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1 Opening items

1.1 Module introduction
This module concerns the special symbol i, which is defined to have the property that i × i = −1. Expressions
involving i, such as 3 + 2i, are known as complex numbers, and they are used extensively to simplify the
mathematical treatment of many branches of physics, such as oscillations, waves, a.c. circuits and optics.
Complex numbers arise in a very natural fashion in the solutions of certain mathematical problems, indeed some
branches of mathematics would be incomplete, and some mathematical problems impossible to solve, without
them; but they are also widely used as a practical calculating aid in many branches of science and engineering.
For a physicist, complex numbers are certainly valuable as an aid to calculation, but later we will see that they
play an essential role in one of the most important developments of 20th century physics: quantum theory.

In Subsection 2.1 we give the mathematical motivation for introducing complex numbers and follow this by
discussing imaginary numbers (those consisting of i multiplied by a real number). We then introduce complex
numbers in Subsection 2.3 and give an explanation of how to perform standard operations, such as addition and
multiplication, on complex numbers. Subsection 2.6 gives, without proof, the fundamental theorem of algebra;
this theorem tells us that the roots (i.e. solutions) of any polynomial equation can be given in terms of complex
numbers, and that the number of roots is equal to the degree of the polynomial. An important graphical
technique (known as the Argand diagram) for interpreting complex numbers is introduced in Subsection 2.7.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 3.1) and the Achievements  listed in
Subsection 3.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 3.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

State the fundamental theorem of algebra. How many roots does the equation x 02 + 5ix  −  6 = 0 have?
Find these roots.
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Question F2

What is an Argand diagram? Plot the following points on an Argand diagram

−1 + 3i, 1 − 3i, 3 + i ☞

What is the exact distance of these points from the origin?

Question F3

A particular complex number, z, is given by

z = 1 + i

(1 − i )(3 + i )

Find the following and reduce them to their simplest forms:

(a) Re(z), the real part of z, and Im(z), the imaginary part of z;

(b) z*, the complex conjugate of z (sometimes written as z );

(c) |1z1|, the modulus of z.
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.



FLAP M3.1 Introducing complex numbers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1.3 Ready to study?

Study comment

To begin the study of this module you need to be familiar with the basic ideas of arithmetic and algebra. In particular, you
should be able to give clear definitions and be able to use the following terms: polynomial of degree n, quadratic equation,
quotient, roots of an equation, set, solution of simultaneous equations, square root and zeros of a polynomial. You should
also be able to plot simple graphs and be familiar with the idea of the Cartesian coordinates of a point on a graph. If you are
uncertain about any of these terms, review them by reference to the Glossary, which will indicate where in FLAP they are
developed. The following Ready to study questions will help you to establish whether you need to review some of the above
topics before embarking on this module. ☞

Question R1

Write 
2 + 1
2 − 1

 in the form a + b 2  by multiplying the numerator (the top) and the denominator (the bottom) of

the fraction by 2 + 1.
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Question R2

Explain what is meant by a quadratic equation and give the general solution for such an equation.

Question R3

Use a Cartesian coordinate system to plot the points A, B, C and D specified, respectively, by the following
coordinate pairs
(a) x = 1, y = 0,4(b) x = 0, y = −1,4(c) x = 2 , y = − 2 ,4(d) x = − 3 , y = 3 .

Question R4

Which of the following are polynomials in x? State the degree of those that are.

(a) x1−3 + x1−2 + x1−1 + 1

(b) (x − 1)3 + (x − 1)2 + 1

(c) (sin1x)2 + sin1x + 3

(d) 1 + x5 + x − x3

What is meant by a zero of a polynomial?
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2 Complex numbers ☞

2.1 Quadratic equations and the square roots of negative numbers
Historically, complex numbers were first introduced in 1545 when the mathematician, Gerolamo Cardano
(1501–1576), was trying to solve a certain quadratic equation. Finding the roots of quadratic equations is a
common mathematical problem, which occurs throughout physics and many other branches of science and
engineering. It is straightforward to verify that the simple quadratic equation

x02 − 1 = 0 (1)

has solutions x = ±1. However, the solution of the equally simple equation

x02 + 1 = 0 (2)

is much more problematic. The equation can be written as x02 = −1, so it would seem that we need to find a
number, or numbers, whose square is −1. Such a number certainly cannot be an integer, a rational number or
indeed a real number since any such numbers produce a positive result when squared.
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Figure 13The graph of y = x2 + 1.

We can illustrate the difficulty by referring to the graph of

y = x2 + 1 shown in Figure 1. ☞

The real number solutions to the equation x2 + 1 = 0 should correspond to
the points where the graph meets the x-axis. But the curve does not meet
the x-axis. Does this mean that there are no numbers that solve the
equation? Well that depends on what you mean by a ‘number’; certainly
there are no real number solutions, but if we extend our notion of the
meaning of ‘number’ we will be able to find solutions of such equations.
This is our motivation for defining the symbol i by the relation,

i2 = −1 (3) ☞

The solution to the equation, x 02 + 1 = 0, is then i or −i, which we can write
more compactly as ±i ☞
(because i × i + 1 = −1 + 1 = 0 and (−i) × (−i) + 1 = −1 + 1 = 0).
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You may well object to this sleight of hand and, if so, you are in very good company; over the centuries, many
distinguished mathematicians, including René Descartes (1596–1650) and Sir Isaac Newton (1642–1727), had
deep reservations about the meaning of i. Later mathematicians, such as Karl Friedrich Gauss (1777–1855) and
Sir William Rowan Hamilton (1805–1865) realized that such reservations are ill-founded, but for the moment
you should accept that i is simply an algebraic symbol which obeys the ‘strange’ rule that when squared it gives
the result of minus one. However, one thing is certain; i cannot represent any of our familiar real numbers.

