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1 Opening items
1.1 Module introduction
The symbol i is defined to have the property that i × i = −1. Expressions involving i, such as 3 + 2i, are known as
complex numbers, and they are used extensively to simplify the mathematical treatment of many branches of
physics, such as oscillations, waves, a.c. circuits, optics and quantum theory. This module is concerned with the
representation of complex numbers in terms of polar coordinates, together with the related exponential
representation. Both representations are particularly useful when considering the multiplication and division of
complex numbers, and are widely used in physics.
In Subsection 2.1 we review the Cartesian representation of complex numbers and show how any complex
number can be represented as a point on an Argand diagram (the complex plane). We also show how complex
numbers can be interpreted as an ordered pair of real numbers. Points in a plane are often specified in terms of
their Cartesian coordinates, x and y, but they can equally well be defined in terms of polar coordinates r and θ.
It will transpire that, while addition and subtraction of complex numbers is easy for complex numbers in
Cartesian form, multiplication and division are usually simplest when the numbers are expressed in terms of
polar coordinates. Subsection 2.2 and the subsequent two subsections are concerned with the polar
representation of complex numbers, that is, complex numbers in the form r(cos1θ + i1sin1θ). Subsection 2.5
introduces the exponential representation, reiθ. Section 3 is devoted to developing the arithmetic of complex
numbers and the final subsection gives some applications of the polar and exponential representations which are
particularly relevant to physics.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements  listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

The complex number z is defined by z  = 1 + i . Find the following in their simplest representations:
 z, |1z1|, arg1(z), z* and z−1.

Question F2

The complex numbers z and w are defined by z = 3ei0π/10 and w  = 4ei0π0/05. Find the simplest exponential
representations of zw and z0/w.
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Question F3

Suppose that a complex quantity, z, is known to satisfy

z = 2 + i + ei0θ

where θ can take any real value. Sketch a curve on an Argand diagram giving the position of all possible points
representing z.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?
Study comment To begin the study of this module you need to be familiar with the following topics: the arithmetic of
complex numbers in the form, z = x + iy, where i02 = −1. You should know how to add, subtract and multiply such numbers,
be able to reduce the quotient of two complex numbers to rational form, to find the modulus, complex conjugate, real part
and imaginary part of a complex number, and you should know how to plot a complex number on an Argand diagram.
You should be familiar with the addition of two-dimensional vectors by means of a diagram and by adding their components.
You should also be familiar with Pythagoras’s theorem, the definition of sine, cosine and tangent, the measurement of angles
in terms of radians and the following trigonometric identities

sin1(α + β0) = cos1α 1sin1β + sin1α 1cos1β (1)

cos1(α  + β0) = cos1α 1cos1β − sin1α 1sin1β (2)
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You should also know that (n factorial0) n! = n0(n − 1) … 3, 2, 1, and 0! = 1. We will need to refer to the following power
series for ex, sin1x and cos1x1:

  

e x = xn

n!n=0

∞

∑ = 1 + x

1!
+ x2

2!
+ x3

3!
+ K (3)

  

sin x = (–1)n x2n+1

(2n + 1)!n=0

∞

∑ = x − x3

3!
+ x5

5!
− x7

7!
+ K (4)

  

cos x = (–1)n x2n

(2n)!n=0

∞

∑ = 1 –
x2

2!
+ x4

4!
− x6

6!
+ K (5)

You will need to be familiar with the following properties of powers (i.e. indices)

uaub = u(a1+1b), (uv)a = uava, (ua)b = uab (6)

also to know that the nth root of u can be written as u1/n and to be able to use inverse trigonometric functions to solve an
equation such as sin1θ = 0.5 for θ (and to use the graph of sin1θ, or otherwise, to find all the solutions). If you are unfamiliar
with any of these topics you can review them by referring to the Glossary, which will indicate where in FLAP they are
developed. The following Ready to study questions will help you to establish whether you need to review some of the above
topics before embarking on this module.
Throughout this module x  means the positive square root, so that 4  = 2.
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Question R1

Rationalize the expression z = 3 + 2i

1 + 2i
 (i.e. express z in the form x + iy, finding the values of the real numbers x

and y). What are the real and imaginary parts of z? Also find the complex conjugate and the modulus of z0.

Question R2

Draw and label the points representing the complex numbers −2 + i, −2 − i and −3i on an Argand diagram.
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Figure 14See Question R3.

1

1

π/4

π/4

Figure 24See Question R4.

Question R3 ☞

The equilateral triangle shown in Figure 1 has
a perpendicular drawn from one vertex to the
opposite side. Use the triangle in Figure 1 to
find the values of cos1(π/3), sin1(π/3), tan1(π/3),
cos1(π/6), sin1(π/6) and tan1(π/6).

Question R4 ☞

Use the right-angled triangle with two sides
equal, shown in Figure 2 to find the values of
cos1(π/4), sin1(π/4) and tan1(π/4).
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Question R5

Two two-dimensional vectors, u and v, are specified in component form as (2, 3) and (1, −04), respectively.
Find u + v by (a) drawing a suitable diagram and (b) adding the components directly.

Question R6

Solve the equation tan1θ = 1.

