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1 Opening items

1.1 Module introduction
Being able to differentiate accurately and confidently is a necessary skill for any physicist. Differentiation is
such a powerful tool with so many applications that it is worth some effort to ensure that you have mastered the
techniques explained in this module.

The main objective of this module is to answer the following question:

‘If we know how to differentiate two functions f1(x) and g(x), how do we differentiate their sum, difference,
product and quotient?’

To answer this question we discuss first the idea of a function and how functions can be combined to produce
new ones. Section 2 examines the mathematical basis of differentiation, giving first a graphical interpretation
and then a formal definition.
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Section 3 answers our question and is the core of the module. It provides a list of derivatives of various standard
functions (such as power functions (xn) and trigonometric functions) and introduces the various rules that will
enable you to differentiate a wide range of combinations of these standard functions. In particular it will explain
how to differentiate sums, constant multiples, products and quotients of the standard functions. Sometimes the
method is straightforward, as with the derivative of a sum, but it may also be quite complicated, as with the
derivative of a quotient.

We also discuss the logarithmic and exponential functions, and, while loge1x and ex are the most important of
such functions, it is sometimes necessary to be able to differentiate loga1x and ax where a is some positive
number other than e. In Section 4 we consider why ex is so important and then add ax and loga1x to the list of
functions that can be differentiated.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.
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Question F1

Differentiate each of the following functions (it is not necessary to simplify your answers).

(a) f1(x) = x2
1sin1x + loge1x

(b) f1(x) = (x3 − 6x)(2x2 + 5x − 1) (use the product rule)

(c) f1(x) = 
1

sin x

(d) f1(x) = 
x2 + 4 x – 1

x2 + 9

(e) f1(x) = 
x tan x

3x2 − 2 x + 1
(f) f1(x) = 2x + x2 + e2

(g) f1(x) = (ex + e−x)2
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Question F2

If at time t the displacement, sx(t), of a particle along the x-axis from some particular reference point is given by

sx(t) = e−α1t [A1cos1(ω1t) + B1sin1(ω1t)]

where A, B, α  and ω are constants, find expressions for vx(t), the velocity at time t, and ax(t) the acceleration at
time t, and show that

ax(t) + 2α 1vx(t) + (ω2 + α2)sx(t) = 0

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?
Study comment To begin the study of this module you will need to be familiar with the following terms: base (of a
logarithm), exponential function, inequality (in particular greater than (>) and less than (<)), integer,  inverse function,
logarithmic function, modulus (or absolute value, |1x1|), product, quotient, radian,  real number, reciprocal, set, square root,
sum, trigonometric function and trigonometric identities. (The trigonometric identities that you require are repeated in this
module, as is the definition of the modulus function.) In addition you will need to have some familiarity with the concept of a
function, and with related terms such as argument, codomain, domain and variable (both dependent and independent), but
the precise meaning of these terms is briefly reviewed in the module. Similar comments apply to physics concepts used in
this module, such as acceleration,  displacement, force, speed, velocity and Newton’s second law. If you are uncertain of any
of these items you can review them now by referring to the Glossary, which will indicate where in FLAP they are developed.
The following Ready to study questions will allow you to establish whether you need to review some of the topics, or to
improve your general algebraic skills, before embarking on this module.

Question R1

Write the following sums, products and quotients of logarithms and exponentials as compactly as you can:

(a) log101x + log101y,3(b) (log214 × log214)3,3(c) loge1x − loge1y,3(d) ex/ey,

(e) (ex/ey)2,3(f) loge1x + loge1x + loge1x.
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Question R2

If f1(x) = cos1x, g(x) = sin1x, and h(x) = tan1x, rewrite the following expressions in terms of trigonometric functions
and simplify them where possible  ☞ :

(a) [1f1(x) + g(x)]2

(b) f1(x)h(x) + g(x)/h(x)

(c) [1f1(x) − g(x)]/[1 + h(x)]

Question R3

Given that f1(x) = 
x2

4
 − 1, find the following values, f1(1), f1(0), f1(−2), |1f1(0)1|, |1f1(0) − f1(−2)1| and sketch the graph

of y = f1(x)



FLAP M4.2 Basic differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question R4

Given that ax and loga1x are inverse functions, simplify the following ☞ :

(a) loge[e2 log10 ( x ) ] ,3(b) exp1(loge1(10x)),3(c) log2 1(22).
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2 Variables, functions and derivatives

2.1 Functions and variables

Study comment An understanding of functions is crucial to an understanding of differentiation, and it is vital that the
notation and terminology used to describe functions should be clear and unambiguous. For that reason, this subsection
reviews the definitions of terms such as function and variable even though it is assumed that you have met these ideas before.
If you are completely unfamiliar with these concepts you should consult the entry on functions in the Glossary.

