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1 Openingitems
1.1 Moduleintroduction

The symbol i is defined to have the property that i x i = —1. Expressions involving i, such as 3 + 2i, are known as
complex numbers, and they are used extensively to simplify the mathematical treatment of many branches of
physics, such as oscillations, waves, a.c. circuits, optics and quantum theory. This module is concerned with the
representation of complex numbers in terms of polar coordinates, together with the related exponential
representation. Both representations are particularly useful when considering the multiplication and division of
complex numbers, and are widely used in physics.

In Subsection 2.1 we review the Cartesian representation of complex numbers and show how any complex
number can be represented as a point on an Argand diagram (the complex plane). We also show how complex
numbers can be interpreted as an ordered pair of real numbers. Points in a plane are often specified in terms of
their Cartesian coordinates, x and y, but they can equally well be defined in terms of polar coordinatesr and 6.
It will transpire that, while addition and subtraction of complex numbers is easy for complex numbers in
Cartesian form, multiplication and division are usually simplest when the numbers are expressed in terms of
polar coordinates. Subsection 2.2 and the subsequent two subsections are concerned with the polar
representation of complex numbers, that is, complex numbers in the form r(cos 8 + isin 8). Subsection 2.5
introduces the exponential representation, rei®. Section 3 is devoted to developing the arithmetic of complex
numbers and the final subsection gives some applications of the polar and exponential representations which are
particularly relevant to physics.
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Study comment  Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment  Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1
The complex number z is defined by z = 1 + i. Find the following in their simplest representations:

z |z|,ag(®, z* and L.

Question F2

The complex numbers zand w are defined by z = 3¢™10 and w = 4€™5, Find the simplest exponential
representations of zw and z/w.
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Question F3

Suppose that a complex quantity, z, is known to satisfy
z=2+i+é"¢

where 6 can take any real value. Sketch a curve on an Argand diagram giving the position of all possible points

representing z.

Study comment

Having seen the Fast track questions you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment  To begin the study of this module you need to be familiar with the following topics: the arithmetic of
complex numbers in the form, z=x+ iy, where i 2=—1. You should know how to add, subtract and multiply such numbers,
be able to reduce the guotient of two complex numbers to rational form, to find the modulus, complex conjugate, real part
and imaginary part of acomplex number, and you should know how to plot a complex number on an Argand diagram.

Y ou should be familiar with the addition of two-dimensional vectorsby means of a diagram and by adding their components.
Y ou should also be familiar with Pythagoras's theorem, the definition of sine, cosineand tangent, the measurement of angles
in terms of radians and the following trigonometric identities

sin(a + ) =cosasinf+sinacosf (@D}

cos(a + B)=cosacosB-sinasinf (2
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You should also know that (n factorial) n! =n(n—1) ... 3,2, 1, and 0! = 1. We will need to refer to the following power
seriesfor €, sinx and cosx:

©0 2 3
o=y X1 X X X, )
= n! o2 3
© (_1\ny2n+l 3 5 7
snx = %:X—X_+X_—X_+”_ (4)
S (2n+1)! 3 5l 7!
© (_ 1\Ny2n 2 4 6
COSX = zﬁzl—x—+x——x—+... (5)
= (2n)! 21 41 6!

Y ou will need to be familiar with the following properties of powers (i.e. indices)
UAUP = u@*D), (uv)3 = uAva, (Ud)P = ub (6)

also to know that the n'f root of u can be written as u" and to be able to use inverse trigonometric functions to solve an

equation such assin 6= 0.5 for 8 (and to use the graph of sin 6, or otherwise, to find al the solutions). If you are unfamiliar

with any of these topics you can review them by referring to the Glossary, which will indicate where in FLAP they are

developed. The following Ready to study questions will help you to establish whether you need to review some of the above
topics before embarking on this module.

Throughout this module +/x means the positive square root, so that 4 = 2.
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Question R1

Rationalize the expression z = % (i.e. express zin the form x + iy, finding the values of the real numbers x
i

and y). What are the real and imaginary parts of z? Also find the complex conjugate and the modulus of z.

Question R2

Draw and label the points representing the complex numbers -2 +i, =2 — i and —3i on an Argand diagram.
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Question R3 0

The equilateral triangle shown in Figure 1 has
a perpendicular drawn from one vertex to the
opposite side. Use the triangle in Figure 1 to
find the values of cos (173), sin(1¢3), tan(173),

cos(1U6), sin (1v6) and tan (176).
?

Question R4 |

Use the right-angled triangle with two sides
equal, shown in Figure 2 to find the values of

cos(1v4), sin (174) and tan (174).
?

6

3

4

4

1 1

Figurel SeeQuestion R3.

1

Figure2 SeeQuestion R4.
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Question R5

Two two-dimensional vectors, u and v, are specified in component form as (2, 3) and (1, —4), respectively.
Find u + v by (a) drawing a suitable diagram and (b) adding the components directly.

Question R6
Solve the equation tan 6= 1.