The symbol, i, obeys the usual rules of algebra, such as

i + i = 2i3and3i − i = 0

and this enables us to solve those quadratic equations which are insoluble in terms of real numbers.
Consider the general form of a quadratic equation in x

ax02 + bx + c = 0

where for the moment we assume that a , b  and c represent real numbers (that is, they do not involve i).
The two solutions of this equation are given by

x = −b ± b2 − 4ac

2a
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For the following example (Cardano’s original problem)

x02 − 10x + 40 = 0 (4)

this leads to the solutions

x = 10 ± 102 − 4 × 1 × 40
2

= 10 ± −60
2

We can write

−60 = 60 × (−1) = 60 × −1 = ( 60 )i = ( 4 × 15)i = 2 15 i

by replacing −1  by i. The solutions for x are therefore given by

x = 10 ± i 60
2

= 5 ± i 15

✦ If α = 5 + i 15  and β = 5 − i 15 , show that α + β = 10 and αβ = 40.
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Question T1

Use explicit substitution to verify that x  = 5 ± i 15  are solutions to the equation x2 − 10x + 40 = 0.
(Hint: You may assume that the normal rules of algebra apply to expressions involving i.)3❏

In Question T1 you have merely verified that the given expressions are indeed solutions of the equation.
The process of determining such solutions is a different matter and requires a better understanding of how to
perform arithmetic for expressions involving i. We now consider such arithmetic in more detail.
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2.2 Imaginary numbers

An imaginary number has the form iy where y is a real number.

The following are examples of imaginary numbers: 3i, −7i, 3.1734i and ia (where a is an algebraic symbol
representing a real number). Notice that we commonly write iy but 3i; the order doesn’t really matter, but this is
the standard convention.

Addition and subtraction of imaginary numbers is simple, for example

2i + 3i = 5i,3
2 i

3
+ i

2
= 7i

6
☞,3

and31.7i − 0.2i = 1.5i

but in order to solve equations we also need to know how to multiply and divide imaginary numbers.
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Multiplication and positive integer powers

The fundamental idea is that we should treat imaginary numbers as if we were carrying out ordinary algebraic
operations, with the additional feature that i2 = −1. Consequently an imaginary number has the important
property

(iy)2 = −y2 (5)

where y represents an arbitrary real number. This means that (iy)2 must be less than or equal to zero, with zero
only possible if y is zero. For example

(5i)2 = 52i2 = −25

Any two imaginary numbers can be multiplied together since (if y and b are real numbers) we find

(ib)(iy) = i2yb = −yb

i.e. a real number.
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We find the same result if the factors are multiplied in the reverse order ☞

(ib)(iy) = (iy)(ib) = −yb (6)

Positive integer powers of an imaginary number are interpreted as in conventional algebra, so that, for example,
i3 = i × i × i.

✦ Simplify the following:

(a) (3i)(2i),4(b) i(3i),4(c) (0i)(4i),4(d) i14.

If a and y are any real numbers then ☞

a(iy) = i(ay) (7)

Therefore multiplication of an imaginary number by a real number produces an imaginary number.

✦ Simplify the following: (a) 3(2i), (b) 2.1(−3.6i).
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Question T2

Simplify the following: (a) (−3.4i)(2i), (b) (−2i)(2i), (c) −3.4(2i), (d) 2(2i), (e) (ix) (− ix), (f) (i y)3

where x and y are real numbers. ☞3❏

Parentheses

Brackets are used, as in normal algebra, to determine the order in which operations are performed, in particular

iy + ib = i(y + b) (8)

iy − ib = i(y − b) (9)

For example,

2i + 3i = (2 + 3)i = 5i,32.4i − 4i = (2.4 − 4)i = −1.6i3and33i(5i + 2i) = −21

✦ Simplify i05 − 5(i + i3) + (3i)3 − i.
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Division

Dividing an imaginary number by a real number is straightforward, for example 7i ÷ 2 = 7i/2 = 3.5i.

To divide one imaginary number by another, for example 10i/5i, we may cancel 5i to obtain the value 2 as we
would do in ordinary algebra. In fact we can justify such an operation by multiplying both numerator and
denominator by i to obtain

10 i

5i
= 10 i × i

5i × i
= −10

−5
= 23☞

The same trick will allow us to divide a real number by an imaginary number, say 3/4i. Multiplying the
numerator and denominator by i we have

3
4i

= 3i

4i × i
= 3i

−4
= −0.75i

✦ Simplify (i + 1/i)7. ☞
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Question T3

Simplify the following expressions:

(a) −2i + 3.4i + 7i − 4i,4(b) (i − 3i)2 + (i + 3i)2,4(c) 2/i,4(d) (i − 1/i)2/(1/i),

(e) 
2
3i

+ i

2
.3❏

2.3 Real and imaginary parts of a complex number

A complex number is an expression of the form x + iy, where x and y are real numbers. ☞

The following are examples of complex numbers: 3 + 2i and −1.6 + 3.7i. Either x and/or y may be zero, so that
3, 4.2i and 0 are also complex numbers, but we would not normally bother to write 3 + 0i, 0 + 4.2i or 0 + 0i. It
follows that the real numbers and the imaginary numbers are both just special classes of complex numbers.

