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1 Opening items

1.1 Module introduction
Section 2 of this module is concerned with Demoivre’s theorem and its applications. We start in Subsection 2.1
by proving the theorem which states that

(cos1θ + i1sin1θ0)n = cos1(nθ0) + i1sin1(nθ0)

(where i02 = −1), and then use it to derive trigonometric identities, in Subsection 2.2, and to find all solutions to
the equation z0n − 1 = 0 (the roots of unity) in Subsection 2.3.

The remainder of this module is concerned with complex algebra; that is the manipulation of expressions
involving complex variables. In Subsections 3.1 and 3.2 we solve some algebraic equations and consider the
related problem of factorization. In Subsection 3.3 we point out techniques for simplifying complex algebraic
expressions. Subsection 3.4 is concerned with the complex binomial expansion; that is, expanding (a + b)n in
terms of powers of the variables a and b. Proofs of this theorem do not usually distinguish between real and
complex variables, but there are applications which are specific to the complex case. Finally in Subsection 3.5
we mention the complex form of the geometric series and use it to obtain more trigonometric identities. Don’t
worry if you are unfamiliar with the physics used in the examples in this module.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements  listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Use Demoivre’s theorem to find all the roots of z0n − 1 = 0, where n is a positive integer. For n = 3, plot your
results on an Argand diagram.

Question F2

Use Demoivre’s theorem to find z5 in its simplest form, where

z = 2[cos1(π/10) + i1sin1(π/10)]
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Question F3

Use Demoivre’s theorem, together with the complex binomial theorem, to show that

cos1(4θ) = cos40θ − 61cos2 0θ1sin20θ + sin40θ

sin1(4θ) = 41cos30θ1sin1θ − 41cos1θ sin3 0θ

Question F4

Z is given by

Z = R + i ω L − 1
ω C







☞

where R, ω, L and C are all real. Find the real and imaginary parts of Z0–1.
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

☞

Study comment To begin the study of this module you need to be familiar with the following: the representation of a
complex number on an Argand diagram; the modulus, complex conjugate and argument (including the principal value) of a
complex number, Euler’s formula; the rationalization of complex quotients; trigonometric identities, such as cos1(2θ) =
cos2 1θ − sin2 1θ  and results such as sin1(π/3) = 3 2 and cos1(π/3) = 1/2. You will also need to be familiar with the binomial
expansion (for real numbers), the sum of a geometric series of real numbers, the formula for the solution of a quadratic
equation and the fundamental theorem of algebra. If you are uncertain about any of these terms, you can review them now
by reference to the Glossary, which will indicate where in FLAP they are developed. The following Ready to study questions
will help you to establish whether you need to review some of the above topics before embarking on this module.

Throughout this module x  means the positive square root so that 4 = 2 , and i02 = −1.

Question R1

A complex number, z, is such that its real part has the value, 1, and its imaginary part is 3 .
(a) Express z in Cartesian, polar and exponential forms. 
(b) Express the complex conjugate of z, z*, and z0–1 in exponential form.
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Question R2

A complex number, w, is defined by w = 1 + i and z = 1 + i 3 . (a) Express w in polar form. Use this result,
together with your answer to Question R1, to find the polar form of zw. 
(b) Find Re(zw) and Im(zw) (that is, the real and imaginary parts of zw).

Question R3

Given that z = 3 + 4i , plot z and z* on an Argand diagram. What is the value of |1z1|?

Question R4

Rationalize the expression
2 + 3i

(1 + i)(1 − 2i)
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Question R5

(a) State the fundamental theorem of algebra. (b) How many roots would you expect the following equation to
have

z5 + z4 + z3 + z2 + z + 1 = 0

(c) If z is restricted to real values, what does the fundamental theorem of algebra tell us about the number of real
roots of this equation?