A function f is a rule that assigns a single value f1(x) in a set called the codomain to each value x in a set called
the domain.

Functions are very often defined by formulae, for example f1(x) = x2, and in such cases we assume, unless we are
told otherwise, that the domain is the largest set of real values for which the formula makes sense. In the case of

f1(x) = x2 the domain of the function is the set of all real numbers. The function g( x ) = 1
1 − x

 is not defined

when x = 1, since 1/0 has no meaning, and so we take the set of all real numbers x with x ≠ 1 as its domain.

The function f1(x) = 1 + x + x2 (1a)

is another example of a function that is defined for all values of x.
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One may think of the function as a sort of ‘machine’ with x as the input and 1 + x + x2 as the output. The input x
is known as the independent variable and, if we write y = f1(x), the output y is known as the dependent variable
since the function f1(x) determines the way in which y depends on x.

It is important to note that the same function f could equally well be defined using some other symbol, such as t,
to represent the independent variable:

f1(t) = 1 + t + t2 (1b)

This freedom to relabel the independent variable is often of great use, though it is vital that such changes are
made consistently throughout an equation.

We may evaluate the function in Equation 1, whether we call it f1(x) or f1(t), for any value of the independent
variable; for example, if we choose to use x to denote the independent variable, and set x = 1, we have

f1(1) = 1 + 1 + 12 = 3

Similarly, if x = π f1(π) = 1 + π + π2

and, if x = 2a f1(2a) = 1 + (2a) + (2a)2 = 1 + 2a + 4a2
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We may even apply the function to 2x, −x, or 1 + x to obtain

f1(2x) = 1 + (2x) + (2x)2 = 1 + 2x + 4x2

f1(−x) = 1 + (−x) + (−x)2 = 1 − x + x2

f1(1 + x) = 1 + (1 + x) + (1 + x)2 = 3 + 3x + x2

When we write expressions such as f1(π) or f1(2a), whatever appears within the brackets is called the argument of
the function. The value of f1(x) is determined by the value of its argument, irrespective of what we call the
argument.

A special note about x3Generally in FLAP we follow the convention that x  may be positive or negative.

Thus 4 = ±2. A consequence of this convention is that f1(x) = x  does not define a function since it does not
associate a unique value of f1(x) with each value of x. This would be an exceptionally inconvenient convention to

follow in this module so instead we adopt the convention that x  is positive. Of course, it remains true that the

square roots of x may be positive or negative, x  or − x , so within this convention we should call x  the

positive square root of x, and not simply the square root. In a similar spirit x1/2 = x  will also be a positive
quantity.
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✦

If f1(x) = cos2
1x + sin1x3find f1(2x) and f

π
4





3☞

Question T1

If f1(x) = x2 + 1 and g(x) = 2x,

(a) write down expressions for f ( x ) and
 
 g

x

2




 .

(b) For which values of the independent variable x is f1(x) = g(x)?

(c) For which value of the independent variable x is the following true?
f ( x + 0.1) − f ( x )

0.1
= 0. 23❏
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Figure 13The graph of g(t) = t2.

2.2 Rates of change, gradients and derivatives
The graph of the function g(t) = t2 is shown in Figure 1. It is clear from the
graph that as the value of t increases from t = 0, the value of g(t) also
increases from 0. In particular, note that as t increases from 0 to 1 the value
of g(t) changes from 0 to 1, and that as t increases from 1 to 2 the value of
g(t) changes from 1 to 4. Thus, the change in the value of g(t) that
corresponds to a change of one unit in the value of t depends on the initial
value of t.   For this particular function, if the initial value of t is large, then
the change in g(t) will also be large; for example, the change in g(t) from
t = 100 to t = 101 is

g(101) − g(100) = 1012 − 1002 = 201

Clearly, as t increases the rate at which g(t) is changing is itself changing,
becoming greater and greater. How are we to measure the rate at which a function changes? If you imagine
yourself walking up a hill in the shape of the graph shown in Figure 1, starting at t = 0 and travelling to the right,
your path would become steeper and steeper. It would become increasingly difficult to make progress, because,
with each step you took, the slope would become greater and your walk would become more and more of a
climb. The slope of the graph is the key; once we can describe the slope precisely for any value of t, we will be
able to measure the rate of change of the function g(t)1—1or of any other function.
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Figure 23The graph of an arbitrary function.