It is conventional to use a single algebraic symbol z to represent an arbitrary complex number x + iy where x and

y are real numbers. ☞
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Given a complex number in the form z = x + iy, ☞ the real number x is known as the real part of z and the
real number y is known as the imaginary part of z. For example, if z = −1.6 + 3.7i, then the real part of z is −1.6
and the imaginary part is 3.7. ☞
Writing ‘the real part of z’ or ‘the imaginary part of z’ can be a little tedious and so we introduce the following
notation. Re ☞  is an abbreviation for ‘take the real part of the complex quantity that is immediately to the
right’, as in

Re(−1.6 + 3.7i) = −1.6

In a similar way, Im means ‘take the imaginary part of the complex quantity that is immediately to the right’, as in

Im(−1.6 + 3.7i) = 3.7

Notice that we have used parentheses in the above expressions since Re and Im are actually functions; indeed
they are functions that associate a unique real number with any given complex number, i.e. their domain is the
set of complex numbers and their codomain is the set of real numbers. If we feed the complex number
z = x + iy into the function Re, the output will be x; and similarly if we feed the complex number z into the
function Im the output will be y. In other words:

If4z = x + iy4then4Re(z) = x4and4Im(z) = y (10)
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If you are asked to ‘simplify’ or to ‘evaluate’ an expression involving complex numbers it usually means that
you are required to express your answer in the form x + iy, where x and y are real.

✦ Evaluate the following expressions:

(a) Re(3 − i),4(b) Im(5i − 1),4(c) Re(i(i − 1)),4(d) Im((a + i 0b)(a − i0b)) where a and b are real.

Question T4

Evaluate the following expressions:

(a) Re(3i),4(b) Im(3i),4(c) Re(4 + 8i),4(d) Im(3 + 7i + 7i03).3❏

It is worth pointing out here that some textbooks call a complex number with no real part a ‘pure imaginary
number’. We do not use this terminolgy in FLAP since we call such numbers ‘imaginary’ as in Subsection 2.2.
You should also notice that there is a tradition (which we attempt to follow) of using symbols such as z (and w)
to denote complex quantities and x and y (or a and b) to denote real quantities.

Two complex numbers can only be equal if both their real and imaginary parts are equal, in other words, if x + iy
= a + ib then x = a and y = b. This apparently trivial remark is actually the basis of a useful technique known as
equating real and imaginary parts which we will meet later.
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2.4 Sums, products, quotients, conjugate and modulus

Addition and subtraction

To add (or subtract) two complex numbers we simply add (or subtract) their real parts and then their imaginary
parts. So we can write:

(a + i 0b) + (x + iy) = (a + x) + i(b + y) (11)

and (a + i 0b) − (x + iy) = (a − x) + i(b − y) (12)

where a, b, x and y are all arbitrary real numbers.

✦ Simplify the following expressions:

(a) (2 + 3i) + (4 + i),3(b) (3 − 2.5i) + (7 + 0.1i),3(c) (3.4 − 2i) − (0.4 + i),3

(d) (−1 + i) − (−1 − i).
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Question T5

Evaluate the following expressions:

(a) 2i + (7 + 3i) + 3,4(b) (3 + 2i) + (3 − 2i),4(c) (3 + 2i) − (3 − 2i).3❏

Multiplication and positive integer powers

To multiply two complex numbers we use the ordinary rules of algebra, together with the fact that i2 = −1.
For example, to multiply 2 + 3i by 4 + 5i, we write

(2 + 3i )(4 + 5i ) = 2 × 4 + 2 × 5i + 3i × 4 + 3i × 5i

= 8 + 10 i + 12 i + 15i2 = 8 + 22 i − 15

= −7 + 22 i

In general, if a, b, x and y represent arbitrary real numbers we have ☞

(a + ib)(x + iy) = (ax − by) + i(ay + bx) (13)
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Positive integer powers, for example (2 + 3i)3, are interpreted in exactly the same way as in conventional
algebra, in this case as (2 + 3i)(2 + 3i)(2 + 3i).

If you need to multiply more than two complex numbers then it is probably easiest to multiply pairs of complex
numbers in turn, replacing any occurrence of i02 by −1 as you go along.

Once again, we emphasize that the algebra of complex numbers is simply standard algebra with the
additional feature that whenever you see i2 you should replace it by −1.

✦ Simplify the following expressions:

(a) (2 + 3i) (4 + i),3(b) 5i(7 − 3i),3(c) 2(5 + 3i),3(d) 2i(1 − i)2.