Question R7

Express e3x e x  in the form ekx (for some value of k) and hence write down the first three terms of its power
series expansion.
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2 Representing complex numbers
2.1 Complex numbers and Cartesian coordinates
A complex number, z, can be written as z = x + iy where x and y are real numbers and i2 = −1. Some examples of
complex numbers are 2 + 3i , 7i and 2.4. ☞

Such numbers satisfy straightforward rules for addition and subtraction, which essentially mean that the real and
imaginary parts are treated separately, so that, for example,

(3 + 4i) + (2 − i) − (−2 − 3i) = (3 + 2 + 2) + (4i − i + 3i) = 7 + 6i

Multiplication is quite simple provided that we remember to replace every occurrence of i × i by −1, although a
mathematician would probably prefer a formal statement that the product of two complex numbers (a + ib) and
(x + iy) is given by

(a + ib)(x + iy) = (ax − by) + i(ay + bx) (7)
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a

b

(a,b)

y

x0

Figure 34An Argand diagram showing
the point corresponding to a complex
number, z = a + ib.

For a long time the meaning of the symbol i gave many famous
mathematicians cause for concern. However, in 1833 Sir William
Rowan Hamilton (1805–1865) realized that the i and + sign in z = x + iy
are both unnecessary sources of confusion. The role of the i is really to
keep the x and y separate, while the + sign is there to tell us that x and y
are part of a single entity; it does not mean addition in the sense that we
might, for example, add 2 apples to 3 apples to get 5 apples. In fact, the
x and y in z = x + iy are very much like the (ordered) pairs of numbers
used as Cartesian coordinates. Hamilton’s ideas are closely linked to the
those of Robert Argand (1768–1822) and Karl Friedrich Gauss
(1777–1855) who both suggested representing a complex number by a
point in a plane. As an example, the complex number a + ib is shown on
an (x, y) coordinate system in Figure 3; notice that it is conventional that
the number multiplying the i corresponds to the y-value. A figure in
which the real and imaginary parts of complex numbers are used as
Cartesian coordinates is known as an Argand diagram or the complex
plane. An expression such as a + ib, where a and b are real numbers, is
said to be the Cartesian form (or Cartesian representation) of a
complex number.
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Figure 44An Argand diagram showing
the addition of 3 + 2i and 1 + 3i.

In some mathematics textbooks the authors avoid the problem of the
meaning of the symbol i entirely1—1by not mentioning it1— 1and they
introduce the complex numbers as a set of ordered pairs of real
numbers (x, y) with certain operations defined on them. Such a treatment
has the advantage that complex numbers can immediately be seen to
have much in common with vectors. The addition of two complex
numbers is then defined by

(x, y) + (a, b) = (x + a, y + b) (8)

which is just the same as the rule that defines the addition of two vectors.
An example is shown in Figure 4 where the addition of z = 3 + 2i and
w =  1 + 3i is performed graphically on an Argand diagram or,
equivalently

z + w = (3, 2) + (1, 3) = (4, 5)
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Question T1

If z = 4 + 8i and w = 15 − 12i, use an Argand diagram to find the sum, z + w. Check your answer by means of
vector addition using the (x, y) notation.4❏

Although complex numbers behave like vectors as far as addition is concerned, when it comes to multiplication
and division the two topics diverge. In terms of ordered pairs of real numbers, multiplication of complex

numbers can be defined by ☞

(a, b) × (x, y) = [(ax − by), (ay + bx)] (9)

Although one can introduce complex numbers by this route, which is entirely independent of the symbol i, it
must be admitted that Equation 9 looks as though it came out of thin air. In practice i is a very useful notational
convenience which makes Equation 9 look much more natural. The i notation is used throughout science and
engineering, and even by the purest of pure mathematicians. It is a practice which we follow in FLAP.
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2.2 Polar coordinates
We have seen how it is straightforward to interpret complex addition as vector addition on an Argand diagram.
In order to investigate the effect of complex multiplication, try the following question.

Question T2

(a) Plot the numbers, 1, 2i, −3 − i and 2 − i on an Argand diagram.

(b) Multiply each of the numbers in part (a) by 2 and plot the resulting points on the same diagram. Suggest a
geometric interpretation of multiplication by 2 and check your conjecture by finding the effect of multiplying
−1 − i by 2.

(c) Repeat parts (a) and (b), but multiply by i instead of 2.

(d) Repeat parts (a) and (b), but multiply by 2i.4❏
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Figure 54Polar coordinates, r, θ.

The solution to this problem suggests that the geometric interpretation
of complex multiplication may involve both a rotation and a change in
the distance from the origin, but this is not easy to see if we write
complex numbers in the Cartesian form x + iy.

However, the geometric properties of complex multiplication are quite
evident when the complex numbers are expressed in terms of
polar coordinates. Figure 5 shows a point specified by means of
polar coordinates; we can see that the ‘distance’ of the point from the
origin is called r and θ is the angle between the line from the point to
the origin and the x-axis. Notice that r is (by definition) non-negative

and that θ is conventionally measured anticlockwise. ☞
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Standard results from trigonometry enable us to express the Cartesian coordinates (x and y) in terms of polar
coordinates (r and θ )

x = r1cos1θ (10)

y = r1sin1θ (11)

This means that we can write a complex number, z = x + iy, in the form

z = r1(cos1θ + i1sin1θ0) (12)

which is known as the polar representation or polar form of the complex number, z. Examples of complex
numbers in polar form are

2[cos1(π/4) + i1sin1(π/4)]

3.5[cos1(π/16) + i1sin1(π/16)]

and 0.025[cos1(1.05) + i1sin1(1.05)]