The graph of an arbitrary function f1(x) is shown in Figure 2a. Roughly speaking, the slope of this graph at the
point P, where x = a and f1(x) = f1(a), is the same as the slope of the dashed straight line PQ where Q is a nearby
point corresponding to x = a + h and f1(x) = f1(a + h). Of course, the two slopes are not exactly the same; the point
P is fixed and its location determines the slope of f1(x) at P, whereas the slope of the line PQ will depend on the
location of Q as well as that of P. Nonetheless, the two slopes are similar, so we can roughly describe the slope
of the curve in terms of the gradient of the line PQ which is defined by

 gradient of the line PQ = rise
run

= f (a + h) − f (a)
(a + h) − a

= f (a + h) − f (a)
h

(2) ☞
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Figure 23The graph of an arbitrary function.

Now, the line PQ (the dashed line in Figure 2a) that cuts the graph of f1(x) at P and Q and is called a chord, but if
we let the point Q get closer and closer to P then this chord becomes more and more like the tangent in
Figure 2b that just touches the graph at P. It is the gradient of this tangent that really represents the slope of the
curve at P, this is clear from the figure and from the fact that the gradient of the tangent (unlike that of the chord)
is determined by the location of P alone. Fortunately, the gradient of the tangent is fairly easy to work out, all we
have to do is to consider what happens to the gradient of the chord PQ as Q gets closer and closer to P.
As Q approaches P, h gets smaller and the gradient of the chord PQ approaches the gradient of the tangent at P
ever more closely.
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Expressed more formally, the gradient of the tangent at P is given by Equation 2 in the limit as h tends to zero.

 gradient of the line PQ = rise
run

= f (a + h) − f (a)
(a + h) − a

= f (a + h) − f (a)
h

(Eqn 2)

Thus

gradient of tangent at P = lim
h→0

f (a + h) − f (a)
h







(3)

Since this gradient represents the slope of the graph of f1(x) at P, it makes sense to define the gradient of the
graph of f1(x) at P to be the gradient of its tangent at P. We call this gradient the derivative of f1(x) at x = a and
denote it by f1′ 1(a) so that

′f (a) = lim
h→0

f (a + h) − f (a)
h







(4)
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The derivative at x = a defined in this way also represents the rate of change of f1(x) with respect to x when
x = a. This last point is even easier to appreciate if we introduce a dependent variable y such that y = f1(x), for we
can the represent the vertical rise in Figure 2a by ∆y  = f1(a  + h) − f 1(a), and the horizontal run by ∆x = h.
With these definitions it follows from Equation 4

′f (a) = lim
h→0

f (a + h) − f (a)
h







(Eqn 4)

that the derivative at x = a is given by

′f (a) = lim
∆x→0

∆y

∆x






Even greater emphasis can be given to the idea that the derivative is a rate of change with respect to x by

replacing f1′ (a) by the alternative symbol 
dy

dx
(a) . ☞

Thus,
dy

dx
(a) = lim

∆x→0

∆y

∆x




 = lim

h→0

f (a + h) − f (a)
h







(5)
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The definition of the derivative at x = a represented by Equations 4 and 5

′f (a) = lim
h→0

f (a + h) − f (a)
h







(Eqn 4)

Thus,
dy

dx
(a) = lim

∆x→0

∆y

∆x




 = lim

h→0

f (a + h) − f (a)
h







(Eqn 5)

can be applied at any point on the graph provided that ∆y and ∆x can be defined at that point and that their
quotient ∆y/∆x has a unique limit as ∆x → 0 at that point. Thus, provided the derivative of f1(x) exists at every
point within some domain (i.e. some set of x values) it is possible to define a new function on that domain that
associates any given value of x with the gradient of f1(x) at that point. This new function is called the derived

function or derivative of f1(x) and is written f1′(x) or
df

dx
( x ). If y = f1(x), the derived function may also be written

dy

dx
(x)  or just 

dy

dx
.  ☞  Thus, provided unique limits exist

dy

dx
 = lim

h→0

f ( x + h) − f ( x )
h







(6)
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When using this formula

dy

dx
 = lim

h→0

f ( x + h) − f ( x )
h







(Eqn 6)

it is important to remember that dy/dx is not a quotient of two quantities dy and dx even though it may look like
one. At a given value of x, the derivative dy/dx represents the gradient of the graph of y = f1(x) at that value of x.