Question R7

Express +/e3 /eX in the form & (for some value of K) and hence write down the first three terms of its power

series expansion.
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2 Representing complex numbers

2.1 Complex numbersand Cartesian coordinates

A complex number, z can be written as z=x + iy where x and y are real numbers and i2 = —1. Some examples of
complex numbersare 2 + 3i , 7i and 2.4.

Such numbers satisfy straightforward rules for addition and subtraction, which essentially mean that the real and
imaginary parts are treated separately, so that, for example,

(B+4i)+(2-i)— (2-3)=(3+2+2) +(4i —i +3i) =7 +6i

Multiplication is quite simple provided that we remember to replace every occurrence of i x i by —1, although a
mathematician would probably prefer aformal statement that the product of two complex numbers (a + ib) and
(x +iy) isgiven by

(@+ib)(x+iy) = (ax — by) +i(ay + bx) )
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For a long time the meaning of the symbol i gave many famous
mathematicians cause for concern. However, in 1833 Sir William
Rowan Hamilton (1805-1865) realized that thei and + signinz=x + iy
are both unnecessary sources of confusion. The role of thei isredly to
keep the x and y separate, while the + sign is there to tell usthat x and y
are part of asingle entity; it does not mean addition in the sense that we
might, for example, add 2 apples to 3 apples to get 5 apples. In fact, the
xandyinz=x +iy are very much like the (ordered) pairs of numbers
used as Cartesian coordinates. Hamilton’ s ideas are closely linked to the
those of Robert Argand (1768-1822) and Karl Friedrich Gauss
(1777-1855) who both suggested representing a complex number by a
point in aplane. As an example, the complex number a + ib is shown on
an (x, y) coordinate system in Figure 3; notice that it is conventional that
the number multiplying the i corresponds to the y-value. A figure in
which the real and imaginary parts of complex numbers are used as
Cartesian coordinates is known as an Argand diagram or the complex
plane. An expression such asa + ib, where a and b are real numbers, is
said to be the Cartesian form (or Cartesian representation) of a
complex number.

(ab)

Figure3 An Argand diagram showing
the point corresponding to a complex
number, z=a +ib.
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In some mathematics textbooks the authors avoid the problem of the
meaning of the symbol i entirely — by not mentioning it— and they
introduce the complex numbers as a set of ordered pairs of rea
numbers (X, y) with certain operations defined on them. Such a treatment
has the advantage that complex numbers can immediately be seen to
have much in common with vectors. The addition of two complex
numbers is then defined by

x,y)+(ab)=(x+ay+bh) 8

which isjust the same as the rule that defines the addition of two vectors.
An example is shown in Figure 4 where the addition of z= 3 + 2i and
w= 1 + 3 is performed graphically on an Argand diagram or,
equivalently

z+w=(3,2) + (L 3)=(4,5)

zZ+w

4

Figure4 An Argand diagram showing
the addition of 3+ 2i and 1 + 3i.
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Question T1

If z=4+ 8 and w =15 - 12i, use an Argand diagram to find the sum, z + w. Check your answer by means of
vector addition using the (x, y) notation. [

Although complex numbers behave like vectors as far as addition is concerned, when it comes to multiplication
and division the two topics diverge. In terms of ordered pairs of real numbers, multiplication of complex

numbers can be defined by o

(a, b) x (x,y) = [(ax - by), (ay + bx)] 9)

Although one can introduce complex numbers by this route, which is entirely independent of the symbol i, it
must be admitted that Equation 9 looks as though it came out of thin air. In practicei is avery useful notational
convenience which makes Equation 9 look much more natural. The i notation is used throughout science and
engineering, and even by the purest of pure mathematicians. It is a practice which we follow in FLAP.
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2.2 Polar coordinates

We have seen how it is straightforward to interpret complex addition as vector addition on an Argand diagram.
In order to investigate the effect of complex multiplication, try the following question.

Question T2
(a) Plot the numbers, 1, 2i, -3 —i and 2 — i on an Argand diagram.

(b) Multiply each of the numbersin part (a) by 2 and plot the resulting points on the same diagram. Suggest a
geometric interpretation of multiplication by 2 and check your conjecture by finding the effect of multiplying
-1-iby2

(¢) Repeat parts (a) and (b), but multiply by i instead of 2.
(d) Repeat parts (a) and (b), but multiply by 2i. [
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The solution to this problem suggests that the geometric interpretation
of complex multiplication may involve both arotation and achangein
the distance from the origin, but this is not easy to see if we write
complex numbersin the Cartesian form x + iy.