To convert a complex number from polar to Cartesian form we can again use Equations 10 and 11.
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For example, z = 3[cos1(π/4) + i sin1(π/4)] has r = 3 and θ = π/4. If we substitute these values into Equations 10
and 11, we find

x = r cosθ = 3cos(π 4) = 3
2

and y = r sin θ = 3sin (π 4) = 3
2

i.e. z = 3
2

+ 3
2

i = 3
2

(1 + i)

It is also straightforward to convert from Cartesian to polar form since the length, r, is given by ☞

r = x2 + y2 (13)

and the angle, θ, is such that

cosθ = x

x2 + y2
(14)

sin θ = y

x2 + y2
 (15)
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0
0 1

π/3

1
2

3

For example, the complex number, z = 1 + 3 i  which has x = 1 and
y = 3 , can be represented in terms of polar coordinates by

r = x2 + y2 = 1 + 3 = 2

and since sin1(θ0) = 3 2  and cos1(θ0) = 1/2 we have θ = (π/3)1rad. The

position of the number 1 + 3 i  on an Argand diagram is shown in terms
of polar coordinates in Figure 6.

✦ The polar coordinates of three points A, B and C are, respectively,

r = 2 θ = (π/4)1rad

r = 3 θ = (−π/3)1rad

r = 4 θ = (5π/6)1rad
Express the points in Cartesian coordinates.

Figure 64The complex number, z = 1 + 3 i , in terms of polar coordinates.
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One big advantage of the polar representation is that the multiplication of complex numbers is easy when they
are expressed in this form. To see this, consider two complex numbers, z = x + iy and w = a + ib for which

x = r1cos1θ4and4y = r1sin1θ

a = ρ1cos1φ4and4b = ρ1sin1φ

Recalling two results from trigonometry:

sin1(α + β0) = cos1α 1sin1β + sin1α 1cos1β (Eqn 1) ☞

cos1(α  + β0) = cos1α 1cos1β − sin1α 1sin1β (Eqn 2)

we see that the real part of the product zw (see Equation 7) is given by

Re(zw) = ax − by = ρ1cos1φ × r1cos1θ − ρ1sin1φ × r1sin1θ

= ρr0(cos1θ1cos1φ − sin1θ1sin1φ)

= ρr1cos1(θ + φ)
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and the imaginary part is given by

Im(zw) = ay + bx = ρ1cos1φ × r sin1θ + ρ1sin1φ × r1cos1θ

= ρr0(cos1φ1sin1θ + sin1φ1cos1θ0)

= ρr1sin1(θ + φ)

We can summarize these two results by the following rule for multiplying complex numbers in polar form:

r(cosθ + i sin θ ) × ρ(cos φ + i sin φ ) = ρr[cos(θ + φ ) + i sin (θ + φ )] (16)

So, multiplying a complex number, w say, by a complex number with a polar representation r(cos1θ + i1sin1θ),
produces a new complex number which corresponds to the line from the origin to the point representing w being
first scaled by a factor r, then the resulting line being rotated anticlockwise about the origin through an
angle θ.
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2

2

2[cos(π/4) + 
i 1sin(π/4)]

π/4

22

22

2

Figure 74Complex multiplication resulting
in a change in distance from the origin.

2

2

2[cos(π/4) + 
i 1sin(π/4)]

π/8

π/4

2

Figure 84Complex multiplication
causing a rotation.

As an illustration we will
start with the complex
number

w = 2[cos1(π/4) + i sin1(π/4)]

and first multiply it by 2
in Figure 7,then by

[cos1(π/8) + i sin1(π/8)]

in Figure 8,
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2

2

2[cos(π/4) + 
i 1sin(π/4)]

π/8

π/4

Figure 94Complex multiplication
causing a rotation and a change in
distance from the origin.

and finally by 2[cos1(π/8) + i sin1(π/8)] in Figure 9.

Notice that in Figure 9 the line from the origin to the original point is
rotated through an angle of (π/8) and the distance from the origin is
doubled.
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2.3 The modulus of a complex number

Given a complex number, z = x + iy, the modulus of z is defined by

| z | = x2 + y2 (17)

In polar coordinates, where x = r cos1θ and y = r sin1θ , we have

x02 + y02 = r121cos21θ + r121sin21θ = r1244(because cos21θ + sin21θ = 1)

So in polar coordinates, the modulus of a complex number is simply the distance from the origin of a point on an
Argand diagram. This distance is clearly a non-negative real number.
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z 1

π/6

7 π/6

3

(a)

z 2

−π /3

2

(b)

z 3

π/3

2π/32

(c) z 4

3.6056

(d)

( −1, 3 )

( 2, −3 )

−0.9828

Question T3

(a) Figures 10a and 10b show two
complex numbers z1 and z 2,
respectively. Write z1 and z2 in the x +
iy form.

(b) Figures 10c and 10d show two
complex numbers z3 and z 4,
respectively. Calculate the modulus of
the complex numbers z3z4.4❏

Figure 104See Question T3.
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Figure 54Polar coordinates, r, θ.
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Figure 64The complex number,

2.4 The argument of a
complex number
If a complex number is written
in polar form as 
z = r(cos1θ + i1sin1θ), then θ is
known as the argument of z
and is denoted by a r g1(z).
For example, if
z = 4[cos1(π/15) + i1sin1(π/15)]
then arg1(z) is (π /15)1rad
which can be interpreted
geometrically as follows.
Consider a typical point
representing a complex
number, z, on an Argand diagram such as in Figure 5. Then the angle θ
made by the line joining the point to the origin with the positive real axis
is the argument. Notice that by convention the angle is measured
anticlockwise (so that a negative angle would be measured in a clockwise
direction). If z = 1 + 3 i  then arg1(z) is (π/3)1rad, as shown in Figure 6.
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θ1+12π

θ

second 
quadrant

first 
quadrant

third 
quadrant

fourth 
quadrant

Figure 114The non-uniqueness of

arg1(z) (shown here as θ).