✦ Simplify the expression (1 + i)(2 + i)(3 + i)(4 + i).
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Question T6

Simplify the following expressions:

(a) (1 + 2i)(3 + 4i)3(b) (3 + 2i)(1 − 4i)3(c) 7(2 + 3i)3(d) 3i(2 + 3i)3

(e) (1 + z2)2 where z = 1 + i3❏

Question T7

Simplify (2 + i)(3 + i)(2 − i)(3 − i).3❏
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The complex conjugate

Pairs of complex numbers such as 3 + 2i and 3 − 2i have the interesting property that both their sum and their
product are real. This motivates us to make the following definition: Given a complex number z = x + iy, then
the complex number x − iy is known as the complex conjugate (often abbreviated to conjugate) of z and is

written as z* (pronounced ‘z star’),  ☞   so we have

(x + iy)* = (x − iy) (14)

The fundamental rule for obtaining the complex conjugate of any expression involving complex numbers is to
replace i by −i throughout.

✦ Simplify the following expressions:

(a) (3 + 4i)*,3(b) (2.5 − 7.3i)*,3(c) (z*)*.
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Question T8

Simplify the following expressions:

(a) (3i)*,3(b) (−3.5 + 2i)*,3(c) z + z* and z − z* given that z = 2 + 5i.3❏

Part (c) of Question T8 is an example of a general property of complex conjugates.

The sum of a complex number z and its complex conjugate is twice the real part of z, and their difference is 2i
times the imaginary part, so that, using the notation of Subsection 2.3, ☞

z + z* = 2Re(z) (15)

z − z* = 2iIm(z) (16)

For example,

(3 + 4i) + (3 + 4i)* = 2 × 3 = 6 5i + (5i)* = 2 × 0 = 0

(3 + 4i) − (3 + 4i)* = 2 × 4i = 8i 5i − (5i)* = 2 × 5i = 10i
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Question T9

Evaluate z + w + (z + w)*, where z = 1 + 3i and w = 2 + 4i.3❏

Question T10

Evaluate (z + v + w) − (z + v + w)*, where z = 2i, v = 3 + 4i and w = 1 + i.3❏

The conjugate of the product of two complex numbers is equal to the product of the conjugates, in other words,
for any two complex numbers z and w,

(zw)* = z*w* (17)

✦ Prove that (zw)* = z*w*.
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✦ Show that for any two complex numbers z and w, the expression z*w + zw* is real.4☞)

If we multiply z = x + iy by its complex conjugate we get a real quantity

z0z* = (x + iy)(x − iy) = (x2 + y2) + i(yx − xy) = x2 + y2

and so we have the important result

z0z* = z*z = x02 + y2 = [Re(z)]2 + [Im(z)]2 (18)

This means that zz* is a non-negative real number, and it can only be equal to zero if z is zero (that is, if both
Re(z) and Im(z) are zero). This simple property is of great significance in quantum theory, ☞ where many of
the mathematical quantities are essentially complex in character, and yet the quantities that we measure are
always real. A quick glance at any book on quantum mechanics will show you that it is full of expressions such
as ψψ0*.

✦ Evaluate the following expressions:

(a) (3 + 4i)(3 + 4i)*,3(b) (1 + i)*(1 + i),3(c) i*i.
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Question T11

Evaluate z0z* for the following:

(a) z = 1 − i,4(b) z = 4i,4(c) z = 2.3❏

Question T12

Given that z = 2 + i and w = 3 − i, evaluate zz* and ww* then use your result to simplify 
(2 + i)(3 + i)(2 − i)(3 − i).3❏
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The modulus of a complex number

Expressions such as (x  + iy)(x  −  iy) occur so frequently in both mathematics and physics that it is worth
introducing the following definition. For a complex number, z = x + iy, the modulus of z is the positive square
root of x02 + y2. The standard notation for the modulus of z is |1z1|, read as ‘mod z’, so we have the result

|1z1| = [Re( z )]2 + [Im( z )]2 = x2 + y2 (19)

✦ Evaluate the following expressions:

(a) |13 + 4i1|,3(b) |12 + i1|,3(c) |13 − 4i1|,3(d) |1−041|,3(e) |12i1|,3(f) |101|.

Notice that in the case of a real number, the modulus reduces to the absolute value. Another consequence of the
definition is that the modulus of any complex number, z, is greater than or equal to zero, with equality only
occurring if both the real and imaginary parts of z are zero.
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Question T13

Two complex numbers z1 and z2 are given by z1 = 8 + 6i and z2 = 12 + 5i. Calculate the following:

(a) |1z11|,3(b) |1z21|,3(c) |1z1 + z21|,3(d) |1z11| + |1z21|.3❏

The modulus of a complex number is related to its complex conjugate by the following relation

z0z* = |1z1|2 (20)

We can easily check this by substituting z = x + iy (with x and y, as always, representing real numbers) into
Equation 20

z0z* = (x + iy)(x + iy)* = (x + iy)(x − iy) = x2 + y2 = |1z1|2

✦ Given that w = 3 + 2i and that z = x + iy are complex numbers, such that wz = 1, find the values of x and y.