However, the geometric properties of complex multiplication are quite
evident when the complex numbers are expressed in terms of
polar coordinates. Figure 5 shows a point specified by means of
polar coordinates; we can see that the ‘distance’ of the point from the
originiscaled r and 8 is the angle between the line from the point to
the origin and the x-axis. Notice that r is (by definition) non-negative

A8\

0
. . . . X
and that 6 is conventionally measured anticlockwise. O
Figure5 Polar coordinates, r, 6.
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Standard results from trigonometry enable us to express the Cartesian coordinates (x and y) in terms of polar
coordinates (r and 8)

X=rcosf (20

y=rsn@ (11

This means that we can write a complex number, z= x + iy, in the form

z=r(cosB+isinB) (12

which is known as the polar representation or polar form of the complex number, z. Examples of complex
numbersin polar form are

2[cos(T1/4) + i sin(1t/4)]
3.5[cos(TtA16) + i sin (TV16)]
and 0.025[cos(1.05 +isin(1.09]
To convert acomplex number from polar to Cartesian form we can again use Equations 10 and 11.
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For example, z = 3[cos(174) +i sin(1U4)] hasr = 3 and 6 = 174. If we substitute these values into Equations 10

and 11, wefind
x:rcosez3cos(rg/4):i and y:rsinG:BSin(Tr/4):i
N2 N2
i.e z:i+ii:i(l+i)
N2 N2 V2
It is also straightforward to convert from Cartesian to polar form since the length, r, is given by (R
= X2 +y? (13)
and the angle, 6, is such that
X
6= — 14
cos ey (14)
sng=—Y (15)
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For example, the complex number, z = 1 ++/3i which has x = 1 and
y = /3, can be represented in terms of polar coordinates by

r=yx2+y?=+1+3=2
and since sin(0) = +/3/2 and cos(8) = 1/2 we have 8 = (1/3)rad. The

position of the number 1 + /3i on an Argand diagram is shown in terms
of polar coordinatesin Figure 6.

0 Thepolar coordinates of three points A, B and C are, respectively,
r=2 6=(d)rad
r=3 6=(-13)rad

r=4 6= (516)rad
Express the pointsin Cartesian coordinates.

Figure6 The complex number, z=1+ +/31i, interms of polar coordinates.

T3
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One big advantage of the polar representation is that the multiplication of complex numbers is easy when they
are expressed in thisform. To see this, consider two complex numbers, z=x + iyand w = a + ib for which

X=rcos@ and y=rsinf
a=pcosp and b=psng

Recalling two results from trigonometry:

=

sin(a+ B)=cosasinf+sinacosf (Egn1)
cos(a + B)=cosacosB—-sinasinf (Egn 2)
we see that the real part of the product zw (see Equation 7) is given by
Re(zw) =ax —by = pcos@x rcos@— psingxrsinf
= pr(cos@cos@—sin8sin¢)

=prcos(6+ @
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and the imaginary part is given by
Im(zw) =ay + bx =pcosgxrsinf+ psingxrcosf
= pr(cos@sin 8+ sin gcos 6)
=prsin(6+ ¢

We can summarize these two results by the following rule for multiplying complex numbersin polar form:

r(cos@ +isinf) x p(cos@ +ising) = pr[cos(6 + @) +isin(0 + @)] (16)

So, multiplying a complex number, w say, by a complex number with a polar representation r(cosf + isin 6),
produces a new complex number which corresponds to the line from the origin to the point representing w being
first scaled by a factor r, then the resulting line being rotated anticlockwise about the origin through an
angle 6.
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As an illustration we will
start with the complex
number 22 .

w = 2[cos(TV4) + i Sin(TT4)]

and first muitiply it by 2
in Figure 7,then by N -# 2[cos(u4) + | X R 2[cos(u4) +
[cos (T18) +i sin (TR)] sinqua)] | i sin(u4)]

|

in Figure 8, s i
| T4
V2 22 J2

|
|
|
|
|
|
|
|
|
|
|
|
}
1

Figure7 Complex multiplicationresulting Figure8 Complex multiplication
in achangein distance from the origin. causing arotation.
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and finally by 2[cos(TtB) +i sin(11/8)] in Figure 9.
Notice that in Figure 9 the line from the origin to the original point is
rotated through an angle of (11/8) and the distance from the origin is
doubled.
2 ‘ “Dlcosqra) +
i sin(u4)]
8 3
4 i
t >
J2

Figure9 Complex multiplication
causing arotation and achangein
distance from the origin.
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2.3 Themodulus of a complex number

Given acomplex number, z= X + iy, the modulus of zis defined by
|zl = /x2 +y? (17)
In polar coordinates, wherex =r cos@andy =r sin 8, we have
X2+y2=r2cos20+r2sn2f=r2 (because cos? 0+ sirk 6= 1)

So in polar coordinates, the modulus of a complex number is simply the distance from the origin of a point on an
Argand diagram. This distanceis clearly a non-negative real number.
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Question T3

(@) Figures 10a and 10b show two
complex numbers z; and z,,

71U/6

\4

v

respectively. Write z; and z, in the x + /6 /3
iy form. z, 9
(b) Figures 10c and 10d show two
complex numbers z; and z,, Z2
respectively. Calculate the modulus of (3 (b)
the complex numbers zz,. [0 N A
(-1,43)
Z3 5
21/3 —-0.9828
p
3 / >
Figure10 See Question T3. > .6\0‘%‘
(2, -3)
© (d) 24
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24 Theargument of a
complex number X Y

