that

(ON)2 + (PN)2 = (OP)2

i.e. x2 + y2 = a2 (2)

This is the standard equation of a circle.

✦ What is the radius of the circle x2 + y2 = 16 ?
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✦ What is the equation of a circle, centre the origin, with radius 3?

The intersection of a line with a circle

We can discover the x-coordinates of the points where a line

y = mx + c

meets the circle

x2 + y2 = a2

by substituting for y from the first equation into the second equation to obtain

x2 + (mx + c)2 = a2

and this equation may be written in the form

(1 + m2)x2 + 2mcx + (c2 − a2) = 0
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Generally a line will either intersect a circle in two points, miss it entirely, or meet it in just one point
(when it is a tangent). These three cases correspond to the above quadratic equation having

two real roots when (2mc)2 > 4(1 + m2)(c2 − a2)

no real roots when (2mc)2 < 4(1 + m2)(c2 − a2)

one real root when (2mc)2 = 4(1 + m2)(c2 − a2)

(See Question R4.)

It is the third of the three cases that interests us here, and the equation

(2mc)2 = 4(1 + m2)(c2 − a2)

can be rewritten in the form

c2 = (1 + m2 )a2 (3)

Equation 3 is thus the condition that ensures that the line y = mx + c is a tangent to the circle x2 + y2 = a2.
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Question T1

c2 = (1 + m2 )a2 (Eqn 3)

Show that the quadratic equation x2 + (mx + c)2 = a2 has equal roots if m = 3, a = 5 and c = 5 10 , and then

show that Equation 3 is satisfied. What can you say about the line y  = 3x  + 5 10  and the circle

x2 + y2 = 25?4❏

Tangents and normals to the circle
We may use Equation 3

c2 = (1 + m2 )a2 (Eqn 3)

 to show that the equation of the tangent to the circle x2 + y2 = a2 at the point (x1, y1) on the circle is

x1x + y1y = a2
311(4)1 ☞

and this is done in the following exercise.
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✦ Show that Equation 4 is the equation of a tangent to the circle at the point (x1, y1).
x1x + y1y = a2

1311(Eqn 4)1

You may omit the following question if you are not familiar with calculus.

✦ Find the gradient of the tangent at the point P(x1, y1) on the circle by differentiating Equation 2, and hence
show that Equation 4 represents the tangent at P.

x2 + y2 = a2 (Eqn 2)

x1x + y1y = a2 (Eqn 4)

From Equation 4 we can write y = − x1

y1







x + a2

y1
. Comparing this with y = mx + c we can see that the gradient

of the tangent at a point (x1, y1) on the circle is − x1

y1
. The normal at (x1, y1) is by definition a line perpendicular

to the tangent, and so its gradient must be 
y1

x1
. ☞
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The equation of the normal to the circle at a point P(x1, y1) on the circle is

y − y1 = y1

x1
( x − x1 )  which simplifies to

y = y1

x1







x (5)

This is the equation of a line through the origin, as we would expect.

Question T2

What are the equations of the tangents and the normals to the circle x2 + y2 = 4 at the following points?

(a) ( 2 , 2 )4(b) (0, 2)4(c) (2, 0)4(d) (−1, − 3 )4(e) (1.2, −1.6)4❏
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Parametric equations for the circle

The equation x2 + y2 = a2 defines a set of points (x, y) that lie on a circle, but in many applications this is not
quite enough. We may also need to indicate that the points on the curve are traced in a particular order or that a
point is moving along the curve in an anticlockwise direction starting at the point (a, 0), for example. 
In Figure 5 the point P on the circle is determined by the angle θ, and from triangle OPN we see that

x = a1cos1θ 4and4y = a1sin1θ (6)

As θ takes values in the range 0 ≤ θ < 360°  then P moves round the circle in an anticlockwise direction from
S(a,10). 
A variable such as θ, which is used to determine the position of a point on a curve is known as a parameter.
In many applications to physics the natural parameter to choose would be time, so that the position of P is
determined by the value of the time.
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✦ Mark on the circle x2 + y2 = 4 the points P1 = (21cos160°, 21sin160°),    P2 = (21cos1240°, 21sin1240°).

Note that the points P1 and P2 are at the opposite ends of a diameter. This will be true of any two points
corresponding to two values of the parameter that differ by 180°.

x

y

O

θ
x

y
a

N
S

P(x, y)

Figure 53The circle and the angle θ.

✦ Suppose that the angle θ in Figure 5 is given by θ = ω0t where ω is a
positive number and t is the time.

(a) Does the point P move clockwise or anticlockwise round the circle as
t increases?
(b) What are x and y of Figure 5 in terms of ω and t?

✦ Suppose the position of a point P on a circle is determined by a
parameter t representing time in seconds, and x = 41cos(ω0t), y = 41sin(ω0t).
What is the radius of the circle? In which direction does P traverse the
circle if ω is negative; and if ω = −π1rad1s−1, how long does it take P to
trace out the circle?
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✦ What is the equation of the tangent to the circle x2 + y2 = 16 at the point P(41cos1θ , 41sin1θ) on the circle?