Question R6

(a) Sum the series 
  

1 + x + x2 + K + x10 4(for x ≠ 1)

(b) Expand (1 + x)7 in powers of x.
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2 Demoivre’s theorem
☞

2.1 Introduction
If we have an arbitrary complex number, z, then we can choose to write it in polar form as

z = r0(cos1θ + i1sin1θ)

where r and θ are real (and i02 = −1). Furthermore, if we have another complex number

w = ρ(cos1φ + i1sin1φ)

then the product of z and w can be written as

zw = rρ[cos1(θ + φ) + i1sin1(θ + φ)] (1)
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In other words, the moduli of the numbers are multiplied together and the arguments are summed. It is easy to
generalize this result to n complex numbers in the following way

  

z1 = r1[cos(θ1) + i sin (θ1)]

z2 = r2[cos(θ2 ) + i sin (θ2 )]

M M M

zn = rn[cos(θn ) + i sin (θn )]

to obtain the product

z1z2 × … × zn = (r1r2 × … × rn)[cos1(θ1 + θ2 + … + θn) + i1sin1(θ1 + θ2 + … + θn)]

Setting r1 = r2 = … = rn = 1 and θ1 = θ2 = … = θn = θ we obtain Demoivre’s theorem

(cos1θ + i1sin1θ)n = cos1(nθ) + i1sin1(nθ)44Demoivre’s theorem (2)
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Question T1

Evaluate both (cos1θ + i1sin1θ)2 and [cos1(2θ) + i1sin1(2θ)] for θ = 0, (π/4) and (π/2)1rad. Show that your results are
consistent with Demoivre’s theorem for n = 2.4❏

The proof we have given for Demoivre’s theorem is only valid if n is a positive integer, but it is possible to show
that the theorem is true for any real n and we will make this assumption for the remainder of this module.

✦ Use Demoivre’s theorem to show that one of the square roots of i – 1 is 21/4[cos1(3π/8) + i1sin1(3π/8)].

Question T2

Use Demoivre’s theorem to show that one of the square roots of 1 + i is

21/4[cos1(π/8) + i1sin1(π/8)]

(Hint: First write 1 + i in polar form.)4❏
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The significance of Demoivre’s theorem is that instead of calculating expressions such as (cos1θ + i1sin1θ)n by
writing out the n + 1 individual terms in its binomial expansion, we know that the answer must be
cos1(nθ) + i1sin1(nθ). To emphasize the advantage of Demoivre’s theorem, consider the evaluation of z8 where

z = 2[cos1(π/8) + i1sin1(π/8)]

Without using Demoivre’s theorem, we could write z = x + iy and use a calculator to discover that x ≈ 1.8471759
and y ≈ 0.7651367, so that

z8 = (x + iy)8

= x8 + 8ix7y − 28x6y2 − 56ix5y3 + 70x4y4 + 56ix3y5 − 28x2y6 − 8ixy7 + y8 ☞

and, after a considerable amount of arithmetic, we would obtain the approximate answer

z8 ≈ –256.0 – 1.53 × 100– 04i

Compare this brute force approach with the elegance of Demoivre’s theorem which gives the exact answer

z8 = {2[cos1(π/8) + i1sin1(π/8)]}8 = 28[cos1(π) + i1sin1(π)] = −28 = –256
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2.2 Trigonometric identities

Demoivre’s theorem can be used to obtain a variety of useful identities involving cosn1θ, sinn1θ, cos1(nθ) and
sin1(nθ). The trick is to let z = eiθ, from which we obtain z−1 = e−0iθ and therefore from Euler’s formula

z = cosθ + i sin θ (3)

1
z

= cosθ − i sin θ (4)

Adding and subtracting these two equations gives the useful relations

z + 1
z

= 2 cosθ (5)

z − 1
z

= 2i sin θ (6)
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More generally, we have zn = einθ and z−n = e−inθ and in this case Demoivre’s theorem gives

zn = cos1(nθ) + i1sin1(nθ) (7)

1
zn

= cos(nθ ) − i sin (nθ ) (8)

Again, we can either add or subtract these two equations to obtain

zn + 1
zn

= 2 cos(nθ ) (9)

zn − 1
zn

= 2i sin (nθ ) (10)

These results can be used in two ways; that is, to write

cosn1θ or sinn1θ in terms of cos1(mθ) or sin1(mθ) for various values of m
or

cos1(nθ) or sin1(nθ) in terms of cosm1θ or sinm1θ for various values of m

Although it is possible to obtain general identities, they are quite complicated and the technique is better
illustrated by considering specific examples.
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To express a power of cos1q in terms of cos1(mq)

Example 1 Express cos21θ in terms of the cosines of multiples of θ.