If a complex number is written :
in polar form as |
z=r(cosB +isinf), then Bis r !
known as the argument of z l
and is denoted by ar g(2). |
For example, if }
z = 4[cos(1t/15) +isin(TA5)] |
then arg(?) is (1 A5)rad 8 ! -
which can be interpreted X

geometrically as follows.
Consider a typical point Figure5 Polar coordinates, r, 6.
representing a complex
number, z, on an Argand diagram such as in Figure 5. Then the angle 6
made by the line joining the point to the origin with the positive real axis
is the argument. Notice that by convention the angle is measured 3
anticlockwise (so that a negative angle would be measured in aclockwise o
direction). If z= 1+ +/3i then arg (2) is (T7Y3) rad, as shown in Figure 6. 0 1

Figure6 The complex number,
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There is a slight complication in the definition of the argument since a
point, z, on an Argand diagram does not correspond to a single value of

arg (2) because we can always add any integer multiple of 2rtto the value

of 6; in other words, if we rotate the point about the origin through any
number of complete turns we always get back to the same point

(seeFigure 11). [

However, if we impose the condition that -t < 8 <1t L] then 6 is

uniquely determined, and with this condition 8 is known as the
principal value of the argument of z. Notice that whereas the lower limit

second first
quadrant quadrant

e

>

\9+ 2n/

is greater than — 11, the upper limit isless than or equal to Tt [N
third fourth
quadrant quadrant
Figure1l The non-uniqueness of
arg () (shown here as 6).
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If we have a complex number, z= x + iy, where x and y are not both zero, then the argument, 6, is given by the
solution to the following pair of equations

X
cos6 = iy (18)
sng=—Y (19)

X2 +y2
From Equations 18 and 19 we obtain
tan 6 = y/x (20)

and whileit is possible to use Equation 20 to find the angle 6, this must be done with some care as the following
example shows. (Alternatively we can use the Equations 18 and 19, see Solution B to Example 1.)

Examplel Find the principa vaue of the argument of the complex number z= -1 +1.
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Solution A Inthiscasex =-1andy = 1, and from Equation 20 g4
tan 6 = y/x (Ean 20) H

we havetan 8= -1. In order to find @your first thought might be to set
your calculator to radian mode and to evaluate arctan (—1), which will

give you the approximate value —0.785398rad for 6. \9

However, thisis not avalue of the argument, and certainly not the _i 0 i
principal value, asyou can easily seeif you plot the point =1 + i

on an Argand diagram, see Figure 12. The correct answer is Figure12 The complex number,
approximately 2.356 194rad (or more precisely (3174) rad). z=-1+1i, plotted on an Argand diagram.

The essential point to realize here is that Equation 20 does not determine the angle 8 uniquely because there are
generaly two anglesin the range —T1t< 8 < 1tthat correspond to a given value of the tangent, and these angles
differ by mtradians. The difficulty is quite easy to resolve if we always draw a diagram (such as Figure 12) when
calculating avalue for arg (2). In this case we would obtain the value —0.785 398 rad from the calculator as
before, then we see from the diagram that we must add 11 radians to obtain the principal value

arg(z) = —0.785398 + 3.141 593 = 2.356194 rad

For this particular value of zyou may be able to avoid the use of the calculator if you can see that
arg (2) = (3174) rad directly from the figure. 0O
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Solution B Alternatively we can use Equations 18 and 19

_ X
cosé = W (Eqn 18)

sng=—Y (Eqn 19)

to obtain cos 8=-1//2 and sin 8= 1/~/2. The only anglesin the range -Tt< 8 < ithat satisfy the first equation
are 6= (3r/4) rad or 6= (—3174) rad, while the only angles that satisfy the second equation are 8 = (1V4) rad or 6
= (3174) rad. Thustherequired angleis

6=(3m/4)rad. O

Notice that the argument of z=x + iy is not defined when x and y are both zero; in other words, the argument of
z=0isnot defined.
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The polar representation of a complex number is not unique. For example, both /2[cos(174) +isin(1/4)] and
\2[cos(9174) +isin(9174)] represent the same complex number 1 + i. We can, however, make the

representation unique if we insist that the argument takes its principal value. Notice that
—2[cos(1¢3) +isin(1y/3)] is not in polar form. In fact (from Equation 16),

r(cos@ +isinf) x p(cosp +ising) = pr[cos(0 + ) +isin(6 + ¢)] (Egn 16)

—2[cos(1y3) +isin(1y3)] = 2(cosTt+isinTy[cos(1y3) +isin(173)]
= 2[cos(41y3) +isin(4T1Y3)]

and thisfinal result is in polar form.
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Question T4

For each of the following complex numbers, find the principal value of the 6
argument:
(@ -1+ 3i, (b)1-+/3i, (c)v3+i, (d)3+32.
(Hint: You may find Figure 1 helpful.) [ 2 2
w3
1 1

Figurel SeeQuestion R3.
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2.5 Theexponential form

Y ou should be familiar with the following functions, and their series expansions
@ yn 2 3
exzzx—:1+5+x—+x—+... (Ean 3)
! 2 3
© ( 1\Ny2n+1l 3 5 7
sinx:z%:x—x—+x——x—+... (Egn 4)
o (2n+1)! 3 57
© ( 1\Ny2n 2 4 6
COSX = Z&: _X_+X__X_+ (Egn 5)
s (2n)! 21 41 6!