Question T3

What is the equation of the normal to the circle x2 + y2 = 16 at the point P(41cos1θ , 41sin1θ) on the circle?4❏

Alternative forms of the circle

x2 + y2 = a2 (Eqn 2)

x = a1cos1θ 4and4y = a1sin1θ (Eqn 6)

We normally regard Equations 2 or 6 as the simplest forms of the equations of a circle, but we will mention
several other forms because they sometimes arise naturally from physics. It will not be necessary for you to
remember these alternative forms, but you may wish to refer to this subsection if you encounter them in your
other work.

The first form is simply a consequence of choosing the centre of the circle to be at a point other than the origin.
Such a situation might arise if we are discussing lenses with spherical surfaces for example, in which case it may
be impossible to arrange for all our spheres or circles to be centred at a single point.
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Figure 53The circle and the angle θ.

When we apply Pythagoras’s theorem to the triangle OPN in Figure 5 we
obtain the equation of a circle of radius a, with its centre at O, in the form
x2 + y2 = a2. If we replace the point O by a point with coordinates (p, q)
then the same argument gives the equation

(x − p)2 + (y − q)2 = a2 (7)

for a circle of radius a with its centre at (p, q).

Alternatively you may encounter the equation of a circle in the general
form

x2 + y2 + 2Gx + 2Fy + C = 0 (8)

in which case the centre of the circle is at the point (−G, −F) and its

radius is G2 + F2 − C .

✦ Expand the brackets in Equation 7 and verify that Equation 8 represents a circle of radius G2 + F2 − C
with centre at (−G, −F).
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Figure 73Polar coordinates.

Sometimes we encounter circles in polar form when investigating so called
central forces, for example in electrostatics. In polar coordinates we use the
distance from the origin and an angle to specify the position of a point as in
Figure 7. The equation of a circle of radius a with its centre at the origin is
particularly simple in such a coordinate system and is just

r = a33(with a ≥ 0) (9)

You are probably familiar with the representation of curves in terms of (x,1y)
coordinates, but you may not be aware that we can do something very similar
with (r,1θ) coordinates. For example the equation

r = 2a1cosθ (10)

represents a curve; but which curve?

In Figure 7 we suppose that the point P has coordinates (x,1y) thenr2 = x2 + y2  and cos θ = x

r
= x

x2 + y2
.

Substituting for r and cos1θ in Equation 10 we obtain x2 + y 2 = 2ax  which gives  x2 −  2ax  + y2 = 0  or
x2 − 2ax + y2 + a2 = a2  so that

(x − a)2 + y2 = a2
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Figure 83The polar form of a circle.

Comparing this (x − a)2 + y2 = a2

with Equation 7 (x − p)2 + (y − q)2 = a2 (Eqn 7)

we see that it is a circle of radius a with its centre at (a, 0).

Equation 10

r = 2a1cosθ (Eqn 10)

therefore represents the circle shown in Figure 8.
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Table 23The values of r = 41cosθ
for various values of θ.

θ /° r/cm θ /° r/cm

−90 0.0 1110 3.9
−80 0.7 1120 3.8
−060 2.0 1140 3.1
−040 3.1 1160 2.0
−20 3.8 1180 0.7
−10 3.9 1190 0.0
11110 4.0

✦

In Figure 9 we provide you with graph paper marked
in polar coordinates, and Table 2 is obtained from the
formula r = 41cosθ1cm. Plot the points and convince
yourself that they do indeed lie on a circle.(Use a
pencil as this graph paper will be needed again later
on.)
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2.3 The parabola
You may be aware that the graph of a quadratic function

y = Ax2 + Bx + C (11)

is a geometric shape known as a parabola, but here we begin our investigation
of parabolas with the definition of a conic, Equation 1 with e = 1. Such shapes
occur in many areas of physics, in particular, a simple model of the motion of a
projectile ☞ under gravity near the Earth predicts that it will move along a
parabolic path.

We will choose the position of the focus and the directrix in such a way that the
equation of the parabola becomes particularly simple. In Figure 10 you will see
that we have placed the focus on the x-axis at the point (a, 0), and we have
arranged for the parabola to pass through the origin by choosing the directrix to
be the line x = −a. The point on the parabola closest to the directrix is called the
vertex of the parabola.

Let P be a point on the parabola. Then by Equation 1 with e = 1, 
FP
PN

= e (Eqn 1)

we have FP = PN where PN is perpendicular to the directrix.
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✦ Given that P is the point (x, y), calculate (PN)2 and (FP)2.

From the definition of a parabola we know that FP = PN so that (FP)2  = (PN)2  and therefore
( x − a)2 + y2 = ( x + a)2  which simplifies to

y2 = 4ax (12)

This is the standard equation of the parabola.
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Tangents and normals to the parabola

We can find the equation of the tangent to a parabola in much the same way as we did for the circle, by
constructing a line which touches the curve at one point. We will spare you the details and quote the result.

The tangent at a point P(x1, y1) on the parabola (Equation 12) has the equation ☞

y1y = 2a( x + x1 ) (13)

You may omit the following seeded question if you are unsure of calculus.