Although the graphical interpretation of the derivative is important, it does not lend itself to calculation since
drawing tangents can only be approximate, and in any case it would be impossible to do it for every point on the
graph. However, in simple cases it is not difficult to determine the derivative from the formula for the function
and the above definition (Equation 6). Consider the case of f1(x) = x2, for which

′f (x) = lim
h→0

f (x + h) − f (x)
h







= lim
h→0

(x + h)2 − x2

h






= lim
h→0

2xh + h2

h






i.e. ′f (x) = lim
h→0

2x + h( ) = 2x

so that f1′1(x) = 2x

The function f1(x) = x2 has the set of all real numbers as its domain, and its derivative f1′ 1(x) = 2x has the same
domain.
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As a further example, we can use the definition to obtain the derivative of the function f1(x) = 1/x.

In this case f (x + h) = 1
x + h

giving us

f ( x + h) − f ( x )
h

= 1
h

1
x + h

− 1
x





 = 1

h

x − ( x + h)
( x + h) x







= −1
( x + h) x

As h tends to zero the expression 
−1

( x + h) x
 approaches − 1

x2
.

So, f1′(x) = lim
h→0

−1
( x + h) x






 = − 1

x2
(7)

The function f1(x) = 1/x has the set of all non-zero real numbers as its domain, and its derivative f1′ 1(x)  = −1/x2

has the same domain.
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Question T2

(a) If f1(x) = 1/(ω1x) where ω is a constant, use the definition of the derivative to find f1′(x).

(b) If g(t) = 1/(ω1t) use the answer to part (a) to write g′(t) and g′(2t).3❏

f1(x)

x

Figure 33The graph of f1(x) = |1x1|.

Don’t be misled into thinking that if a function exists then its derivative must
also exist. The function f1(x) = |1x 1| (‘the modulus of x’) illustrates the situation
where the derivative has a smaller domain than the function (see Figure 3).
The modulus of x is defined by

and

| x | = x     if x > 0

| x | = −x   if x < 0

For positive x the graph of f1(x) = |1x 1| is a straight line with gradient 1, so

f1′(x) = 1 if x > 0

while for negative x the graph is a straight line with gradient −1,

so f1′(x) = −1 if x < 0
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However, when x = 0 no unique limit exists since we get different values for the limit depending on how we
calculate it. In particular, if we approach x = 0 from the positive side, where x > 0 and h is positive

lim
h→0+

f (0 + h) − f (0)
h







= lim
h→0+

| h| − | 0|
h





 = lim

h→0+

| h|
h





 = 1

whereas, if we approach x = 0 from the negative side, where x < 0 and h is negative

lim
h→0−

f (0 + h) − f (0)
h







= lim
h→0−

| h| − | 0|
h





 = lim

h→0−

| h|
h





 = −1

So, if h approaches zero through positive values the limit is 1, but if h approaches zero through negative values
the limit is −1. A unique limit exists only if we obtain the same result no matter how h approaches 0. Since
different answers have been obtained in this case there is no unique limit and hence no derivative at x = 0.
Although the original function is defined for all real values of x the derivative is only defined for non-zero values
of x.

On the whole, the domains of functions are of more concern to mathematicians than to physicists. Nonetheless,
it is important that you should be aware of their significance, and prepared to investigate them if necessary.
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Question T3

(a) Use your calculator to convince yourself that 
exp (h) − 1

h
  ☞ is very nearly equal to 1 when h is very small.

(b) Let f1(x) = exp1(x). What does part (a) tell you about f1′(0)?

(c) Use the fact that lim
h→0

exp (h) − 1
h







= 1, and the definition of the derivative to show that f1′(x) = exp1(x).3❏

2.3 Notation for derivatives
Various notations are in common use for the derivative of a given function. Two such notations have already
been introduced in this module and you will probably meet a third elsewhere. Here we provide a brief summary.

Function notation

This is the notation we have mainly used so far, in which a function is represented by f or f1(x) or some similar
symbol and its derivative (the derived function) is represented by f1′ or f1′ (x). This is a neat and compact notation
but care is needed in handwritten work to make sure that the all-important prime (1′1) is clearly visible.
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Leibniz notation ☞

This is the dy/dx notation that is especially popular among physicists. We will make much use of it in what
follows.