Solution4From Equation 5

22 cos2 θ = z + 1
z







2

= z2 + 2 + 1
z2

= z2 + 1
z2





 + 2

The term in parentheses has precisely the correct form for Equation 9 (with n = 2), we have

z2 + 1
z2





 + 2 = 2 cos(2θ ) + 2

and therefore cos2 θ = 1 + cos(2θ )
2

which is the desired result.4❏
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Question T3

Use Demoivre’s theorem to show that

cos3 θ = cos(3θ ) + 3cosθ
4

(11)

(Hint: Let z = eiθ and then expand (z + 1/z)3.) ☞4❏
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To express an odd power of sin1q  in terms of sin1(mq0)
Similar techniques can be used to express an odd power of sin1θ in terms of the sines of multiples of θ.

Example 2 Express sin71θ in terms of the sines of multiples of θ.

Solution4Starting from the identity for sin1θ in terms of z and 1/z we proceed as follows

(2i)7 sin7 θ = z − 1
z







7

4 ☞

= z7 − 1
z7





 − 7 z5 − 1

z5




 + 21 z3 − 1

z3




 − 35 z − 1

z






= 2i1sin1(7θ) – 14i1sin1(5θ) + 42i1sin1(3θ) − 70i1sin1θ

So the required result is

sin7 θ = 35sin θ − 21sin (3θ ) + 7sin (5θ ) − sin (7θ )
26

(12)4❏

✦ Express sin51θ in terms of the sines of multiples of θ. ☞
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Question T4

Use Demoivre’s theorem to show that

sin3 θ = 3sin θ − sin (3θ )
4

(13)4❏
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To express cos1(nq) and sin 1(nq0) in terms of cos1q and sin1q
Again it is best to consider an example rather than the general case, so let us suppose that we want to express
cos1(2θ0) or sin1(2θ0) in terms of cos1θ and sin1θ. (In fact, we can derive two identities at the same time.) We start
by using Demoivre’s theorem with n = 2

cos1(2θ) + i1sin1(2θ) = (cos1θ + i1sin1θ)2

and then expand the right-hand side to give

cos1(2θ) + i1sin1(2θ) = cos2θ + 2i1sin1θ1cos1θ − sin2θ

We can now equate the real and imaginary parts to obtain two identities

cos1(2θ) = cos21θ − sin21θ (14)

sin1(2θ) = 21sin1θ cos1θ (15)

which are the required results.

✦ Use Demoivre’s theorem to obtain identities for cos1(5θ0) and sin1(5θ0) in terms of cos1θ and sin1θ .
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Question T5

Use Demoivre’s theorem to obtain identities for cos1(3θ) and sin1(3θ) in terms of cos1θ and sin1θ.4❏
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2.3 Roots of unity

When we multiply two complex numbers we multiply their moduli and add their arguments;  so to square a
complex number we square the modulus and double the argument. ☞

We know how to find the square root of a positive real number, but how can we find the square root of a
complex number? Obviously we reverse the process of squaring, and find the square root of the modulus and
halve the argument. However, a complex number has many different arguments, for example

1 = e0i4or4e2π0i4or4e4π0i4or4e6π0i4and so on

so it follows that

11/2 = e0i4or4eπi4or4e2π0i4or4e3π0i4and so on

From this it would at first sight appear that we have found an embarrassingly large number of square roots of 1,
but in fact 1 = e0i = e2π0i = e4π0i …, whereas –1 = eπi = e3π0i = e5π0i …, so that we have actually found just the two
square roots that we expect.