✦ Differentiate Equation 12

 y2 = 4ax (Eqn 12)

and hence verify that Equation 13 represents the tangent at a point P(x1, y1) on the parabola.
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You do not need to use calculus to answer the following question.

Question T4

(a) What are the equations of the tangent and the normal to the parabola  8y2 = x  at the points (1/2, 1/4) and
(1/2, −1/4)? (Hint: Use Equation 13.)

y1y = 2a( x + x1 ) (Eqn 13)

(b) Show that the point M (a/m2, 2a/m) lies on the parabola y2 = 4ax  for any value of m ≠ 0, and then use
Equation 13 to show that the line

y = mx + a

m
(14)

is a tangent to the parabola y2 = 4ax , and hence the gradient of the parabola at M is m.4❏

✦ Which of the following lines are tangents to the parabola y2 = 8x?

(a)  y = 2x + 24(b) y = 3x + 2 34(c) y = kx + k2
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Parametric equations for the parabola
You may recall that the use of a parameter enabled us to trace out the points of a circle in a particular order, and
we may do something very similar for a parabola. If we introduce the parametric equations

x = a0t24and4y = 2a0t (15)

then both x and y are determined by the value of the parameter t. If we use the second of these equations to write
t = y/(2a) and then substitute for t in the first equation, we obtain x = a(y/(2a))2, which reduces to y2 = 4ax.
This means that any point (x,1y) = (a0t 02,12at0) specified by Equations 15 must lie on the parabola defined by
Equation 12  y2 = 4ax . Moreover, each point on the parabola corresponds to one and only one value of t.

Many results relating to the parabola can be derived via the parametric representation. For example, consider
two points P and Q corresponding to two values t1 and t2 of the parameter. The line passing through the two
points P (at1

2, 2at1)  and Q (at2
2, 2at2 ) has the equation

y − 2at1
2at2 − 2at1

= x − at1
2

at2
2 − at1

2
☞

which can be simplified to
2x − (t1 + t2 )y + 2at1t2 = 0
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If the two points P and Q coincide, i.e. if t1 = t2 = t say, then this line becomes a tangent to the parabola at the
point (at2, 2at) with equation

2 x − 2 ty + 2at2 = 04which simplifies to4 y = x

t
+ at

so that the gradient of the parabola at (at2, 2at) is 1/t.

(This final equation is identical to Equation 14 y = mx + a

m
 except that m has been replaced by 1/t.)

You may omit the following question if you are unsure of calculus.

✦ What is the value of dy dx  in terms of t, at a general point (at2, 2at) on the parabola?

You do not need to use calculus to answer the following question.

✦ Find the equation of the normal to the parabola at the point (at2, 2at).
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Question T5

A line passing through the focus of the parabola y2 = 4a x cuts the parabola at the points P(at1
2, 2at1)  and

Q(at2
2, 2at2 ) . Find a relationship between t1 and t2.4❏

Question T6

The tangents to the parabola y2 = 4ax  at P(at1
2, 2at1)  and Q(at2

2, 2at2 )  meet at a point R. 

What are the coordinates of R?4❏
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Figure 113Reflection property
of a parabola.

Reflection property of the parabola

Parabolas have the interesting and useful property, which is illustrated in Figure 11,
that parallel rays of light striking a parabolic mirrored surface are all reflected
through a fixed point1—1the focus of the parabola.

A distant source of light will produce a nearly parallel beam, and a receiver placed
at the focus of the parabolic reflector can collect a strong signal. Receiving dishes,
such as those used in radio astronomy or to recover television signals from a
satellite, are usually in the shape of a paraboloid, which is the three-dimensional
surface obtained by rotating a parabola about its axis of symmetry.

The property can also be used in reverse. Domestic electric fires are often
provided with parabolic reflectors and the heating element is placed at the focus of
the reflecting surface. Heat rays (mainly infra-red radiation) then emerge in
parallel and the arrows in Figure 11 would be reversed.

✦

Give an example in which this geometric property is used to produce parallel rays of light.
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Alternative forms of the parabola

Just as for the circle, the equation of a parabola that arises from our work in physics may not be exactly like
Equation 12.

y2 = 4ax (Eqn 12)

As a trivial example, the x and y may be swapped over to give y = x2 4a , and a change of origin will then lead
to Equation 11 (which is probably the most common form of the equation of a parabola).

y = Ax2 + Bx + C (Eqn 11)

The polar form of a parabola

L r = 1 + cosθ for −π < θ < π (17)

where L is a constant length, occurs quite often in the discussion of central orbits. We will not discuss this form
in detail, but the following exercise is intended to convince you that the equation does indeed represent a
parabola.
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Table 33See Question T7

θ/° r/cm

0 2

±020 2.1

±040 2.3

±060 2.7

±080 3.4

±090 4.0

±0100 4.8

Question T7

Table 3 shows the values of r for various values of θ (measured in degrees)
obtained from the equation L r = 1 + cosθ  where L = 41cm. Plot these values on
the polar graph paper provided in Figure 9. Use your graph to decide which of the
following equations is equivalent to Equation 17 in this case.