If we let y = f1(x), then in Leibniz notation the derivative is written 
dy

dx
( x ) or 

df

dx
( x ). ☞  Sometimes these are

abbreviated to 
dy

dx
 (in which case it is assumed that we are regarding the variable y as a function y(x) of x), or

df

dx
 (in which case it is assumed that we are discussing a function f1(x)).

An advantage of Leibniz notation is that it is also possible to write the derivative as
d

dx
f ( x )[ ]

so that for a specific function, f1(x) = x2 say, we could write
d

dx
( x2 ) = 2 x
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Newtonian notation ☞

A different notation that is especially common in mechanics, but which will not be used in this module, uses a
dot to denote derivatives. Thus, if x(t) represents the x coordinate of a moving particle at time t, then ẋ (t )
represents the rate of change of x with respect to time, i.e. the x component of the particle’s velocity.

✦ Given that y = f1(x) = 1/x, and recalling Equation 7, determine the following:

(a) 
dy

dx
(2) ,3(b) 

df

dx
(2a) ,3(c) 

d

dt

1
t





 ,3(d) f11′(2 + 3x).
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3 Derivatives of simple functions
Now that the definitions are out of the way we can get down to the real business of doing calculus.
The procedure by which derivatives are determined is called differentiation. In practice everybody who uses
differentiation regularly, knows the derivatives of various standard functions (x, sin1x, exp1(x), etc.) and knows
some simple rules for finding the derivatives of various combinations (sums, differences, products, quotients and
reciprocals) of those standard derivatives. The formal definition of a derivative is rarely used in practice.
This section introduces the standard derivatives and the basic rules for combining them.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

3.1 Derivatives of basic
functions
Tables 1a and 1b list a number of
functions with which you should
already be familiar along with their
derivatives. Each of these
derivatives can be deduced from
the definition given in the last
section, though the proof is not
always easy. If you are going to
use calculus frequently you will
need to know these derivatives or
at least know where you can look
them up quickly.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

When using the tables it is
important to remember the
following points:

o n and k are constants.

o The functions in Table 1b are
special cases of those in
Table 1a, corresponding to
k = 1.

o In each of the trigonometric
functions x must be an angle in
radians or a dimensionless real
variable.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

Question T4

Use the definition of the derivative
to show that if f1(x) = xn and n is a
positive integer, then f1′(x) = nxn 1−11.
☞3❏

The best way to get to know the
standard derivatives is to use them
frequently. Here are a few
questions to start the process of
familiarization.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

✦

Find the derivatives 
(using Table 1) of the following
functions:

(a) f1(x) = x3,3

(b) g(t) = 1/t3,

(c) h(x) = 
1

x25 .

✦ Which function in Table 1 is
its own derivative?
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Question T5

Find where the gradients of the tangents to the graph of y = sin1x have the following values: (a) 0, (b) −1, (c) +1.

☞3❏

Question T6

(a) Use your calculator (making sure that it is in radian mode) to investigate the limits

lim
h→0

cos (h) − 1
h






3and3 lim

h→0

sin h

h






Using successively smaller values of h (e.g. h = ±0.1, ±0.01, etc.) try to estimate the limit in each case.

(b) Use the limits obtained in part (a) to find 
d

dx
sin x( )  from the general definition of the derived function.

(Hint: Use the trigonometric identity sin1(A + B) = sin1A1cos1B + cos1A1sin1B.)3❏
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

Question T7

Which functions in Table 1b
have derivatives which are:

(a) always positive;

(b) always negative;

(c) can be positive or
negative?3❏
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3.2 Derivative of a sum of functions
While it is possible, in theory, to find the derivative of any given function from the definition, this would in fact
be an arduous process. In practice, those using calculus employ a set of simple rules which can be applied to
combinations of functions to find the derivatives of a wide variety of functions with relative ease. The first of
these simple rules is called the sum rule, which states:

The derivative of a sum of functions is the sum of the derivatives of the individual functions.

If f1(x) and g(x) are two functions, this can be written as:

sum rule
d

dx
1[1f1(x) + g(x)] = 

d

dx
1[1f1(x)] + 

d

dx
1[g(x)] (8) ☞

Alternatively we may write this rule in the form

[1f1(x) + g(x)]′ = f1′ (x) + g′ (x)3or just3(1f + g)′ = f1′ + g′

This rule enables us to differentiate functions such as y = x1/2 + loge1x.