There is a slight complication in the definition of the argument since a
point, z, on an Argand diagram does not correspond to a single value of
arg1(z) because we can always add any integer multiple of 2π to the value
of θ; in other words, if we rotate the point about the origin through any
number of complete turns we always get back to the same point

(see Figure 11). ☞

However, if we impose the condition that −π < θ ≤ π ☞  then θ is

uniquely determined, and with this condition θ  is known as the
principal value of the argument of z. Notice that whereas the lower limit

is greater than −0π , the upper limit is less than or equal to π. ☞
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If we have a complex number, z = x + iy, where x and y are not both zero, then the argument, θ, is given by the
solution to the following pair of equations

cosθ = x

x2 + y2
(18)

sin θ = y

x2 + y2
 (19)

From Equations 18 and 19 we obtain

tan1θ = y/x (20)

and while it is possible to use Equation 20 to find the angle θ, this must be done with some care as the following
example shows. (Alternatively we can use the Equations 18 and 19, see Solution B to Example 1.)

Example 1 Find the principal value of the argument of the complex number z = −1 + i.
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−1 1

1
−11+1i

θ

0

Figure 124The complex number,

z = −1 + i, plotted on an Argand diagram.

Solution A4In this case x = −1 and y = 1, and from Equation 20

tan1θ = y/x (Eqn 20)

we have tan1θ = −1. In order to find θ your first thought might be to set
your calculator to radian mode and to evaluate arctan1(−1), which will
give you the approximate value −0.78513981rad for θ.

However, this is not a value of the argument, and certainly not the
principal value, as you can easily see if you plot the point −1 + i
on an Argand diagram, see Figure 12. The correct answer is
approximately 2.35611941rad (or more precisely (3π/4)1rad).

The essential point to realize here is that Equation 20 does not determine the angle θ uniquely because there are
generally two angles in the range −π < θ ≤ π that correspond to a given value of the tangent, and these angles
differ by π radians. The difficulty is quite easy to resolve if we always draw a diagram (such as Figure 12) when
calculating a value for arg1(z). In this case we would obtain the value −00.78513981rad from the calculator as
before, then we see from the diagram that we must add π radians to obtain the principal value

arg1(z) ≈ −0.7850398 + 3.1411593 = 2.35601941rad

For this particular value of z you may be able to avoid the use of the calculator if you can see that
arg1(z) = (3π/4)1rad directly from the figure.4❏
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Solution B4Alternatively we can use Equations 18 and 19

cosθ = x

x2 + y2
(Eqn 18)

sin θ = y

x2 + y2
 (Eqn 19)

to obtain cos1θ = −1 2  and sin1θ = 1 2 . The only angles in the range −π < θ ≤ π that satisfy the first equation
are θ = (3π/4)1rad or θ = (−3π/4)1rad, while the only angles that satisfy the second equation are θ = (π/4)1rad or θ
= (3π/4)1rad. Thus the required angle is
θ = (3π /4)1rad.4❏

Notice that the argument of z = x + iy is not defined when x and y are both zero; in other words, the argument of
z = 0 is not defined.
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The polar representation of a complex number is not unique. For example, both 2[cos(π 4) + i sin (π 4)] and

2[cos(9 π 4) + i sin (9π 4)]  represent the same complex number 1 + i. We can, however, make the

representation unique if we insist that the argument takes its principal value. Notice that
−2[cos(π 3) + i sin (π 3)] is not in polar form. In fact (from Equation 16),

 r(cosθ + i sin θ ) × ρ(cos φ + i sin φ ) = ρr[cos(θ + φ ) + i sin (θ + φ )] (Eqn 16)

−2[cos(π 3) + i sin (π 3)] = 2(cos π + i sin π)[cos(π 3) + i sin (π 3)]

= 2[cos(4π 3) + i sin (4 π 3)]

and this final result is in polar form.
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π/6

π/3

2 2

1 1

Figure 14See Question R3.

Question T4

For each of the following complex numbers, find the principal value of the
argument:

(a) −1 + 3 i ,4(b) 1 − 3 i ,4(c) 3 + i ,4(d) 3 + 2i.

(Hint: You may find Figure 1 helpful.)4❏
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2.5 The exponential form
You should be familiar with the following functions, and their series expansions ☞

  

e x = xn

n!n=0

∞

∑ = 1 + x

1!
+ x2

2!
+ x3

3!
+ K (Eqn 3) ☞

  

sin x = (–1)n x2n+1

(2n + 1)!n=0

∞

∑ = x − x3

3!
+ x5

5!
− x7

7!
+ K (Eqn 4)

  

cos x = (–1)n x2n

(2n)!n=0

∞

∑ = 1 –
x2

2!
+ x4

4!
− x6

6!
+ K (Eqn 5)

Each of these functions may be extended so that they apply to a complex variable z (rather than the real variable
x), but, since real numbers are just a special case of complex numbers, the new functions must agree with the old
ones in the special case when z is real. For example, in order to define ez we simply replace x by z in Equation 3

so that
  

ez = zn

n!n=0

∞

∑ = 1 + z

1!
+ z2

2!
+ z3

3!
+ K (21) ☞
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Now let us consider the special case of z = iθ, where θ is real and therefore z is imaginary

  

eiθ = 1 + iθ
1!