(a) (y − 4)2 = − x 2 (b) (y − 4)2 = x 2 (c) y2 + 16 = x 2

(d) 8y = −( x − 4)2 (e) y2 − 16 = −8x (f) y = −2( x + 4)24❏

L r = 1 + cosθ for −π < θ < π (Eqn 17)
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2.4 The ellipse
Our discussion for the ellipse is very similar to that for the parabola.
Again we begin with Equation 1, but this time with 0 ≤ e < 1. 
Once again we choose the axes and the origin so as to produce the
simplest form of the equation, and our choice is shown in Figure 12.

Let us suppose that a is an arbitrary positive number, then the focus is
chosen at the point (ae,10) while the directrix is the line x = a/e.

From Equation 1 we have3
FP
PN

= e (Eqn 1)

and from the right-angled triangle FPS we have

FP2 = FS2 +  PS2

so that (e × PN)2 = (x − ae)2 + y2

But PN = a e − x  and so e × PN = a − ex,

therefore (a − ex)2 = (x − ae)2 + y2

which gives a2 − 2aex + e2 x2 = x2 − 2aex + a2e2 + y2

or a2 − a2e2 = a2 (1 − e2 ) = (1 − e2 ) x2 + y2
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Therefore (1 − e2)x2 + y2 = a2(1 − e2)

Dividing both sides of this final equation by a2 (1 − e2 )  we obtain

x2

a2
+ y2

a2 (1 − e2 )
= 1

Noting that a2 (1 − e2 ) > 0  we may replace it by b2

so that b2 = a2(1 − e2)

and b = a 1 − e2 (18)

to produce the standard equation of an ellipse

x2

a2
+ y2

b2
= 1 (19) ☞

✦ What is the equation of the standard ellipse which passes through the points (−2, 0) and (1, 3 2) ?
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x2

a2
+ y2

b2
= 1 (Eqn 19)

If we put y = 0 in Equation 19 we obtain x2 a2 = 1, so that x = ± a  and
the ellipse meets the x-axis at the points A′(−a, 0) and A(a, 0) of Figure 12.

If we put x = 0 in Equation 19 we obtain y2 b2 = 1, so that y = ±b and the
ellipse meets the y-axis at the points B′(0, −b) and B(0, b) of Figure 12.

With this choice of axes, the ellipse is symmetric both about the x-axis
and about the y-axis; and because of this latter symmetry there is a second
focus F′(−ae, 0) and a second directrix x = −a/e which could have been

used to draw the same ellipse.

Any chord passing through O is called a diameter, but, unlike those of a circle, the diameters of the ellipse are
not all of the same length. The major axis is defined to be the longest diameter AA′ , while the minor axis is
defined to be the shortest diameter BB′. If we put y = 0 in Equation 19 we obtain x = ±a, so that the major axis is
2a. Similarly putting x = 0 in Equation 19 we have y = ±b and the minor axis is 2b.

✦ For an ellipse we require 0 ≤ e ≤ 1, but how does the shape of the ellipse change as we vary e within this
range?
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✦ The equation x2 16 + y2 4 = 1 represents an ellipse. What are the major and minor axes of this ellipse?
What is the eccentricity of this ellipse? What are the foci and the directrices of this ellipse?

Aside

From Equation 18 b = a 1− e2  and the fact that 0 ≤ e ≤ 1 it is clear that b ≤ a  in the standard equation of the ellipse.

Actually, Equation 19 
x2

a2 + y2

b2 = 1 with this condition b ≤ a would perhaps be more accurately described as ‘the standard

equation of an ellipse with its foci on the x-axis’. If we throw away the condition b ≤ a then Equation 19 is still the equation

of an ellipse, but the foci may lie on the y-axis. For example, 
x2

4
+ y2

16
= 1 is certainly the equation of an ellipse, with major

axis 8 (in the direction of the y-axis) and minor axis 4 (in the direction of the x-axis) but its foci lie on the y-axis, rather than
on the x-axis. In Equation 19 the greater of a and b is known as the semi-major axis while the lesser of a and b is known as
the semi-minor axis.
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Figure 133Drawing an ellipse
with pins, string and pencil.

In Figure 12 we have shown an
ellipse with its major axis along the x-
axis.
You would need to turn Figure 12
through 90° in order to find the foci
and directrices of an  ellipse  for
which b > a.

It is clear from Figure 13 that an
ellipse is a bounded closed figure
lying in a rectangle −a ≤ x ≤ a  and
−b ≤ y ≤ b . This figure shows a
simple method of constructing an
ellipse inside a given rectangle.

First, measure the length OA (the semi-major axis) then find where a circle centred at B with this length as
radius meets the major axis. These two points are the foci F ′  and F. Now place a loop of thread round pins
through F′  and F, and keeping the thread taught, trace out the curve (so that the length F′PF is fixed).



FLAP M2.3 Conic sections
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Tangents and normals to the ellipse
x2

a2
+ y2

b2
= 1 (Eqn 19)

The equation of the tangent to the ellipse defined by Equation 19, at a point P(x1, y1) on the ellipse, is

x1x

a2 + y1y

b2 = 1 (20) ☞

This result is established in the next exercise, which you may omit if you are unsure of calculus.