The method can clearly be extended to cube roots. To find the cube root of a given complex number, we first
write it in exponential form, then find the cube root of the modulus (a positive real number), and divide the
modulus by three.
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✦ Find a cube root of the complex number 1 + i.

Although we have been able to find a cube root of a given complex number, there is one question we have not
addressed. Is there more than one cube root; if so, what are the others? Demoivre’s theorem provides a complete
answer to such questions.

According to the fundamental theorem of algebra, each polynomial with complex number coefficients and of
degree n has, counting multiple roots an appropriate number of times, exactly n complex roots. More
specifically, the theorem tells us that the equation

zn − 1 = 0 (16)

where n is a positive integer, has precisely n roots. These roots are known as the nth roots of unity (because we

can rewrite the equation as z = 11/n). To find these roots we use the fact that we can write the number 1 as ☞)

1 = e2πki = cos1(2πk) + i1sin1(2πk) (17)

where k is any integer (positive, negative or zero).
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So z is given by

z = 11/n = [cos1(2πk) + i1sin1(2πk)]1/n

and Demoivre’s theorem then allows us to rewrite the right-hand side, obtaining

z = cos
2πk

n




 + i sin

2πk

n






Don’t forget that, whereas k can take any integer value, n is fixed (even if we don’t specify what it is at the
moment). However, the sine and cosine functions are periodic with period 2π, i.e.

cos
2πk

n
+ 2π



 = cos

2πk

n




 (18)

sin
2πk

n
+ 2π



 = sin

2πk

n




 (19)

So it follows that all the different integer values of k only give n distinct values of z and it is convenient to use
k = 0, 1, 2, …, (n −1) to generate these values.
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1−1

−1

1

0

z1 z0

Figure 14An Argand diagram

showing the two roots of z2 − 1 = 0.

In the case of n = 2, the two roots are given by

z = cos1(πk) + i1sin1(πk)

where k = 0, 1 or, more explicitly

z0 = cos1(0) + i1sin1(0) = 1

z1= cos1(π) + i1sin1(π) = −1

And once again we have the familiar result that 11/2 = ±1 which is plotted
on an Argand diagram in Figure 1.
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1−1

−1

1

0

z1

z0

z2

1
2− 1

2

2π/3

Figure 24An Argand diagram

showing the three roots of z3 − 1 = 0.

Example 3 Find the three cube roots of 1.

Solution4Arguing as before, we could express 1 in exponential form
(using different values of the argument) then find the cube root of the
modulus and divide the argument by three. More formally, using
Demoivre’s theorem, the three roots are given by

z = cos1(2πk/3) + i1sin1(2πk/3)

where k = 0, 1, 2 or, more explicitly

z0 = cos1(0) + i1sin1(0) = 1

z1 = cos1(2π/3) + i1sin1(2π/3) = − 1
2

+ 3
2

i

z2 = cos1(4π/3) + i1sin1(4π/3) = − 1
2

− 3
2

i

and these are plotted on an Argand diagram in Figure 2.4❏
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Question T6

If z1 and z2 are as given above, find: (a) |1z11| and |1z21|, (b) |1z11|3 and |1z2
3 1|.4❏

Aside There is a slight problem here with notation (which can only be resolved properly by a discussion which is beyond the
scope of FLAP). For a positive real variable x we know that x1/02 and x  are often used to denote the positive root of x,
usually because we require the expression to define a function and so it must have just one value.

In this module we are following the convention that square roots of real numbers, such as 2  and 31/2, are positive, because
they usually arise as moduli of complex numbers, which must be positive.

For complex numbers we are often interested in all the n roots of unity, and we certainly do not wish to restrict the discussion
to just one of them. So we follow the convention that for a complex number z, z1/n means all n values. This means that we
will have to distinguish carefully between the square root of the real number 2, which takes only the positive value, and the
square root of the complex number 2, which takes both positive and negative values. In practice the context would usually
make the meaning clear, and this minor problem will cause us no great difficulty.
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✦ Find the three values of (1 + i)1/3 in exponential form.