From the above exercise it follows that z = 1
w

= 1
3 + 2 i

= 3
13

− 2
13

i .
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The quotient of complex numbers
Dividing a complex number by a real number presents us with no difficulty, for example, 

(1 + 3i)/2 = 1/2 + (3/2)i. We could proceed in this way in order to evaluate an expression such as 
1

3 + 2 i
, but the

simplest method is to multiply both numerator and denominator by 3 − 2i, the conjugate of 3 + 2i. ☞
This will give us

1
3 + 2 i

= 1
3 + 2 i

× 3 − 2 i

3 − 2 i
= 3 − 2 i

13
= 3

13
− 2

13
i

Notice how multiplying the denominator by its conjugate produces the real number 13. The same method will
work more generally, as we ask you to show in the following question.

Question T14

Show that
1
z

= z*

| z |2

for any complex number, z ≠ 0.3❏
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Negative indices are used for complex numbers exactly as they are for real numbers, so we may write
1
z

= z−1 , or, more generally, 
1
zn

= z−n  for any integer n.

✦ Multiply the numerator and denominator of the quotient
3 + 4i

2 + i

by the conjugate of 2 + i (the denominator) and hence express it as a complex number in the form x + iy.

In general, the quotient of two complex numbers can be written as
x + iy

a + ib

where x, y, a and b are all real.
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We can use the same technique as just described to evaluate such expressions.

This process is known as rationalizing a (complex) quotient

x + iy

a + ib
= x + iy

a + ib
× a − ib

a − ib
=

x + iy( ) a − ib( )
a2 + b2

= ( xa + yb) + i( ya − xb)
a2 + b2

The above calculation is valid provided that a and b are not both zero, in other words, provided that a + ib ≠ 0.
Just as for real numbers, we are not allowed to divide by zero.
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For more complicated expressions, such as
1 + i

(2 + i )(1 − 3i )

the best approach is to first simplify the denominator and, in this case

(2 + i)(1 − 3i) = (2 + 3) + i(1 − 6) = 5 − 5i = 5(1 − i)

We can then continue as in the previous example
1 + i

(2 + i )(1 − 3i )
= 1 + i

5(1 − i )
= (1 + i )(1 + i )

5(1 − i )(1 + i )
= (1 + i )(1 + i )

10

= (1 − 1) + i(1 + 1)
10

= i

5
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Question T15

Simplify the following expressions:

(a) 
2 + i

3 − 4i
,3(b) 

1 − i

6 + 8i
,3(c) 

3 + i

(2 + i )(1 − i )
.3❏

Question T16  ☞

Solve each of the following equations for the complex number z, expressing your answer in the form x + iy:

(a) 5z = 2 + 8i,3(b) 
z

2 − i
= (3 − i )(5 + i ),3(c) iz = 4 + 3i,3(d) 3z + i = 1 − iz,

(e) (2 + i)z = i,3(f) (3 + i)(z + 2i) = 1 − i,3(g) |12z + 3 − i1| = 0,3(h) z + 2z* = 1 + i,

(i) 2(5 − i0) = (1 + i)/z,3(j) (2 + i0)2z = 1+ (1 − i0)−1.3❏
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2.5 The development of complex numbers
Now that you have a good working knowledge of complex arithmetic it is worth putting the subject into
perspective by briefly reviewing the history of numbers. In this discussion we will find it helpful to use the
(modern) mathematicians’ concept of a set, which merely means a collection of objects with a common defining
property.

The earliest use of numbers was probably similar to the simple systems that exist to the present day in which the
counting sequence is: ‘one’, ‘two’, ‘three’, ‘many’. Although the details are lost in pre-history, the need for a
more specific means of tallying cattle, and such like, must have eventually led to the ‘counting’ or ‘natural’
numbers which today we write as 1, 2, 3, and so on (although many different systems of writing these numerals
were invented). We may categorize the subsequent development of numbers in five stages as follows:
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1 The set of natural numbers 1, 2, 3, …☞ is often denoted by N. Such numbers enable us to:

(a) count objects (such as the number of apples in a box)

(b) add objects (3 apples and 2 apples gives 5 apples)

(c) subtract objects (removing 2 apples from 5 apples leaves 3)

(d) multiply objects (2 lots of 3 apples gives 6 apples)

(e) solve equations such as 3x − 6 = 0.

However, the set N would not be sufficient for our modern decimal system in which the concept of zero is
an essential ingredient. The symbol 0 is needed to indicate ‘place value’, e.g. to distinguish 50 from 5; and
so we need to add one further element to our collection of numbers to form the set of non-negative integers

0, 1, 2, 3, ... often denoted by Z+. ☞

The processes of arithmetic would soon lead to the conclusion that this set is also ‘incomplete’, since it does
not allow calculations such as 5 − 10, nor does it contain the solutions of equations such as 3x + 6 = 0.
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2 We can extend the number system by introducing the set of integers with elements 
… −3, −2, −1, 0, 1, 2, 3, … . This set, which is usually denoted by Z, is difficult to interpret in terms of
objects such as apples, and still causes great confusion among schoolchildren. (For example, try drawing −2
apples or consider what −2 lots of 3 apples means!)

However this set is easy to interpret as a collection of points on an infinitely long line, where only integer
positions are allowed. Part of such a line is shown in Figure 2. Using negative numbers, we can solve
equations such as 3x + 6 = 0 (which has the solution x = −2).

However, our set of numbers is still not complete since it does not contain the solutions of equations such as
2x + 3 = 0.