O
[

Each of these functions may be extended so that they apply to a complex variable z (rather than the real variable
X), but, since real numbers are just a specia case of complex numbers, the new functions must agree with the old
ones in the special case when zisreal. For example, in order to define e?we simply replace x by zin Equation 3

© n 2 3
so that e2=22—=1+5+z—+z—+... (1) L
Z.n! 1 20 3 —

Polar representation of complex numbers
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Now let us consider the special case of z=i6, where Bisrea and therefore z isimaginary
2 . 3 . 4 . 5
i0 (|6) +(|t9) +(|6?) +(|9)
1! 2! 3! 41 5!
This expression can be simplified by using i2 = -1 to give
i6_6 i03 [ i95 B
T T TR TI-
We can see that the terms are alternately real and imaginary, so it isuseful to split the series into two
6o = @l— 62 94 96 D .1e 03 6 97 O

o1 41 @ % 3| 57 E

If we compare the right-hand side of this equation with the series for sin @ and cos 6 we see that € can be
written as

ef=1+—

el =1+

ef=cosf+isnf (Eulersformula) (22

Thisimportant formula, known as Euler’ s formula, gives us the real and imaginary parts of €°. []
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Question T5

Plot e'"™8 on an Argand diagram for n =0, 1, 2, ... 15. What geometrical shape do you think would describe the
position of the points representing z = €¢ where 6 can take any rea value? [

If we put 8= Ttin Euler’s formulathen, since cos(m) = -1 and sin (1) = 0, wefind o

en=-1 (23)

Thisidentity is quite remarkable since it relates:

o thenumerical constant e, which originates from problems of growth and decay;

o thenumerical constant T, which originates from the ratio of the circumference to the diameter of acircle;
o thenumber 1, which hasthe special property that 1 x n = nfor any humber n;
O

the symbol i, which has the property i2 = -1 and was originally introduced in order to solve equations such
asx2+1=0.
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Question T6

Use Euler’sformulato prove the following important relations (Equations 24 and 25):

. e|9 - e—lG
sng=———-—— (24)
2i
el@ + e—le
cosf = (25)
2
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Now let us consider a general complex number, z = x + iy, and write it in terms of polar coordinates by
substitutingx=rcos@andy=rsin 8

z=X+iy=rcos@+irsinf=r(cos@+isinb)

which can be written more compactly, using Euler’s equation, to obtain

z=re® (26)

which is known as the exponential form (or exponential representation) of a complex number. Noticethatr is
(by definition) non-negative.

Question T7

Find the exponential representation for the following complex numbers:
@ v2@+i), (b) 31+iVv3), (c)2(v3+i), (d)02+23. O

)

O Expressthe complex numbersi and 2 in exponential form.
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3 Arithmetic of complex numbers
3.1 Productsand quotients

Multiplication of complex numbers in exponential form is very easy, however in this form addition is more
difficult.

Products
One important property of real powers of any real quantity isthe identity

asat= as*t (27) L

which we will assume is also true if any (or all) of the quantities a, sand t are complex. This identity allows us
to multiply complex numbers easily in exponential form since, if z=re! ¢ and w = pe'?, then the product is given

by rel®xpe?=rpei®+9 (28)
which is closely related to the result quoted in Equation 16.
r(cos@ +isinf) x p(cos@ +ising) = pr[cos(0 + @) +isin(6 + ¢)] (Egn 16)

Notice that in Equation 28 the moduli L] of thetwo complex numbers are multiplied whereas the arguments
are added (asin Equation 16).
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Question T8

Find zw in exponential form (choosing the principal value of the argument in each case) for each of the
following:

(@ z=2em  w=2eim4
(b) z=3elm w = 2ei 4

Quoatients

m
For real numbers we have the general result that z_n =a™™"  wherebisnon-zero.

Extending this result to complex numbers, we find that simplifying a quotient of two complex numbers in
exponential form is a straightforward variation of multiplication. So if z=rei? and w = pei?, then z/w is given

by L= = dle-9) that is, we divide the moduli and subtract the arguments.
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Question T9

Find z/w in exponential form (choosing the principal value of the argument in each case) for each of the
following:

(@) z=2e™4  w=4eg T8
(b)z=3e'™  w=2em?
(c)z=2e'™6 w=2em6 [J

3.2 Sumsand differences

Suppose that we are given two complex numbers in exponential form, ae' @ and be 8, we can certainly write their
sum in exponentia form

ael o + belB = celv (29) 0

but it is not particularly easy to find the values of ¢ and ydirectly. First we will show you a direct method of
finding the sum, then an alternative method which is often easier.
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Method 1
To find ¢ we can write
c? = (ce’)(ce ) = (a€l? + be'P)(ae™'@ + be1P)
=aZ2+b2+ ab[ei(a-ﬁ) + e—i(a-ﬂ)]
= a2 + b2 + 2abcos(a - B)

So we have an equation for ¢

c=ya? +b? +2abcos(a - B) (30)

Tofind ywe can use Euler’s formulato write €' @, € 8 and €' ¥ in polar form, and Equation 29
ae'? + bel B = cely (Egqn 29

then becomes

a(cosa +isina) + b(cosB+isinf) =c(cosy+isiny)
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and equating real and imaginary parts gives us
acosa + bcosf

cosy =
c
. asina +bsing
sny=————
c

So if weare given a, b, a and 3 we can first find ¢, then cos yand siny. Then the condition, —Tt< y < Ttuniquely
fixesy.