Question T7

Find all roots of the equation z6 − 1 = 0 and plot your results on an Argand diagram.4❏

Question T8

Show that all roots of the equation zn −  1 = 0, where n is a positive integer, satisfy |1z1| = 1. Describe the
geometric figure on which all such points lie, when plotted on an Argand diagram.4❏
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3 Complex algebra
In this section we consider complex algebra; that is the manipulation of expressions involving complex
variables.

3.1 Solving equations
Finding the nth root of unity has already provided us with experience of using complex algebra to solve
equations. In this subsection we consider other examples of solving equations.

Example 4 Solve the following equation

−0z2 + i0zγ + ω12 = 0 (20) ☞

where γ and ω are real constants, which occurs in the theory of damped oscillations.
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Solution4We can solve for z by using the well-known formula for the roots of the quadratic equation

a0z2 + b0z + c = 0

namely

z = −b ± b2 − 4ac

2a

In our particular example we have a = −1, b = iγ and c = ω12 and therefore

z =
−iγ ± (iγ )2 − 4(−1)ω 2

−2

=
iγ ± 4ω 2 − γ 2

2
= iγ

2
± ω 2 − γ 2 44❏

✦ Find the roots of the equation z2 + z + i = 0 in the form x + iy.
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Question T9

Find the roots of the equation 2z02 − 11zi − 5 = 0.4❏

Many of the algebraic operations for complex variables are almost identical to those for real variables; for
example, the solution of simultaneous equations.

✦ Solve the pair of simultaneous equations

2z + iw = 5 + i (21)

i0z – 3w = i (22)
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Example 5 Suppose we want to solve the pair of equations

I1(Z1 + Z2) + I2Z2 = ε1 ☞

I1Z2 + I2Z2 = ε2

for I1 and I2 where all the variables are complex.

Solution4Equations such as these (but sometimes having many more variables) often arise in the mesh analysis
of a.c. circuits. We can subtract the second equation from the first to find

I1Z1 = ε1 − ε2

so that
  
I1 = ε1 − ε2

Z1

Substituting this result back in the second equation gives us

  

ε1 − ε2

Z1
Z2 + I 2Z2 = ε2
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and hence I2Z1Z2 = ε2Z1 − (ε1 − ε2)Z2 = ε2(Z1 + Z2) − ε1Z2

so that
  
I 2 = ε2 (Z1 + Z2 ) − ε1Z2

Z1Z2

So far the algebra would have been no different for real variables, but now suppose we want to find the real and
imaginary parts of I1 and we are told that

Z1 = Z2 = R + iX0,4ε 01 = ε 4and4ε02 = ε0e0i0φ ☞

where R, X, ε and φ are all real. I1 is given by

    
I1 = ε1 − ε2

R + iX
= [ ε

ε1
}

− ε (cos φ + i sin φ )

ε2
6 744 844

]
R + iX

× R − iX

R − iX

= ε (1 − cos φ − i sin φ )
(R2 + X2 )

(R − iX)

= ε
R2 + X2

[R(1 − cos φ ) − X sin φ ] + i[−Rsin φ − X(1 − cos φ )]{ }
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and therefore

  
Re(I1) = ε

R2 + X2
[R(1 − cos φ ) − X sin φ ]

  
Im(I1) = ε

R2 + X2
[−Rsin φ − X(1 − cos φ )]4❏

Question T10

Find Re(I2) and Im(I2) in Example 5.

i.e.
  