−4 −3 −2 −1 0 1 2 43

Figure 23The set of integers, Z.
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3 The next extension is to introduce the rational numbers, defined as the set of all ratios of integers, such as
2/3, −3/2 and 7/8. For instance, we can define 2/3 as the solution of the equation 3x = 2. This set is usually
denoted by the symbol, Q. Again, it is possible to interpret the members of this set as points on a ‘line’, as
we have attempted to show in Figure 3. (It is impossible to draw this figure accurately as the dots
representing rational numbers may be arbitrarily close together.)

−2 −1 0 1 2

2
3

− 2
3

Figure 33Elements from the set of rational numbers, Q.

Rational numbers certainly enable us to solve equations such as 2x + 3 = 0 (the result is −3/2), but there are
quite simple equations whose solutions do not lie in this set. For example the equation x2 − 2 = 0 does not
have rational solutions. This is because there are in fact ‘gaps’ in the line, although these are not shown in
Figure 3; in other words it is possible to show that 2  is not a rational number (although this is certainly
not obvious). The numbers e and π are not rational numbers.
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4 We can extend the rational numbers by introducing the real numbers, which in decimal notation consist of
a string of digits, followed by a decimal point and then a second string of digits. The real numbers that are
not rational numbers are said to be irrational numbers. In some cases, and always for irrational numbers,
the string of digits following the decimal point does not terminate. Some of these non-terminating decimals
do not have a recurring pattern of digits, and it is this property that distinguishes the set of real numbers.

This set is usually denoted by R and is sometimes known as the real line.  ☞ The reason for this is that all

real numbers correspond to points on a infinite line, as shown in Figure 4. The converse is also true; every
point on the real line corresponds to a real number. In other words, there are no ‘gaps’ in the real line.
Using the real numbers, we can solve equations such as x02 − 2 = 0 (the solution is ± 2 ) or sin1(x) = 0
(the solutions are integer multiples of π). However, we cannot solve equations such as x2 + 2 = 0, which is
where the ideas presented in this module make their appearance. Notice that each extension of the number
system appears to be motivated by the need to solve a further class of equations, and from this point of view
the complex numbers are the next step.

−2 −1 0 1 2

2

Figure 43The real line, R.



FLAP M3.1 Introducing complex numbers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

5 The next extension is to introduce complex numbers of the form z = x + iy, where x and y are real numbers
and i02 = −1. The set of complex numbers is often denoted by C and such numbers allow us to solve
equations such as x02 + 2 = 0. (The solution is ± 2 i).

This is the story of the development of numbers over thousands of years. ☞ But we still haven’t answered two
obvious questions:

o Is this the end of the road? (In other words, do the solutions of any algebraic equation, for example
x3 + 2x2 + 3x + 1 = 0 or x4 + 7x2 + 2 = 0, lie in the set C?)

o Can we represent complex numbers by a diagram? ☞

The answer is ‘yes’ to both questions as we shall see later in this module. The first question is discussed in the
following subsection and the second in Subsection 2.7.
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2.6 The fundamental theorem of algebra
The following examples are intended to set the scene for one of the most important results in mathematics.

1 An equation of the form ax + b = 0 has just one solution if a ≠ 0 (i.e. x = −b/a). This is a polynomial
equation of degree one.  ☞

2 Many quadratic equations have two real roots, for example

x2 + 3x + 2 = 0
has two real roots. Some quadratic equations, such as

x2 + 2x + 1 = 0

only appear to have one real root; but if we rewrite the equation in the form (x + 1)2 = 0 we can see that the
root (x = − 1) occurs with multiplicity two (corresponding to the power two), so in a sense it occurs twice,
and from this point of view this equation can also be said to have two solutions rather than one. ☞
The equation x2 + 2 = 0

has no real roots, but it has two complex solutions 2 i  and − 2 i , so, provided we allow for complex
numbers, this equation can also be said to have two solutions. In fact, all polynomial equations of degree
two have two solutions if we include complex solutions and take due account of the multiplicity of repeated
solutions.



FLAP M3.1 Introducing complex numbers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3 A cubic equation such as

x3 − 4x2 + 5x − 2 = 0

which can be rewritten in the form

(x − 1)2 (x − 2) = 0

has three solutions if we count the root x = 1 twice, while the equation

(x − 4)3 = 0

has three solutions if we count the root x = 4 three times (i.e. according to its multiplicity). These are
polynomial equations of degree three.

A polynomial equation of degree n is of the form

anx1n + an 1−11x1n 1−11 + an 1−12x1n 1−12 + … + a0 = 0 (21) ☞

where an ≠ 0, and n is a positive integer. Remember that the left-hand side of this equation is known as a
polynomial of degree n and the numbers ai (for i = 0 to n) are called its coefficients.
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It would appear that a polynomial equation of degree one has one root ☞ , while (if we count them

appropriately) a polynomial equation of degree two has two roots, and a polynomial equation of degree three has
three roots. Naturally we are led to suspect that a polynomial equation of degree n will have n roots, and this is

indeed the case provided that we count the roots according to their multiplicity. ☞

The fundamental theorem of algebra states that each polynomial with complex number coefficients and of

degree n has, counting multiple roots an appropriate number of times, exactly n complex roots. ☞

The proof of this theorem was given by Gauss in 1799, but it is not easy, so we ask you to take it on trust for this
module.