✦ Show that Equation 20 is the equation of the tangent to the ellipse at a point P0(x1,1y1) on the ellipse.

✦ Write down the equation of the normal to the ellipse 
x2

a2
+ y2

b2
= 1 at the point (x1, y1) on the ellipse.
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Question T8

What are the equations of the tangent and the normal to the ellipse x2 4 + y2 16 = 1 at the points ☞

(a) (1, 2 3 ) 4(b) (1, −2 3 )4(c) (−1, 2 3 )4(d) (2, 0)4(e) (0, −4)4❏

Parametric equations for an ellipse
We introduce parametric equations

x = a cosθ and y = b sin θ (21)

for the ellipse for the same reasons as for the circle and the parabola. It is clear that the point P(a1cosθ, b1sinθ)
lies on the ellipse (Equation 19)

x2

a2
+ y2

b2
= 1 (Eqn 19)

for any value of θ, since 
(a cosθ )2

a2
+ (b sin θ )2

b2
= cos2 θ + sin2 θ = 1 .
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Figure 143Parametric representation
of an ellipse.

Each value of θ in the range 0 ≤ θ < 360° ( or −180° < θ ≤ 180°)
corresponds to one and only one point on the ellipse: see Figure 14.
If we choose an arbitrary point x1 = a cosθ1, y1 = b sin θ1 on the ellipse,
then Equation 20

x1x

a2
+ y1y

b2
= 1 (Eqn 20)

becomes

cos θ1

a
x + sin θ1

b
y = 1 (22)

and this is very often the most useful form of the equation of a tangent to the ellipse.

✦ Equation 22 gives the equation of the tangent to the ellipse at the point corresponding to choosing θ = θ1.
Find the equation of the tangent line at the point corresponding to θ = θ1 + 90°.
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Question T9

Show that the tangents to the ellipse 
x2

a2
+ y2

b2
= 1 at the points with parameters θ1 and θ1 + 90° meet at the

point x = a(cos1θ1 − sin1θ1), y = b(cos1θ1 + sin1θ1) and show that this point lies on the ellipse 
x2

a2
+ y2

b2
= 2 .4❏

Alternative forms of the ellipse
The parabola, ellipse and hyperbola are of special interest because they are the paths which are followed by
bodies which move under the so-called inverse square law. This occurs when the net force on a body is directed
towards a fixed point, and is inversely proportional to the square of the distance between the body and the fixed
point. Projectiles (in the absence of air resistance) travel in parabolic paths, planets ☞ move around the Sun in
ellipses, (some) meteorites passing near the Earth follow a hyperbolic orbit and, in a famous experiment by
Geiger and Marsden, α-particles ☞ were deflected by nuclei along hyperbolae.
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The polar equation of a conic is

L r = 1 + e cosθ (23)

where L is a fixed length, and for 0 < e < 1 the conic is an ellipse (we have already seen the case e = 1 in
Subsection 2.3 when we discussed the parabola). The following exercise is intended to convince you that
Equation 23 is indeed the equation of an ellipse.

Table 43See Question T10.

θ/° r/cm θ/° r/cm

0 1.7 ±110 3.0
±030 1.7 ±130 3.7
±050 1.9 ±150 4.4
±070 2.1 ±175 5.0
±090 2.5 ±180 5.0

Question T10

Table 4 shows the values of r for various values of θ obtained from the
equation L r = 1 + e cosθ  where L = 2.51cm and e = 0.5. Plot these values
on the polar graph paper provided in Figure 9. Is the major axis of the
ellipse parallel to the x-axis or to the y-axis?4❏
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2.5 The hyperbola
Our discussion for the hyperbola is very similar to that
for the ellipse. Again we begin with Equation 1, but
this time with e > 1. Once again we choose the axes
and the origin so as to produce the simplest form of
the equation, and our choice is shown in Figure 15.

Let us suppose that a is an arbitrary positive number,
then the focus is chosen at the point (ae, 0) while the
directrix is the line x = a/e.

From Equation 1 we have (FP)2 = e2(PN)2

so that

( x − ae)2 + ( y − 0)2 = e2 x − a

e






2

expanding gives us

x2 − 2aex + a2e2 + y2 = e2 x2 − 2aex + a2
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factorizing gives us (e2 − 1) x2 − y2 = a2 (e2 − 1)

Hence
x2

a2
− y2

a2 (e2 − 1)
= 1

Since a2 (e2 − 1) > 0  we may replace it by b2, where b is a constant, to obtain the standard form of the
hyperbola:

x2

a2
− y2

b2
= 1 (24) ☞

As with the ellipse it follows from the symmetry that there is a second focus and a second directrix which will
produce the same curve. The two foci are the points F(ae,10) and F′(−ae,10) and the two directrices have
equations x = a/e and x = −a/e.
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Notice from Figures 4d and 15 that the hyperbola has
two distinct branches: this is quite different from an
ellipse which is always a closed curve.