O Giventhatz=ae ?=¢e? ™3 gndw=be'f=¢ ™3 find z+ win exponential form.

FLAP M32 Polar representation of complex numbers e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Method 2

The alternative method of finding the sum in exponential form relies on the fact that addition in Cartesian form
is very straightforward. So if z and w are given in exponential form, we first convert them into Cartesian form,
then find the sum, and finally convert the answer back into exponential form. We can use the previous example
to illustrate the method.

Given that z= ™3 and w = ™3, we can use Euler’ s formula (Equation 22)

elf=cosf+ising (Egn 22)
to write zand w in Cartesian form
Z:—1+2I\f‘3 and W:1+I\f‘3

from which it is straightforward to find the sum

74w = -1+1i+3 + 1+i+3 - i\ﬁ"é
2 2

Since i+/3 = v/3e'™2 thisresult for z+ w agrees with our previous result, but you should now be convinced that

addition (and subtraction) are much easier using the Cartesian rather than exponential form of complex numbers.
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Question T10
Express el™ — € ™2 in exponential form. [

Question T11

Use the exponentia representation to show that for any complex numbers z; and z,
|z1|+ 22|22 + 25| 0

(Hint: Use Equation 30 and the fact that the cosine of any angleislessthan or equal toone)) [0

c=ya? +b? +2abcos(a - B) (Egn 30)
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3.3 Powers, roots and reciprocals

The meaning of an expression such as (1 + 2i)2 is clear enough, L however the meaning of an expression such
as (1 + 2i)™is by no means obvious. In this subsection we will attempt to attach a sensible meaning to such
EXpressions.
The following results are certainly true for real numbersa and b

(uv)@2=uava and (ud)b=eb

and we assume that they also hold for complex numbers. So to raise the complex number z = re' @ to the power a
we have

z=(reif)a=ragiad (31)
For example, if z= 2ei™4 then

Z2 = 42 = 4[cos(TV2) + i sin (102)] = 4i
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We can check thisresult by first putting z into Cartesian form

z=2eM4 = Y cos(1y4) +isin(1y4)] = %(1+ i) =2 (L+i)

and then evaluating Z2 to give 2 = 2(1 + 2i +i2) = 4i.
Question T12

Find 22 and Z3, where z = 2e' 3, Plot zand 2 and 3 on an Argand diagram and use it to explain the movement of
the point representing z" for successive integer valuesof n. [

It is certainly possible to calculate powers of a complex number in Cartesian form, but it must be done with
some care if we are to keep the algebra under control.

0 Express(l+i)8in Cartesian form.
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Very often a better method would be to express the complex number in exponential form, then raise it to the
power, and finally convert the answer back into Cartesian form. Using this approach to evaluate (1 + i)8 we have

(A+i)=+/2€m4 sothat (1+i)8 = (v/2€W4)8 = (1/2)8e2™ =16

Question T13

Evaluate [ (1++/3i)3 and hence express (1++/3i)1 in Cartesian form. Also express z=1++/3i in

exponential form and use this result to evaluate (1++/3i)°. 0O

Question T14

The complex number, u, is defined by
u=(1.1)e2m/15

Use an Argand diagram to plot u" forn = 1, 2, 3, ... 15. What sort of curve would you expect to get if larger
(integer) values of n were plotted and the points joined by a smooth curve? O
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The following example illustrates an area of physics that uses complex numbers.

0 The propagation constant of a cable carrying an alternating current of angular frequency cwisgiven by

o =/(R+iwL)(G +iwC) 0

where R, L, G and C are, respectively, the resistance, inductance, conductance and capacitance of the cable |

Complex powers

The meaning of a complex power of a complex number becomes clear if we use the exponential, rather than
Cartesian, form. For example

Evaluate oif R=90Q, L =0.002H, G =5x 10°S, C=0.05 x 10°F and w=5000s"1.
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Question T15
Use suitable exponential representations to reduce the following to simpler (or at least, more familiar)
expressions

@i, (b O

m++3i0 m+~3id"
52 B OF 2§ -

Roots

The exponentia form is also convenient for working out roots of complex numbers since roots are fractional
powers. As an example, if we require zZV2, where z = 2 ™2, then we can write

ZV2 = QU2¢gim/4 _N2(+i) =1+i 0
V2

Thisresult can be checked by realizing that
z =262 = 2[cos(1/2) +isin(172)] = 2i

and that (ZV2)2 =(1+i)2 =1+2i +i2 = 2i
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Question T16