+ iθ( )2

2!
+ iθ( )3

3!
+ iθ( )4

4!
+ iθ( )5

5!
+ K

This expression can be simplified by using i2 = −1 to give

  

eiθ = 1 + iθ
1!

− θ 2

2!
− iθ 3

3!
+ θ 4

4!
+ iθ 5

5!
− K

We can see that the terms are alternately real and imaginary, so it is useful to split the series into two

  

eiθ = 1 − θ 2

2!
+ θ 4

4!
− θ 6

6!
+ K







+ i
θ
1!

− θ 3

3!
+ θ 5

5!
− θ 7

7!
+ K







If we compare the right-hand side of this equation with the series for sin1θ and cos1θ we see that eiθ can be
written as

e0iθ = cos1θ + i1sin1θ (Euler’s formula) (22)

This important formula, known as Euler’s formula, gives us the real and imaginary parts of eiθ. ☞
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Question T5

Plot e0i0n 0π0/08 on an Argand diagram for n = 0, 1, 2, … 15. What geometrical shape do you think would describe the
position of the points representing z = eiθ where θ can take any real value?4❏

If we put θ = π in Euler’s formula then, since cos1(π) = −1 and sin1(π) = 0, we find ☞

e0i0π = −1 (23)

This identity is quite remarkable since it relates:

o the numerical constant e, which originates from problems of growth and decay;

o the numerical constant π, which originates from the ratio of the circumference to the diameter of a circle;

o the number 1, which has the special property that 1 × n = n for any number n;

o the symbol i, which has the property i2 = −1 and was originally introduced in order to solve equations such
as x2 + 1 = 0.
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Question T6

Use Euler’s formula to prove the following important relations (Equations 24 and 25):

sin θ = eiθ − e− iθ

2i
(24)

cosθ = eiθ + e− iθ

2
(25)
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Now let us consider a general complex number, z = x +  iy, and write it in terms of polar coordinates by
substituting x = r1cos1θ and y = r1sin1θ

z = x + iy = r1cos1θ + ir1sin1θ = r0(cos1θ + i1sin1θ)

which can be written more compactly, using Euler’s equation, to obtain

z = r0eiθ (26)

which is known as the exponential form (or exponential representation) of a complex number. Notice that r is
(by definition) non-negative.

Question T7

Find the exponential representation for the following complex numbers:

(a) 2 (1 + i),4(b) 3(1 + i 3) ,4(c) 2( 3 + i),4(d) 0.2 + 2.3i.4❏

✦ Express the complex numbers i and 2 in exponential form.
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3 Arithmetic of complex numbers
3.1 Products and quotients
Multiplication of complex numbers in exponential form is very easy, however in this form addition is more
difficult.

Products
One important property of real powers of any real quantity is the identity

a0sa0t = a0s1+1t (27) ☞

which we will assume is also true if any (or all) of the quantities a, s and t are complex. This identity allows us
to multiply complex numbers easily in exponential form since, if z = re 0i0θ and w = ρ0e 0i0φ, then the product is given

by r0e0i0θ × ρ0e0i0φ = rρ00e0i0(θ1+1φ) (28)

which is closely related to the result quoted in Equation 16.

r(cosθ + i sin θ ) × ρ(cos φ + i sin φ ) = ρr[cos(θ + φ ) + i sin (θ + φ )] (Eqn 16)

Notice that in Equation 28 the moduli ☞ of the two complex numbers are multiplied whereas the arguments
are added (as in Equation 16). 
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Question T8

Find zw in exponential form (choosing the principal value of the argument in each case) for each of the
following:

(a) z = 2e0i0π/4 w = 2e0i0π/4

(b) z = 3e0i0π w = 2e0i0π/4

(c) z = 2e0i0π/16 w = 1
2 e– iπ /164❏

Quotients

For real numbers we have the general result that
am

bn
= amb−n where b is non-zero.

Extending this result to complex numbers, we find that simplifying a quotient of two complex numbers in
exponential form is a straightforward variation of multiplication. So if z = r0e 0iθ and w = ρ0e 0i0φ, then z0/w is given

by
z

w
= reiθ

ρeiφ = r

ρ
ei θ – φ( ) that is, we divide the moduli and subtract the arguments.
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Question T9

Find z/w in exponential form (choosing the principal value of the argument in each case) for each of the
following:

(a) z = 2e0i0π/4 w = 4e−0i0π/8

(b) z = 3e0i0π/4 w = 2e0i0π/2

(c) z = 2e−0i0π/16 w = 2e0i0π/164❏

3.2 Sums and differences
Suppose that we are given two complex numbers in exponential form, ae0i0α and bei0β, we can certainly write their
sum in exponential form0

ae0i0α + be0i0β = ce0i0γ (29) ☞

but it is not particularly easy to find the values of c and γ directly. First we will show you a direct method of
finding the sum, then an alternative method which is often easier.
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Method 1

To find c we can write

c2 = (ceiγ )(ce− iγ ) = (aeiα + beiβ )(ae− iα + be− iβ )

= a2 + b2 + ab[ei(α −β ) + e− i(α −β ) ]

= a2 + b2 + 2ab cos(α − β )

So we have an equation for c

c = a2 + b2 + 2ab cos(α − β ) (30) ☞

To find γ we can use Euler’s formula to write e0i0α, e0i0β and e0i0γ in polar form, and Equation 29

ae0i0α + be0i0β = ce0i0γ (Eqn 29

then becomes

a(cos1α + i1sin1α) + b(cos1β + i1sin1β0) = c(cos1γ + i1sin1γ0)
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and equating real and imaginary parts gives us

cos γ = a cosα + b cosβ
c

sin γ = a sin α + b sinβ
c

So if we are given a, b, α and β we can first find c, then cos1γ and sin1γ . Then the condition, −π < γ ≤ π uniquely
fixes γ .