We can readily verify for Equation 24

x2

a2
− y2

b2
= 1 (Eqn 24)

that when y = 0, x = ± a (giving the points A′ and A in
Figure 15) but there is no value of y for which x = 0;
indeed, since Equation 24 can be rearranged to give
the equation

y2

b2
= x2 − a2

a2

in which the left-hand side is positive, it follows that
x2 ≥ a2 so there is no part of the curve in the band
 −a < x < a.
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Asymptotes

There is one important feature of the hyperbola which
is not present in the other curves we have considered.
The dashed lines in Figure 15 correspond to the
equations

y = ± b

a
x (25)

The branches of the hyperbola are ‘hemmed in’ by
these lines as x and y both become large in magnitude.
The hyperbola approaches one of these lines ever
more closely but does not touch or cut it. These lines
are called asymptotes, and the hyperbola is the only
conic section which possesses them.
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The sonic boom from a supersonic jet is a shock cone which trails behind the jet. At the surface of this cone
there is a sudden change of pressure which causes the sonic boom. The intersection of the cone with the ground
is (usually) a branch of a hyperbola, and the strength of the bang decreases as the distance from the aircraft
increases. See Figure 16.

Hyperbola

Figure 163Effect of sonic boom.
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The asymptotes are a useful aid in sketching a hyperbola.

✦ What is the equation of the hyperbola which passes through the points (−4, 0) and (2 5 ,1)? 
What are the equations of its asymptotes?

Tangents and normals to the hyperbola
The derivation of the equation of the tangent is almost identical to that for the ellipse. You may omit the
following question if you are unsure of calculus, but notice that Equation 26 is the equation of a tangent to the
hyperbola of Equation 24 at the point (x1, y1).

x1x

a2 − y1y

b2 = 1 (Eqn 26)
x2

a2
− y2

b2
= 1 (Eqn 24)

✦ Find the equation of the tangent line at a point P ( x1 , y1 )  on the hyperbola defined by Equation 24.

Question T11

Find the equations of the tangent and normal to the hyperbola 9x2 − 4y2 = 36 at the point (4, 3 3 ).4❏
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Parametric equations for a hyperbola
The hyperbolic functions cosh and sinh are defined by

cosh x = e x + e− x

2
4and4sinh x = e x − e− x

2
(27)

where ex is the exponential function. ☞

We need to know very little about these functions in this module, except for the fact that they satisfy the
following useful identity.

✦ Show that cosh2 θ − sinh2 θ = 1

✦ Show that the point x = a1cosh1θ, y = b1sinh1θ lies on the hyperbola of Equation 24.

x2

a2
− y2

b2
= 1 (Eqn 24)
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We may now use the equations

x = a1cosh1θ4and4y = b1sinh1θ (28)

to parametrize the hyperbola because Equation 24 is satisfied for any value of θ.

x2

a2
− y2

b2
= 1 (Eqn 24)

The functions cosh and sinh are known as hyperbolic functions precisely because of this association with the
hyperbola. Just as for the ellipse, we can show that the tangent to the hyperbola at θ = θ1 has equation

cosh θ1

a
x − sinh θ1

b
y = 1 (29)

The polar equation of a hyperbola is Equation 23

L r = 1 + e cosθ (Eqn 23)

where L is a fixed length, and e > 1 
(we have already seen the cases e = 1 and 0 < e < 1 when we discussed the parabola and the ellipse).
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Figure 173(a) The path of an alpha particle
near the nucleus of an atom. (b) An upper
estimate for the size of the nucleus.

A famous example from physics
When an α-particle passes close to the nucleus of an atom (of gold
say) a certain mathematical model based on the inverse square law
predicts that its path will be a hyperbola. We imagine an alpha
particle heading along a straight line towards the nucleus, and then
being deflected through an angle, 2φ say, which we can measure, as
in Figure 17a. The paths along which the particle approaches and
retreats from the nucleus lie close to the asymptotes of a hyperbola,
and when r is very large we have θ ≈ ±φ so that, from Equation 23

L r = 1+ ecosθ   (Eqn 23),     we have

1 + e cos φ = 04and therefore4 e = − 1
cos φ

and Equation 23 becomes r = L cos φ
cos φ − cosθ

where φ and L are constants to be determined by experiment.
Figure 17b shows a typical graph of r plotted against θ (not a conic)
and the significant point to notice is that there is a minimum value
for r, say r0.
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We conclude that this minimum value of r provides an upper estimate for the size of the nucleus. A similar

calculation was first performed by Lord Rutherford ☞ in the early years of the 20th century; prior to this time

very little was known about the size of the nucleus.

Rectangular hyperbola
A special case arises when a = b, for then Equation 24

x2

a2
− y2

b2
= 1 (Eqn 24)

reduces to

x2 − y2 = a2 (30)

and the asymptotes (from Equation 25)

y = ± b

a
x (Eqn 25)

are y = x and y = −x which are perpendicular to each other. Such a curve is known as a rectangular hyperbola.
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Question T12

Find the equations of the tangents to the hyperbola 
x2

a2
− y2

b2
= 1 that pass through the point S(a/2, 0).4❏

The following alternative form of the rectangular hyperbola, which you may have seen before, arises in many
applications:

y = c2

x
(31)

Such a rectangular hyperbola has the x- and y-axes as its asymptotes. Equation 31 can be obtained from
Equation 30 x2 − y2 = a2 by rotating the axes about the origin through 90°, but the details are beyond
the scope of this module.