One obvious limitation of the fundamental theorem of algebra is that although the theorem tells us how many
roots an equation must have, it tells us nothing about how to go about finding them. Finding the root of a
polynomial equation of degree one is straightforward and simply consists of rearranging the terms in the
equation.
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To find the roots of a quadratic equation

ax2 + bx + c = 0

(with a ≠ 0) we can use the well-known formula

x = −b ± b2 − 4ac

2a
(22) ☞

This equation is valid even if a, b and c are complex. There are also similar, but much more complicated,
formulae for polynomial equations of degree three and four. Surprisingly, it can be shown that no formulae exist
for solving general equations of degree higher than four; however, there are numerical techniques for finding the
approximate roots of polynomial equations of any degree and such techniques form the basis of many computer
programs.
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Another important result which we state, but do not prove, is that any complex zeros of a polynomial with real
coefficients always occur as complex conjugate pairs. For example, the complex zeros of z2 − 2z + 2 (i.e. the
roots of the equation z2 − 2z + 2 = 0) are 1 − i and 1 + i, a conjugate pair of complex numbers. We can see that
this is generally true for a quadratic equation with a, b and c all real because the imaginary part comes from
b2 − 4ac < 0 in Equation 22.

x = −b ± b2 − 4ac

2a
(Eqn 22)

Question T17

From the fundamental theorem of algebra the polynomial equation x2 −  ix + 2 = 0 must have two roots.
Use Equation 22 to find the roots and hence, factorize the polynomial x2 − ix + 2 = 0.3❏
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Figure 53The complex number,
2 + 3i, plotted on an Argand diagram.

2.7 The Argand diagram
A complex number, z = x + iy, is completely determined by the pair of
real numbers, x and y. In 1831 Gauss suggested using x and y as the
coordinates of a point on a graph. Such a graph is known as an
Argand diagram, after the French mathematician Jean Robert Argand
(1768–1822) who described a similar idea in 1806. Any complex number
corresponds to a point on the Argand diagram and, as an example, the
number, 2 + 3i, is plotted in Figure 5. Conversely, any point on the
Argand diagram corresponds to a unique complex number.

In Figure 5 we have plotted an arbitrary point z = x + iy, and we have
labelled the horizontal axis as the x-axis and the vertical axis as the y-
axis. The horizontal and vertical axes in an Argand diagram are known as
the real axis and the imaginary axis, respectively. ☞  We will not
usually label the axes since we may wish to plot arbitrary points such as
x + iy, p + iq or u + iv on the same Argand diagram.

The distance from the origin of a point with coordinates x  and y  is
x2 + y2 . But since this is also the expression for the modulus of a

complex number, z = x + iy it follows that the distance of the point from
the origin is |1z1|.
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Question T18

If z = 3 + 4i, plot z and z* on an Argand diagram.3❏

The Argand diagram is the answer to our earlier question (at the end of Subsection 2.5) about how to extend the
real line so that we can represent a complex number graphically; instead of a line we use a plane. It is an
important tool in the application of complex numbers and is developed further elsewhere within FLAP.

In fact the Argand diagram is often known as the complex plane. ☞ The set of real numbers is sometimes

referred to as the real line, and similarly the set of all complex numbers, C, is often known as the complex plane,
even when no Argand diagram is actually drawn.

Question T19

Plot the following complex numbers on the same Argand diagram:

i,
1 + i

2
,

1 − i

2
, 1, − i,

−1 − i

2
, − 1,

−1 + i

2
.

What significant features does this collection of points have?3❏
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2.8 Applications of complex arithmetic
We now look at some examples of complex arithmetic. The formulae and exercises are useful in general, but

(with our choice of symbols) they are particularly relevant to the analysis of a.c. ☞ circuits. In this subsection

the symbols ω, R, X, L and C represent dimensionless real numbers while Z represents a dimensionless complex
number, which ensures that you need to know nothing about electricity in order to understand the exercises; but
apart from this, the calculations are typical of those you may meet in a practical context. You may be interested
to know that, in the theory of a.c. circuits, the following meanings and SI units are usually given to these
symbols:

ω angular frequency (s−1) R resistance (ohm)

X reactance (ohm) L inductance (henry)

C capacitance (farad) Z impedance (ohm) ☞
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Example 1

Simplify 
1

1
2 + 3i

+ 4i

Solution If we express the denominator as a single fraction we have

1
2 + 3i

+ 4i = 2 − 3i

(2 + 3i )(2 − 3i )
+ 4i = 2

13
− 3

13
i + 4i = 2 + 49i

13

and it follows that
1

1
2 + 3i

+ 4i
= 13

2 + 49i
= 13(2 − 49i )

(2 + 49i )(2 − 49i )
= 2 − 49i

185
3❏
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As an alternative method, we could have multiplied both numerator and denominator of the original expression
by 2 + 3i to obtain

1
1

2 + 3i
+ 4i

= 2 + 3i

1 + 4i(2 + 3i )
= 2 + 3i

−11 + 8i

= (2 + 3i )
(−11 + 8i )

(−11 − 8i )
(−11 − 8i )

= 2 − 49i

185

Further examples are given below to illustrate the usefulness of the methods of complex arithmetic covered in

this module. ☞
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Example 2

Complex numbers Z1 and Z12 are given by

Z01 = R1 + i0X1

Z12 = R2 + i0X2

where R1, R2, X1 and X2 are real. If R1 = 2, R2 = 4, X1 = 1, X2 = 3 and

Z = Z01 + Z102 (23)

Find (a) Re(Z), (b) Im(Z) and (c) |1Z1|.