Use a suitable exponential representation to express i¥2 in Cartesian form. Check your answer by means of
explicit multiplication. O

Reciprocals
The reciprocal ]  of acomplex number is a special case of a power, so,
if z=rd?with r non-zero, we have
, it
z1=(ref)1 = (32
r

For example, if z= €3 then z'1 = ¢T3, We can compare this result with the equivalent calculation using the
Cartesian form for z

Since z= €™ SALEI]
o2 20-i3) _2-i¥3) _1-iv3

= = = :e—iT[/S
1+iv3  (1+iv3)(1-iv3) 1+3 2
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As you can see, the exponential form provides a somewhat easier method of calculating reciprocals than does

the Cartesian form.
Question T17

If z=2¢eli+ D74 what are the exponential and Cartesian formsof z1? [

3.4 Complex conjugates
Therule for finding the complex conjugate isto changei to —i, asin
(2+3)*=2-3i

so for any complex number in exponential form, z=re' ¢, we have

z* =re o (33)
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From this result we see that the product of any complex number with its complex conjugate is real
zz* =rel¥ xre7i0 =r2

But from Subsection 2.3 we know that r is actually the modulus of z, i.e. |z| and so we have the identity

7z = |z? (34)
and therefore, for non-zero values of r, we have
71 = r-1gi0 = re
r2
S0 that
_ z*
1= P @) L

Equation 34 can often be useful if you wish to check that a complicated expression isreal and positive (whichis
often the case in quantum mechanics, for example), for you simply need to recognize that the complicated
expression is a product of a complex number with its conjugate. It can also be useful if you wish to establish a
result involving moduli (asin the following example).
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O Show that for any two complex numbers zand w
|z+ WP +|z-wp=2|z]+2|w]|?

The next question establishes some results which you have probably already assumed to be true.

Question T18

For any complex humbers z and w show that:
@ (aw)* =z*w*, () [zt =z|*, (o) |zw|=]z|Iw] O
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3.5 Applications

In this subsection we consider some applications of the polar and exponential representations which are of
particular relevance to physics. Y ou do not need to be familiar with the physics involved.

T I bers, Z; and Z,
Example 2 wo complex numbers, Z; and Z, are

Z,=2+2
Z,=1+2
If Z= Z, + Z, find | Z| and the principal value of arg (Z). o
Solution
Z=2+2)+(1+2)=3+4i
| Z|= V32 +42 =5
If 8=arg(2), then sin6=4/5 and cos 8 = 3/5 whichimpliesthat 6=0.927rad. O

FLAP M32 Polar representation of complex numbers e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Example3 Repeat Example 2 with Z; and Z, as before, but this time suppose that Z is given by

l:i+i |:|
Z Z, Z, -
Solution
_ ZZ5 _ (2+2)(1+2i) _ (2-4)+i(2+4)
Z,+Z, 3+4i 3+ 4i
_ (-2+6i)(3-4i) _ 18 + 26i
25 25
2 2
1Z|= A/ (18)2 + (26) ~1%6
25
If 6= arg(2), then
sinQ:L and cosB:‘l—L
V(18)% +(26)2 \(18)? +(26)?

whichimpliesthat 8= 0.965rad. O
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Example4  Thefunction
f(@=eme

(36)

where @is an angle (and therefore real) and misarea number, occurs in quantum theory. What are the possible

values of m, if we require that for every value of @
f(@ =f(p+2m)

Solution If f (@) =T (@+ 2m) then
ei my — ei m(@+2m) — ei m(pezmni
We can cancel the factor €™ (sinceit is non-zero) giving

eZmni =1
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Using Euler’ s formula, this can be written as
cos(2rm) +isin(2rmm) =1

sothat cos(2mm)=1 and sin(2rm)=0

Werecall that  cos@=1if =0, +21, #4T, ...

and sinf=0if =0, £, 21 ...

and (since both conditions must apply simultaneously) we have
2rm =0, £21, #4T1, ...

therefore it follows that
m=0,%1,£2 %3, ...

In other words, the condition f (¢) =f (¢ + 2m) ensures that only integer values of m are acceptable. [
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Example5

—ipt —

Giventhat a = , with pand t real, show that

4 §n2B#0

2 =
lal 25 0O

Solution  We could certainly calculate | ap by writing
jap = &7 =DE" -1
g
Z*

(using Equation 35) z1= P (Egn 35)

and then simplifying the result (using various trigonometric identities); however if you notice that the required
expression for |a |2 involves only (¢t/2) then you might think of the following (more elegant) method.
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We force the expression for a to involve termsin (¢t/2) by extracting a factor €7¢1/2, so that

eioti2 , eiet/2 Ot (0 En(@t/2) .0
a= eriot/2 _ gipt/2y = 2isin g e
( ) o H O20H" (-2 )[I ® H

In the right-hand expression, —2i has a modulus of 2, while the term in square bracketsisin exponential form
sin (fpt/ 2)

rel®with r = , o it follows that

mcptcﬁ 4 o000 i

2 = plLsl _
oF = By 1 = o T
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4 Closingitems