✦ Show that x = ct, y = c0/t is a parametrization of the rectangular hyperbola xy = c2.

✦ Find the equation of the line joining the points on the rectangular hyperbola (ct1, c0/t1) and (ct2, c0/t2).
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3 The general form of a conic

3.1 Classifying conics
In this short section we mention very briefly some topics which do not arise very often in physics, but
nevertheless they might cause you some difficulties on the rare occasions they do occur if you have never seen
them before.

It can be shown that the general equation

Ax2 + 2 Hxy + By2 + 2Gx + 2 Fy + C = 0 (33)

includes all the different types of conics: circles, ellipses, parabolas and hyperbolas. We state without proof that
the following conditions determine the nature of the conic:

(a) H = 0, A = B ≠ 0 is a circle ☞
(b) H02 = AB is a parabola

(c) H02 < AB is an ellipse

(d) H02 > AB is a hyperbola.
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✦ What type of conic is defined by the equation

3x2 + 4xy + 3y2 − 8x + 2y + 4 = 0? (34)

Equation 34 represents an ellipse, but not the sort of ellipse with which we are familiar. Very roughly speaking,
the xy term indicates that the ellipse has undergone a rotation so that its major and minor axes no longer
coincide with the coordinate axes. The linear x and y terms indicate that the centre of the ellipse is not at the
origin of coordinates so that the ellipse has undergone a translation.

Question T13

To which class of conic does each of the following belong?

(a) 5x2 + 6xy − 4y2 + 2x + 4y − 3 = 0 4
(b) 2x2 + 3xy + 2y2 + 2 = 04 ❏
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3.2 Changing the axes
Let us consider the equation (x − p)2 + (y − q)2 = a2. If we draw a graph of
this for particular values of p, q, and a, we get a circle, with centre (p, q)
and radius a (Figure 18a). Now if we make the substitutions X = x − p, and
Y = y − q we get X02 + Y02 = a2, and this amounts to drawing the figure in a
new coordinate system referred to X-and Y-axes, whose origin is at the
point (p,1q) (Figure 18b).

✦ What is the equation of an ellipse centred at the point (2, 4) with
major axis 10 parallel to the x-axis and minor axis 6 parallel to the y-axis?

Question T14

What is the effect on the standard equations of the ellipse and the
hyperbola if they are moved so that they are centred at the point (−1, 2)
with the directions of the major and minor axes unchanged?4❏
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Figure 193The equipotentials due to a
line charge at A and a plane surface at
zero potential along the x-axis.

3.3 An example from electrostatics: equipotentials
You do not need to understand the physics in this example, but we will
outline the physical background in order to set it in context. You have
probably encountered static electricity when you comb your hair, or after
walking on a nylon carpet. Lightning is probably the best known, and
certainly the most impressive, manifestation of the phenomenon.
Figure 19 represents an electrical charge distributed along a very long
straight line at A(0, a) above a very large flat copper plate represented by
the x-axis. Since we are viewing ‘edge on’, all we see of the line charge
is a point (namely A) and similarly we see only the edge of the metal
plate (along the x-axis). We suppose that the plate is earthed, or more
technically, we say that it is at zero potential. The line charge and the
metallic surface combine to create an electric field, and a small point
charge will experience a force due to this field. The magnitude and
direction of this force depend on where the point charge is placed.
Through each chosen point there is a curve, called an equipotential with
the property that no work is required to move a point charge along the
curve. In many respects the equipotentials are similar to the contour
curves on a map showing points of equal height above sea level, in that
relatively little effort is required to walk along such paths.
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Figure 193The equipotentials due to a
line charge at A and a plane surface at
zero potential along the x-axis.

The force experienced by a small charge is always perpendicular to the
equipotential through the location of the charge.

In Figure 19 the dashed lines represent the equipotentials, and B(0, −a) is
the image of the point A(0, a) in the flat surface (as in a mirror).
It is known that the equipotentials have the property that AP PB = λ , a
constant. Different choices of the value of λ  will produce the various
equipotentials. In this example we shall investigate the nature of these
curves.

First we suppose that P has coordinates (x , y ). Then, since
(AP)2 = λ2(PB)2 we have, for a particular value of λ,

x2 + (y − a)2 = λ2[x2 + (y + a)2 ]

which can be rearranged to give

x2 + y2 − 2ay
1 + λ2

1 − λ2
+ a2λ2 = 0 (35)
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Figure 193The equipotentials due to a
line charge at A and a plane surface at
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x2 + y2 − 2ay
1 + λ2

1 − λ2
+ a2λ2 = 0 (Eqn 35)

This equation corresponds to putting H = 0 and A = B = 1 in Equation 33,

Ax2 + 2 Hxy + By2 + 2Gx + 2 Fy + C = 0 (Eqn 33)

and we see immediately that the equipotentials are circles.