I 2 = ε2 (Z1 + Z2 ) − ε1Z2

Z1Z2

and Z1 = Z2 = R + iX0 4❏
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3.2 Factorizing
Complex numbers enable us to factorize expressions with real coefficients that are impossible to factorize in
terms of real numbers. For example, expanding the right-hand side of the equation will verify the equation

z2 + 1 = (z − i)(z + i)

and so z2 + 1 (which is a polynomial with real coefficients) has complex factors. Complex numbers are also
involved in the factorization of expressions, which have complex coefficients, as in

z2 + (1 + i)z + i = (z + i)(z + 1)

In simple cases, factorization can be achieved by spotting values which make the expression zero (in this case
noticing that z = −i and z = −1 are values for which z2 + (1 + i)z + i = 0). More complicated cases may involve
finding the roots by numerical means, and there are actually computer programs designed to do precisely this.
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If we need to factorize an expression of the form

zn + an−10zn−1 + an−20zn−2 + … + a0

for some (possibly quite large) positive integer, n, then the n roots, z1, z2, … , zn, of the equation

zn + an−10zn−1 + an−20zn−2 + … + a0 = 0

correspond to the factorization

zn + an−10zn−1 + an−20zn−2 + … + a0 = (z − z1)(z − z2) … (z − zn)

In practice, it is unlikely that you will need to perform factorizations for large values of n. However, it is
important that you should know how many roots (and therefore factors) to look for.
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Example 6 Factorize 3z2 + 27.

Solution4Notice that the expression is zero for z = ±03i and therefore (z − 3i) and
(z + 3i) are factors. Since the highest power of z in the polynomial 3z2 + 27 is z2, the fundamental theorem of
algebra tells us that these are the only roots, and therefore

3z2 + 27 = k(z − 3i)(z + 3i)

for some constant k. Comparing the coefficients on each side of this expression for any particular power of z (z2

is the most convenient in this case) we obtain k = 3, so that

3z2 + 27 = 3(z − 3i)(z + 3i)4❏

Question T11

Factorize the expression 2z2 + 32.4❏
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Example 7 Factorize the expression

−0z2 + i0zγ + w2

where z is regarded as the ‘unknown variable’.

Solution4We need to find the two roots of Equation 20. From Example 4 we know that

z = iγ
2

± ω 2 − γ 2 4

and therefore, for some constant k,

−z2 + izγ + w2 = k z − iγ
2

− ω 2 − γ 2 4



 z − iγ

2
+ ω 2 − γ 2 4





Comparing the coefficients of z2 (or any other convenient power of z) tells us that k = −1, and so we have

−z2 + izγ + w2 = − z − iγ
2

− ω 2 − γ 2 4



 z − iγ

2
+ ω 2 − γ 2 4



 4❏
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Question T12

Factorize the expression z2 + iz + 2.4❏

3.3 Simplifying
We simplify expressions involving complex numbers in much the same way that we simplify expressions
involving real numbers, except that every occurrence of i02 may be replaced by −1. It may also be necessary to
rationalize any complex quotients, in other words to convert such quotients into the form x + iy where x and y
are real, in order to arrive at the simplest form. Since there is not really any general prescription for simplifying
complex expressions, the best approach is to consider some typical examples.
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Example 8 Simplify the following expression

Z = (3R + 2iX) − (R + iX) + (7R + 3iX)

Solution4To simplify such an expression we treat the real and imaginary parts separately to obtain ☞

Z = 9R + 4iX4❏

Example 9 Find the real and imaginary parts of a complex number Z defined by

  

Z = R1 + 1
1

R2 + iω L
+ 1

1 iω C( )
(25)

where R, ω, L and C are real.
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Solution4To find the real and imaginary parts of Z we rationalize the complex quotients

  

Z = R1 + R2 + iω L

1 + iω C(R2 + iω L)

= R1 + R2 + iω L

1 + iω C(R2 + iω L)
× 1 − iω C(R2 − iω L)

1 − iω C(R2 − iω L)

☞

= R1 + (R2 + iω L)[(1 − ω 2 LC) − iωCR2 ]
(1 − ω 2 LC)2 + ω 2C2 R2

2

= R1 + R2 + i[ω L(1 − ω 2 LC) − ωCR2
2 ]

(1 − ω 2 LC)2 + ω 2C2 R2
2

which gives the results

  
Re(Z ) = R1 + R2

(1 − ω 2 LC)2 + ω 2C2 R2
2

  
Im(Z ) = ω L(1 − ω 2 LC) − ωCR2

2

(1 − ω 2 LC)2 + ω 2C2 R2
2
4❏
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✦

Simplify the expression 
3 + 2i

1 + i
− 1

1 + 2i
.