✦ Given that z = a0e0i0α = e20i00π0/3 and w = b0e0i0β = ei00π0/3, find z + w in exponential form.
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Method 2

The alternative method of finding the sum in exponential form relies on the fact that addition in Cartesian form
is very straightforward. So if z and w are given in exponential form, we first convert them into Cartesian form,
then find the sum, and finally convert the answer back into exponential form. We can use the previous example
to illustrate the method.

Given that z = e2i0π0/3 and w = ei0π0/3, we can use Euler’s formula (Equation 22)

e0i0θ = cos1θ + i1sin1θ (Eqn 22)

 to write z and w in Cartesian form

z = −1 + i 3
2

4and4w = 1 + i 3
2

from which it is straightforward to find the sum

z + w = −1 + i 3
2

+ 1 + i 3
2

= i 3

Since i 3 = 3eiπ / 2  this result for z + w agrees with our previous result, but you should now be convinced that
addition (and subtraction) are much easier using the Cartesian rather than exponential form of complex numbers.
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Question T10

Express e 0i0π − e0i0π/2 in exponential form.4❏

Question T11

Use the exponential representation to show that for any complex numbers z1 and z2

|1z11| + |1z21| ≥ |1z1 + z21| ☞

(Hint: Use Equation 30 and the fact that the cosine of any angle is less than or equal to one.)4❏

c = a2 + b2 + 2ab cos(α − β ) (Eqn 30)
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3.3 Powers, roots and reciprocals

The meaning of an expression such as (1 + 2i)3 is clear enough, ☞ however the meaning of an expression such

as (1 + 2i 0)π is by no means obvious. In this subsection we will attempt to attach a sensible meaning to such
expressions.

The following results are certainly true for real numbers a and b

(uv)a = uava 4and4(ua)b = uab

and we assume that they also hold for complex numbers. So to raise the complex number z = r0ei0θ to the power α
we have

z = (r0e0i0θ)α = r0α 00e0i0α 0θ (31)

For example, if z = 2e0i0π/4 then

z2 = 4e0i0π/2 = 4[cos1(π/2) + i1sin1(π/2)] = 4i
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We can check this result by first putting z into Cartesian form

z = 2eiπ / 4 = 2 cos(π 4) + i sin(π 4)[ ] = 2
2

(1 + i) = 2 (1 + i)

and then evaluating z2 to give z2 = 2(1 + 2i + i12) = 4i.

Question T12

Find z2 and z3, where z = 2e0i0π/3. Plot z and z2 and z3 on an Argand diagram and use it to explain the movement of
the point representing zn for successive integer values of n.4❏

It is certainly possible to calculate powers of a complex number in Cartesian form, but it must be done with
some care if we are to keep the algebra under control.

✦ Express (1 + i)8 in Cartesian form.
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Very often a better method would be to express the complex number in exponential form, then raise it to the
power, and finally convert the answer back into Cartesian form. Using this approach to evaluate (1 + i)8 we have

(1 + i) = 2 eiπ 4  so that (1 + i)8 = ( 2 eiπ 4 )8 = ( 2 )8 e2πi = 16

Question T13

Evaluate ☞  (1 + 3 i)3 and hence express (1 + 3 i)10  in Cartesian form. Also express z = 1 + 3 i  in

exponential form and use this result to evaluate (1 + 3 i)10 .4❏

Question T14

The complex number, u, is defined by

u = (1.1)e2π0i0/15

Use an Argand diagram to plot un for n = 1, 2, 3, … 15. What sort of curve would you expect to get if larger
(integer) values of n were plotted and the points joined by a smooth curve?4❏
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The following example illustrates an area of physics that uses complex numbers.

✦ The propagation constant of a cable carrying an alternating current of angular frequency  ω is given by

σ = (R + iω L)(G + iω C) ☞

where R, L, G and C are, respectively, the resistance, inductance, conductance and capacitance of the cable ☞

Evaluate σ if R = 901Ω, L = 0.0021H, G = 5 × 10−51S, C = 0.05 × 10−61F and ω = 50001s−1.

Complex powers
The meaning of a complex power of a complex number becomes clear if we use the exponential, rather than
Cartesian, form. For example

z = (ei0π0/04)0i = e−0π/4
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Question T15

Use suitable exponential representations to reduce the following to simpler (or at least, more familiar)
expressions

(a) i1i,4(b) 
1 + 3 i

2







i

,4(c) 
1 + 3 i

2







1+ i

.4❏

Roots
The exponential form is also convenient for working out roots of complex numbers since roots are fractional
powers. As an example, if we require z1/2, where z = 2ei0π0/2, then we can write

z1/ 2 = 21/ 2 eiπ / 4 = 2 (1 + i)
2

= 1 + i ☞

This result can be checked by realizing that

z = 2eiπ / 2 = 2[cos(π 2) + i sin (π 2)] = 2i

and that (z1/ 2 )2 = (1 + i)2 = 1 + 2i + i2 = 2i
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Question T16

Use a suitable exponential representation to express i1/2 in Cartesian form. Check your answer by means of
explicit multiplication.4❏

Reciprocals
The reciprocal ☞  of a complex number is a special case of a power, so,

if z = reiθ with r non-zero, we have

z−1 = (reiθ )−1 = e− iθ

r
(32)

For example, if z = ei0π/3 then z−1 = e−i0π/3. We can compare this result with the equivalent calculation using the
Cartesian form for z.