If we compare Equation 35 with Equation 8

x2 + y2 + 2Gx + 2Fy + C = 0 (Eqn 8)

we see that G = 0 and F = −a(1 + λ2 ) (1 − λ2 ) , so that the centre of the

circle is at 0, a(1 + λ2 ) (1 − λ2 )( ) on the y-axis. For λ = 1 we have

AP = PB and the equipotential lies along the x-axis (see Figure 19).
For λ < 1 the equipotentials are circles in the upper half-plane. For small
values of λ , P is close to A, so that the equipotential is a circle which is
close to A. In the case λ  = 0 the point P is actually at A and the
equipotential reduces to a single point.
(The case λ  > 1 is of no interest since it gives rise to circles which lie
below the x-axis, and these do not correspond to equipotentials.)
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4 Closing items

4.1 Module summary
1 Conic sections, or conics, are the curves which arise when a double cone is cut by a plane. The main
classes are parabolas, ellipses and hyperbolas; the circle is a special case of the ellipse.

2 The following table summarizes the main results:

Conic Circle Parabola Ellipse Hyperbola

eccentricity e = 0 e = 1 0 ≤ e < 1 e > 1

see Figure 4a see Figure 4b see Figure 4c see Figure 4d

focus

directrix

(a, 0)

x = −a

(±0ae, 0)

x = ± 0a/e

(±0ae, 0)

x = ± 0a/e
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Conic Circle Parabola Ellipse Hyperbola

standard equation x02 + y02 = a02

centre (0, 0)
radius a

y02 = 4ax x2

a2
+ y2

b2
= 1

b = a 1 − e2

x2

a2
− y2

b2
= 1

b = a e2 − 1

asymptotes none none none y = ± b

a
x 

parametric form x = a1cos1θ
y = a1sin1θ

x = at2

y = 2at

x = a1cos1θ
y = b1sin1θ

x = a1cosh1θ
y = b1sinh1θ

tangent at
(x1, y1)

x1x + y1y = a2 y1y = 2a(x + x1) x1x

a2
+ y1y

b2
= 1

x1x

a2
− y1y

b2
= 1

polar form r = a, centre (0, 0), radius a

r = 2a1cos1θ, centre  (a, 0),
radius a

L

r
= 1 + cos θ L

r
= 1 + e cos θ

0 ≤ e < 1

L

r
= 1 + e cos θ

e >1
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Conic Circle Parabola Ellipse Hyperbola

some other forms
and special cases

(x − p)2 + (x − q)2 = a2

centre (p, q) radius a

y = Ax2 + Bx + C rectangular hyperbola
x2 − y2 = a2

x2 + y2 + 2Gx + 2Fy + C = 0

centre (−G, −F)

radius G2 + F2 − C

rectangular hyperbola

y = k

x

3 The general equation of a conic has the form

Ax2 + 2 Hxy + By2 + 2Gx + 2 Fy + C = 0 .

(a) H = 0, A = B ≠ 0 a circle
(b) H02 = AB a parabola
(c) H02 < AB an ellipse
(d) H02 > AB a hyperbola
When the axes are translated (or rotated) then it is possible to obtain the equation of a conic relative to 
the new coordinates.
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Recognize the graphs of the main types of conic sections, write down their equations in standard form, 
and explain how the value of the eccentricity governs the nature of the conic.

A3 Appreciate that a tangent to a curve is a line that touches the curve at one point, and use the equations of
the tangents to the conics.

A4 Use the parametric representations of the conics.

A5 Appreciate that a circle is a particular case of an ellipse, and that ellipses are the only bounded conics.

A6 Determine the equations of the asymptotes of a hyperbola in standard form.

A7 Recognize the various forms of the equations of the conics, in particular a circle centred at the point
(p, q), the general equation of a circle, a rectangular hyperbola and in particular a rectangular hyperbola
whose asymptotes are the coordinate axes.

A8 Recognize the polar forms of the conics.

A9 Recognize the general form of a conic.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2, A7, A8 and A9)3Classify the following conics as circles, ellipses, parabolas or hyperbolas:

(a) y2 + ( x − 1)2 = 44(b) x(x + y) = 24(c) 4 x2 + 9 y2 = 14(d) r = 21cosθ

(e) 
2
r

= 1 + 5 cos θ4(f) r = 1
1 + cos θ

4(g) xy = 44(h) x2 + y2 + x + y = 0

Question E2

(A3, A7 and A9)3(a) Show that the line x + 3y = 1 is a tangent to the circle x2 + y2 − 3x − 3y + 2 = 0 and find the
coordinates of the point of contact. Use Equation 8 to find the centre and radius of this circle.

(b) Prove, by calculation, that the point P(3, 2.5) lies outside the circle and calculate the length of a tangent to
the circle from P.
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Question E3

(A2, A3 , A4 and A8)3The normal to the parabola y2 = 4ax at the point P(at2, 2at) meets the x-axis at the point G,
and GP is extended, beyond P, to the point Q so that PQ = GP. Show that Q lies on the curve y2 = 16a(x + 2a).
What kind of curve is this?

Question E4

(A2, A4, A5 and A6)3Find the equations of the tangents to the ellipse x2 + 2y2 = 8 which are parallel to the
asymptotes of the hyperbola 4 x2 − y2 = 1.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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