Question T13

Simplify the expression 
1

1 − i
+ 1 + i

2
.4❏



FLAP M3.3 Demoivre’s theorem and complex algebra
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3.4 Complex binomial expansion
You probably recall that the binomial coefficient, nCr 0, is defined by

nCr = n!
r!(n − r)!

(26)

where n! is known as n factorial, and is defined by

n! = n(n − 1)(n − 2)(n − 3) … 2 × 1 for n ≥ 1 and 0! = 1 (27)

The expression (a + b)n, where a and b are real and n is a positive integer, can be written in terms of powers of a

and b by means of the binomial expansion ☞

(a + b)n = nCnan + nCn−1an−1b + … + nCn−r an−0rb0r + … + nC1abn−1 + nC0bn

= n

r =0

n

∑ Cn−ran−rbr (28)
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Question T14

(a) Evaluate 3Cr for r = 0, 1, 2, 3. (b) Prove the general result nCr = nCn−0r 0.4❏

There is nothing in the proof of the binomial theorem ☞ which restricts it to real quantities a and b, and for this
module our interest in the theorem lies in its complex applications. The following examples are relevant to
Subsection 2.2.

✦

Expand and simplify z − 1
z







3

.

✦

Expand and simplify z − 1
z







7

.
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Question T15

Use the binomial theorem to show that

z + 1
z







4

= z4 + 1
z4





 + 4 z2 + 1

z2




 + 6

(Hint: What is the relationship between nCr and nCn−r0?)4❏

In Subsection 2.2 we showed how to write powers of trigonometric functions in terms of functions of multiple
angles by setting z = eiθ and consequently

zn + 1
zn

= 2 cos(nθ ) (Eqn 9)

zn − 1
zn

= 2i sin (nθ ) (Eqn 10)



FLAP M3.3 Demoivre’s theorem and complex algebra
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

The binomial theorem is a considerable help in using these results to derive identities for powers of
trigonometric functions. For example, the answer to Question T15 enables us to write

24 cos4 (θ ) = z + 1
z







4

= z4 + 1
z4





 + 4 z2 + 1

z2




 + 6

= 2 cos1(4θ) + 4 × 2 cos1(2θ) + 6
and therefore

cos4 (θ ) = 1
8

[cos(4θ ) + 4 cos(2θ ) + 3]

Question T16

(a) Use the binomial theorem to show that

z + 1
z







5

= z5 + 1
z5





 + 5 z3 + 1

z3




 + 10 z + 1

z






(b) Use the first part of this question, together with Demoivre’s theorem, to express cos5θ  in terms of cosines of
multiples of θ .4❏
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3.5 Complex geometric series
For real numbers a and x, the series a + ax + ax2 + … + axn is known as a geometric series, and its sum is

a
1 − xn+1

1 − x
, provided that x ≠ 1. 

The geometric series for complex numbers a and z is identical in form, and ☞

  

a + az + az2 + K + azn = a
1 − zn+1

1 − z
if z ≠ 1 (29)

✦ Write down the sum of the series 1 + eiθ + e2iθ + e3iθ .

Sums of this kind can be used to simplify certain trigonometric expressions, as, for example, in the following
case.

✦ Sum the series sin1(θ0) + sin1(2θ0) + sin1(3θ0) + … + sin1(9θ0).
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Question T17

Sum the series cos1(θ0) + cos1(2θ0) + cos1(3θ0) + … + cos1(9θ0).4❏
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4 Closing items

4.1 Module summary
1 The identity

(cos1θ + i1sin1θ0)n = cos1(nθ0) + i1sin1(nθ0) (Eqn 2)

is known as Demoivre’s theorem. It is valid for any real value of n.