Since z = eiπ 3 = 1 + 3 i

2

z−1 = 2
1 + i 3

= 2(1 − i 3)
(1 + i 3)(1 − i 3)

= 2(1 − i 3)
1 + 3

= 1 − i 3
2

= e− iπ / 3
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As you can see, the exponential form provides a somewhat easier method of calculating reciprocals than does
the Cartesian form.

Question T17

If z = 2e(i1+11)π/4 what are the exponential and Cartesian forms of z−1?4❏

3.4 Complex conjugates
The rule for finding the complex conjugate is to change i to −i, as in

(2 + 3i)* = 2 − 3i

so for any complex number in exponential form, z = re0i0θ, we have

z* = r0e−iθ (33)
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From this result we see that the product of any complex number with its complex conjugate is real

zz* = reiθ × re− iθ = r2

But from Subsection 2.3 we know that r is actually the modulus of z, i.e. |1z1| and so we have the identity

zz* = |1z1|2 (34)

and therefore, for non-zero values of r, we have

z−1 = r−1e− iθ = re− iθ

r2

so that

z−1 = z *
| z |2

 (35) ☞

Equation 34 can often be useful if you wish to check that a complicated expression is real and positive (which is
often the case in quantum mechanics, for example), for you simply need to recognize that the complicated
expression is a product of a complex number with its conjugate. It can also be useful if you wish to establish a
result involving moduli (as in the following example).
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✦ Show that for any two complex numbers z and w

|1z + w1|2 + |1z − w1|2 = 21|1z1|02 + 21|1w1|12

The next question establishes some results which you have probably already assumed to be true.

Question T18

For any complex numbers z and w show that:

(a) (zw)* = z*w*,4(b) |1z0−11| = |1z1|0−1,4(c) |1z0w1| = |1z1|1|1w1|.4❏
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3.5 Applications
In this subsection we consider some applications of the polar and exponential representations which are of
particular relevance to physics. You do not need to be familiar with the physics involved.

Example 2
Two complex numbers, Z1 and Z2 are

Z1 = 2 + 2i

Z2 = 1 + 2i

If Z = Z01 + Z002 find |1Z1| and the principal value of arg1(Z00). ☞

Solution

Z = (2 + 2i) + (1 + 2i) = 3 + 4i

|1Z1| = 32 + 42 = 5

If θ = arg1(Z), then sin1θ = 4/5 and cos1θ = 3/5 which implies that θ ≈ 0.9271rad.4❏
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Example 3 Repeat Example 2 with Z1 and Z2 as before, but this time suppose that Z is given by

  

1
Z

= 1
Z1

+ 1
Z2

☞

Solution

  

Z = Z1Z2

Z1 + Z2
= (2 + 2i)(1 + 2i)

3 + 4i
= (2 − 4) + i(2 + 4)

3 + 4i

= (−2 + 6i)(3 − 4i)
25

= 18 + 26i

25

  
|Z | =

(18)2 + (26)2

25
≈ 1.26

If θ = arg1(Z), then

sin θ = 26

(18)2 + (26)2
4and4cosθ = 18

(18)2 + (26)2

which implies that θ ≈ 0.9651rad.4❏
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Example 4 The function

f1(φ) = ei0m0φ (36)

where φ is an angle (and therefore real) and m is a real number, occurs in quantum theory. What are the possible
values of m, if we require that for every value of φ:

f1(φ) = f1(φ + 2π)

Solution4If f1(φ) = f1(φ + 2π) then

eimφ = eim(φ +2π) = eimφ e2mπi

We can cancel the factor eimφ  (since it is non-zero) giving

e2mπi = 1
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Using Euler’s formula, this can be written as

cos1(2πm) + i1sin1(2πm) = 1

so that cos1(2πm) = 14and4sin1(2πm) = 0

We recall that cos1θ = 1 if θ = 0, ±02π, ±4π, …

and sin1θ = 0 if θ = 0, ±π, ±02π, …

and (since both conditions must apply simultaneously) we have

2πm = 0, ±02π, ±4π, …

therefore it follows that

m = 0, ±1, ±02, ±3, …

In other words, the condition f1(φ) = f1(φ + 2π) ensures that only integer values of m are acceptable.4❏
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Example 5

Given that a = e− iφ t − 1
φ

, with φ and t real, show that

|a |2 = 4
φ 2

sin2 φ t

2




 ☞

Solution4We could certainly calculate |1a1|2 by writing

|a |2 = (e− iφ t − 1)(eiφ t − 1)
φ 2

(using Equation 35) z−1 = z *
| z |2

 (Eqn 35)

and then simplifying the result (using various trigonometric identities); however if you notice that the required
expression for |1a1|02 involves only (φt/2) then you might think of the following (more elegant) method.
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We force the expression for a to involve terms in (φ0t/2) by extracting a factor e−iφ1t0/2, so that

a = e− iφ t / 2

φ
(e− iφ t / 2 − eiφ t / 2 ) = e− iφ t / 2

φ
−2i sin

φ t

2












= (−2i)
sin (φ t 2)

φ
e− iφ t / 2









In the right-hand expression, −2i has a modulus of 2, while the term in square brackets is in exponential form

r0e0iθ with r = sin (φ t 2)
φ

, so it follows that

|a |2 = 2
φ

sin
φ t

2
















2

= 4
φ 2

sin2 φ t

2




 ☞4❏
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4 Closing items

4.1 Module summary
1 A complex number is equivalent to an ordered pair of real numbers, (x, y). The addition and subtraction of

complex numbers obey the same rules as of two-dimensional vectors

(x, y) + (a, b) = (x + a, y + b) (Eqn 8)

Multiplication of two complex numbers obeys the rule

(a, b) × (x, y) = [(ax − by), (ay + bx)] (Eqn 9)

In practice, a complex number is more usually written as x + iy with i having the property that i02 = −1.
2 A complex number, z = x + iy, is said to be in Cartesian form or a Cartesian representation.