Solution We have

Z = Z1 + Z02 = (2 + i) + (4 + 3i) = 6 + 4i

and therefore Re(Z) = 6 and Im(Z) = 4. |1Z1| is given by

|1Z1| = 62 + 42 = 52 ☞3❏
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Example 3

Repeat the previous example, where

Z01 = R1 + i0X1

Z12 = R2 + i0X2

but replace Equation 23

Z = Z01 + Z102 (Eqn 23)

by

  

1
Z

= 1
Z1

+ 1
Z2

(24)
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Solution It is probably easier to do this example by working directly with the given numbers, rather than to try
to obtain a general algebraic expression for Z first, so we have

  

1
Z

= 1
2 + i

+ 1
4 + 3i

= (4 + 3i) + (2 + i)
(2 + i)(4 + 3i)

= 6 + 4i

5 + 10i

and therefore

  

Z = 5 + 10i

6 + 4i
= 5 + 10i

2(3 + 2i)
= (5 + 10i)(3 − 2i)

2(3 + 2i)(3 − 2i)

= (15 + 20) + i(30 − 10)
26

= 35 + 20i

26

This gives
  
Re(Z ) =

35
26

  
Im(Z ) = 20

26
= 10

13

|1Z1| =
(35)2 + (20)2

26
≈ 1. 553❏
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Example 4

Given that R1 = 1, R2 = 2, ω0L = 3, ω0C = 4 and

  

Z = R1 + 1
1

R2 + iω L
+ 1

1 (iω C)

(25)

find Re(Z) and Im(Z).

Solution Substituting the given values we have

  

Z = 1 + 1
1

2 + 3i
+ 1

1 (4i)

= 1 + 1
1

2 + 3i
+ 4i

= 1 + 2 − 49i

185
 (see Example 1)

= 187 − 49i

185

and therefore Re(Z) = 187/185 and Im(Z) = −049/185.3❏
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Question T20

Given that R1 = 1.5, R2 = 2.5, ω0L = 1.0, ω0C = 2.0 and

  

Z = R1 + 1
1

R2 + iωL
+ 1

1 (iωC)

find Re(Z) and Im(Z).3❏
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3 Closing items

3.1 Module summary
1 Any complex number, z, can be written as z = x + iy where x and y are real numbers and i satisfies i2 = −1.

2 If z = x + iy (with x and y real) then x is known as the real part of z, written as Re(z) and y is known as the

imaginary part of z, written as Im(z). ☞

3 An imaginary number has a zero real part and therefore takes the form, z = iy, where y is real.

4 Complex numbers obey the rules of normal algebra with the additional rule that that i02 can be replaced by
−1.

5 The complex conjugate of z (written z*) is defined by

z* = Re(z) − i1Im(z)
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6 The modulus of z = x + iy (written as |1z1|) is defined by

|1z1| = x2 + y2 = [Re( z )]2 + [Im( z )]2 (Eqn 19)

and satisfies

|1z1|12 = z0z* (Eqn 20)

7 To rewrite a quotient of complex numbers as a single complex number, multiply the numerator and
denominator by the complex conjugate of the denominator, as in

x + iy

a + ib
= ( x + iy)(a − ib)

a2 + b2

This process is known as rationalizing a complex quotient.

8 The fundamental theorem of algebra states that each polynomial with complex number coefficients and of
degree n has, counting multiple roots an appropriate number of times, exactly n complex roots.

9 Any complex number, z = x + iy (with x and y real), can be represented by a point with coordinates (x, y) on
an Argand diagram. Conversely, any point on an Argand diagram corresponds to a unique complex number.
The set of complex numbers is often denoted by the symbol C.
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3.2 Achievements
Having completed this module, you should be able to:

A1 Define and use the terms that are emboldened and flagged in the margins of the module.

A2 State and apply the fundamental theorem of algebra.

A3 Perform complex arithmetic, including addition, subtraction and multiplication and the use of conjugates
and modulus.

A4 Convert a quotient of complex numbers into the sum of a real and an imaginary part.

A5 Plot complex numbers as points on an Argand diagram.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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3.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A3)3A complex number, z, is defined by

z = (2 + 3i)2 − |13 + 4i1| + 2 − 6i

Find Re(z), Im(z), z* and |1z1|.

Question E2

(A3 and A4)3Express 
1

3 + i
+ 2 − i

i + 3
1 + i

 in the form x + iy.
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Question E3

(A2 and A3)3State the fundamental theorem of algebra. Verify that two of the roots of

z3 + 2z2 + z + 2 = 0

are i and −2. Find any remaining roots. (Hint: The coefficients in the equation are real.)

Question E4

(A3, A4 and A5)3Plot the complex numbers
1

1 + i

1
1 − i

1
−1 + i

1
−1 − i

as labelled points on an Argand diagram.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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