2 Defining z = eiθ and using Demoivre’s theorem gives us

zn + 1
zn

= 2 cos(nθ ) (Eqn 9)

zn − 1
zn

= 2i sin (nθ ) (Eqn 10)

These results are useful for deriving trigonometric identities such as those which give

(a) cosn1θ or sinn1θ in terms of cos1(mθ0) or sin1(mθ0);
(b) cos1(nθ0) or sin1(nθ0) in terms of cosm1θ and sinm1θ.
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3 The n solutions of the equation z0n − 1 = 0 are known as the nth roots of unity and are given by

z = cos
2πk

n




 + i sin

2πk

n






where k = 0, 1, 2, …, (n − 1). If plotted on an Argand diagram, the roots correspond to n equally spaced
points lying on a circle of unit radius, centred at the origin.

4 The fundamental theorem of algebra states that each polynomial with complex number coefficients and of
degree n has, counting multiple roots an appropriate number of times, exactly n complex roots.

5 If we determine the roots, z1, z2, …, zn, of the equation

zn + an−10zn−1 + an−20zn−2 + … + a0 = 0

then we have the following factorization

zn + an−10zn−1 + an−20zn−2 + … + a0 = ( z − z1)(z − z2) … (z − zn)
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6 The complex binomial expansion is

(a + b)n = nCnan + nCn−1an−1b + … + nCn−r an−rbr + … + nC1abn−1 + nC0bn

= nCn−ran−rbr

r =0

n

∑ (Eqn 28)

where nCr = n!
r!(n − r)!

(Eqn 26)

and n! = n(n − 1)(n − 2)(n − 3) … 2 × 1, for n ≥ 1, with 0! = 1

7 The complex form of the geometric series is

  

a + az + az2 + K + azn = a
1 − zn+1

1 − z
4if z ≠ 1 (Eqn 29)

The complex binomial expansion and the complex form of the geometric series may be used to derive
certain trigonometric identities.
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 State and derive Demoivre’s theorem.

A3 Use Demoivre’s theorem to derive trigonometric identities.

A4 Explain what is meant by the nth roots of unity and find all such roots.

A5 Describe the relevance of the fundamental theorem of algebra to the solution of equations and the
factorization of polynomials.

A6 Solve quadratic equations and linear equations involving complex variables.

A7 Factorize simple polynomials.

A8 Simplify complex expressions.

A9 State and apply the complex binomial expansion.

A10 Apply the complex form of the geometric series.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.



FLAP M3.3 Demoivre’s theorem and complex algebra
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)4State Demoivre’s theorem and use it to simplify z0n where

z = 3[cos1(π/n) + i1sin1(π0/n)]

for any integer, n.

Question E2

(A2 and A4)4Use Demoivre’s theorem to find an expression for the roots of the equation zn − 1 = 0. Hence find
the simple form of the solutions of this equation when n = 4.
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Question E3

(A2, A3 and A9)4Expand the expression (cos1θ + i1sin1θ)2 by removing the brackets, and then rewrite it using
Demoivre’s theorem. Hence show that cos1(2θ) = cos21θ − sin2 1θ and sin1(2θ) = 21sin1θ1cos1θ. Use a similar
method and the complex binomial theorem, together with Demoivre’s theorem, to express cos1(9θ) and sin1(9θ)
in terms of powers of cos1θ and sin1θ.

Question E4

(A8)4The following equation occurs when solving the damped driven harmonic oscillator:

(−ω12 − iω1β0 + ω002)z0e0i0ω1t = α 00 eiω1t

where t, α0, ω0, β0, and ω are real and positive, and z0 is complex. Find expressions for Re(z0), Im(z0) and |1z01|.
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Question E5

(A6 and A7)4Factorize the following expression:

20z2 − 11i0z0x – 5x2

Question E6

(A4 and A10)4Write down the sum of the following geometric series

1 + z + z2 + … + z8

and hence show that the roots of the equation 1 + z + z2 + … + z8 = 0 lie on a circle with its centre at the origin.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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