3 A complex number, z = r(cos1θ + i1sin1
θ

) is said to be in polar form or a polar representation.

The polar form r(cos1θ + i1sin1
θ

) of a given complex number z is not unique. However, we can make it so by
chosing the principal value of the argument of z, i.e. if −π < θ ≤ π. (Note that r = |1z1| ≥ 0.)

Mike Tinker


Mike Tinker


Mike Tinker
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4 We can convert from Cartesian into polar form by using

r = x2 + y2 (Eqn 13)

cosθ = x

x2 + y2
(Eqn 14)

sin θ = y

x2 + y2
(Eqn 15)

and from polar to Cartesian form by means of

x = r1cos1θ (Eqn 10)

y = r1sin1θ (Eqn 11)

5 A complex number can be represented by a point on an Argand diagram by using (x, y) as the Cartesian
coordinates or (r, θ) as the polar coordinates of the point. By convention, θ is measured anticlockwise from
the positive real axis.

Mike Tinker
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6 If a complex number is represented by a point on an Argand diagram, then multiplication by
z = r(cos1θ + i1sin1θ) corresponds to a change in the distance of the point from the origin by a factor of r,
together with an anticlockwise rotation through an angle θ.

7 If a complex number, z, is represented in polar form by z = r(cos1θ + i1sin1θ) then the modulus of z is given
by |1z1| = r, and θ is known as the argument of z (written as arg1(z) ). If z is represented by a point on an
Argand diagram then r is the ‘distance’ of the point from the origin and θ is the angle made by a line from
the point to the origin with the positive real axis. If θ satisfies −π < θ ≤ π, then θ is known as the principal
value of the argument of z.

8 Euler’s formula states that

e0i0θ = cos1θ + i1sin1θ (Eqn 22)

9 If a complex number, z, is written as z = re0iθ, with r ≥ 0, then z is said to be in exponential form or
exponential representation. Euler’s formula provides a direct connection between the polar and exponential
forms since

r0e0i0θ = r0(cos1θ + i1sin1θ)
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10 The following operations can be carried out on complex numbers in exponential form:

multiplication

r0e0i0θ × ρ0e0i0φ = rρ00e0i0(θ1+1φ)

simplifying quotients

reiθ

ρeiφ = r

ρ
ei(θ −φ )

finding real powers

(r0e0i0θ)α = rα1e0i0α 0θ

finding reciprocals

(r0e0i0θ0)0−1 = r0−10e−00i0θ

finding complex conjugates

(r0e0i0θ0)* = r0e−00i0θ
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We may also calculate complex powers of a complex number. The same values apply as for real powers, i.e.

z0a 0z0b = z0a0b4and4(z0a) = z0a 0b 0
for complex numbers a, b and z.

11 The addition and subtraction of complex numbers in either exponential or polar form are complicated in
comparison to the same operations on complex numbers in the Cartesian form. Specifically, the sum of aeiθ

and beiβ can be written as

ae0i0α + be0i0β = ce0i0γ (Eqn 29)

where c = a2 + b2 + 2ab cos(α − β ) (Eqn 30)

cos γ = a cosα + b cosβ
c

sin γ = a sin α + b sinβ
c

Where possible, it is better to use the Cartesian form for addition and subtraction.
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Convert a complex number between the Cartesian, polar and exponential forms.

A3 Represent a complex number (in either Cartesian, exponential or polar form) by means of a point on an
Argand diagram, and describe geometrically the effect of complex addition or multiplication.

A4 Find the modulus, argument and complex conjugate of complex numbers.

A5 Find powers and reciprocals of complex numbers.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)4If Re(z) = 1 and Im(z) = − 3 , express z in (a) Cartesian form, (b) polar form using the principal value of

the argument, (c) exponential form.
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Question E2

(A2, A4 and A5)4Express z = 1 − i 3  and w = 1 + i in exponential form and use your results to express R in

exponential form, where R is given by

R = 1
w

z

2
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Make sure that you give the principal value of arg1(R).

(Hint: You may find Answers F1 and E1 helpful.)
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Question E3

(A3)4If z is given by

z = eiθ

1 + θ
where θ can take any non-negative real value, sketch the curve on which any point corresponding to z must lie
on an Argand diagram. Justify the main features of the curve.
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Question E4

(A3)4(a) Show how the addition of complex numbers z = 1 + i and w  = 2 + 4i can be considered as vector
addition on an Argand diagram.

(b) A complex number z is defined by z = e2π0i0/0n for some fixed positive integer value of n.
 Show (giving a sketch) how the series

S = zk

k =1

n

∑

can be considered as the sum of n vectors on an Argand diagram. Hence determine the value of S.

Question E5

(A2)4Show that (−1)n = e0i0n 0π, where n is any integer.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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