4.1 Modulesummary

1 A complex number is equivalent to an ordered pair of real numbers, (X, y). The addition and subtraction of
complex numbers obey the same rules as of two-dimensional vectors

(xy) *t(@b)=(x+ay+b) (Ean 8)
Multiplication of two complex numbers obeys the rule
(a b) x (x,y) = [(ax — by), (ay + bx)] (Ean9)

In practice, acomplex number is more usually written as x + iy with i having the property thati2 = —1.
2 A complex number, z=x + iy, issaid tg bein Cartesian form or a Cartesian representation.
3 A complex number, z=r(cosg+isin )issaidtobein polar form or apolar representation.

The polar form r(cos 8+ isin ) of agiven complex number zis not unique. However, we can make it so by
chosing the principal value of the argument of z, i.e. if —-Tt< < 1t (Notethatr =|z|=0.)
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We can convert from Cartesian into polar form by using

r=4x2+y? (Egn 13)
_ X

cosf = W (Eqn 14)

sng=——Y (Eqn 15)

and from polar to Cartesian form by means of
X=rcosé (Egn 10)
y=rsné (Egn 11)

A complex number can be represented by a point on an Argand diagram by using (X, y) as the Cartesian
coordinates or (r, 8) asthe polar coordinates of the point. By convention, 8is measured anticlockwise from
the positive real axis.
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If a complex number is represented by a point on an Argand diagram, then multiplication by
z=r(cos B +isinB) corresponds to a change in the distance of the point from the origin by a factor of r,
together with an anticlockwise rotation through an angle 6.

If acomplex number, z, is represented in polar form by z =r(cos + i sin 8) then the modulus of zis given
by |z| =, and 6 is known as the argument of z (written as arg(2) ). If zis represented by a point on an
Argand diagram then r is the ‘distance’ of the point from the origin and 6 is the angle made by a line from
the point to the origin with the positive real axis. If 8 satisfies —11< 8 < 1, then 8is known as the principal
value of the argument of z

Euler’s formula states that
ef=cosf+ising (Egn 22)

If a complex number, z, is written as z = re'®, with r = 0, then z is said to be in exponential form or
exponential representation. Euler’s formula provides a direct connection between the polar and exponential
forms since

reé=r(cos@+ising)
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10 Thefollowing operations can be carried out on complex numbersin exponential form:

multiplication

reif x pei¢=rpe©+0
simplifying quotients

1€ _ T G-

pe?  p
finding real powers

(I’ ei 9)a =ra ei afb
finding reciprocals

(ref)-1=r-lgie
finding complex conjugates
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11

We may also calculate complex powers of a complex number. The same values apply as for real powers, i.e.
zazb = zab  gnd (Za) = zab
for complex numbersa, b and z

The addition and subtraction of complex numbers in either exponential or polar form are complicated in
comparison to the same operations on complex numbers in the Cartesian form. Specifically, the sum of ag’®
and be’ can be written as

ag'a + pe'f = cely (Egn 29)
where ¢ =./a? + b2 + 2abcos(a - B) (Egn 30)
_acosa + bcosf
cosy = ————— T
c
. asina +bsing
Sn y =V

c
Where possible, it is better to use the Cartesian form for addition and subtraction.
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4.2 Achievements

Having completed this module, you should be able to:

A1l Definethe termsthat are emboldened and flagged in the margins of the module.
A2 Convert acomplex number between the Cartesian, polar and exponentia forms.

A3 Represent a complex number (in either Cartesian, exponential or polar form) by means of a point on an
Argand diagram, and describe geometrically the effect of complex addition or multiplication.

A4 Find the modulus, argument and complex conjugate of complex numbers.
A5 Find powers and reciprocals of complex numbers.

Study comment You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents to review some of the
topics.
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4.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2) If Re(2) = 1and Im(2) = —+/3, expresszin (a) Cartesian form, (b) polar form using the principal value of
the argument, (c) exponential form.
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Question E2

(A2, A4 and A5) Expressz=1-i+/3 andw =1 +i in exponential form and use your results to expressR in

exponential form, where Ris given by
ro 1oz’
w R0
Make sure that you give the principal value of arg (R).
(Hint: Y ou may find Answers F1 and E1 helpful.)
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Question E3
(A3) If zisgiven by
eie
Z=
1+6

where 6 can take any non-negative real value, sketch the curve on which any point corresponding to z must lie
on an Argand diagram. Justify the main features of the curve.
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Question E4

(A3) (&) Show how the addition of complex numbersz =1 +i and w = 2 + 4i can be considered as vector
addition on an Argand diagram.

(b) A complex number z is defined by z = e2/n for some fixed positive integer value of n.
Show (giving a sketch) how the series

can be considered as the sum of n vectors on an Argand diagram. Hence determine the value of S.
Question E5

(A2) Show that (-1)" = ei"™, where nis any integer.
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Study comment  Thisisthefinal Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questionsif you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.

- ~
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