To do so we first note that it is the sum of two standard functions f1(x ) =  x1/2 and g(x) = loge1x, we then
differentiate each of these functions and finally add the derivatives to obtain the required answer.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

So, if

f1(x) = x1/2
3and3g(x) = loge1x

then, from Table 1
df

dx
= 1

2
x−1 2
3and3

dg

dx
= 1

x

so,

dy

dx
= df

dx
+ dg

dx
= 1

2
x−1 2 + 1

x

and if y = x  + loge1x 3

then3
dy

dx
= 1

2 x
+ 1

x
 ☞

It is usually a good idea to think
before applying the rule, as in the
following question.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

✦

Find the derivative of 

h(x) = 
cos x

sin x
+ sin x

cos x
.

The rule ‘derivative of a sum
equals the sum of the derivatives’
applies equally well if more than
two functions are added together.
This allows us to obtain the
derivatives of functions such as
those in the following question.
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Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

Question T8

Use the sum rule to find dy/dx in
each of the following cases:

(a) y = 2 + x3  + ex

(b) y = (1 + x )2

(c) y = loge1(xex)

(d) y = cot1x1sin1x + tan1x1cos1x.

(Hint: Write each function as a
sum of functions appearing in
Table 1.)3❏
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Question T9

If you were to use the definition of the derived function (Equation 6)

dy

dx
 = lim

h→0

f ( x + h) − f ( x )
h







(Eqn 6)

to show that the ‘derivative of the sum is the sum of the derivatives’, what assumption must you make about the
limit of a sum?3❏
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3.3 Derivative of a constant multiple of a function
Table 1 gives the derivative of sin1x, for example, but what about 21sin1x? In other words, what is the derivative
of a constant times a function? The answer is given by the constant multiple rule, which states:

The derivative of a constant times a function is equal to the constant times the derivative of the function.

Using k for the constant and f1(x) for the function, this result can be written as:

constant multiple rule
d

dx
[kf ( x )] = k

d

dx
[ f ( x )] (9) ☞

i.e. [k0f1(x)]′ = k0f1′(x)3or just3(k0f1)′  = k0f1′

Therefore, for the above example,
d

dx
(2 sin x) = 2

d

dx
(sin x) = 2 cos x

similarly,
d

dx
(πe x ) = π d

dx
(e x ) = π × e x = πe x
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✦

Differentiate h(x) = x + 1
x







3

✦

Use the constant multiple rule to show that [1f1(x) − g(x)]′ = f1′(x) − g′(x).

This last result shows that the derivative of the difference of two functions is the difference of the derivatives, i.e.

d

dx
[ f (x) − g(x)] = d

dx
[ f (x)] − d

dx
[g(x)] (10)
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Question T10

Find the derivatives of the following functions: ☞

(a) x − 1
x







4

(b) loge1 x3

(c)
 

sin
x

2
+ cos

x

2






2

(d) (π − x)2

(e) sin1(x + 2) (f) tan x + π
4













(1 − tan1x)

Hint: tan (A + B) = tan A + tan B

1 − tan A tan B











3❏

Question T11

If k is a constant and f1(x) a function, write down the definition of f1′(x) and [kf1(x)]′. What assumption must you
make about limits to justify the conclusion [kf1(x)]′  = kf1′(x)?4❏
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3.4 Derivative of a product of functions
This subsection introduces yet another way of combining functions and obtaining the derivative of the result.
This is the product of two functions, f1(x)g(x). Our aim is to express the derivative of such a product in terms of
the derivatives of the functions f1(x) and g(x) that are multiplied together to form the product, but the answer is
not as obvious as it was for the sum or difference of functions. The ‘obvious’ answer that the derivative of a
product is the product of the derivatives is wrong.

You cannot simply multiply derivatives.



FLAP M4.2 Basic differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Table 13Some standard derivatives.

(a)

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

(b)

f 1(x) f 1′ 1(x)

1 0

xn nxn1−11

sin 1x cos1x

cos1x −sin1x

tan1x sec2
1x

cosec1x −cosec1x1cot1x

sec1x sec1x1tan1x

cot1x −cosec2
1x

exp1(x) exp1(x)

loge1(x) 1/x

To convince yourself of this
consider f1(x) = x2 and g(x) = x3.
Then f1(x)g(x) = x2x3 = x5.
We can differentiate each of these
functions using Table 1:

thus, f1(x) = x2

implies3f1′(x) = 2x

g(x) = x3

implies3g′(x) = 3x2

and f1(x)g(x) = x5

implies3[1f1(x)g(x)]′ = 5x14

Clearly, [1f1(x)g(x)]′ ≠ f1′(x) × g′(x)
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✦

Let f1(x) = 2x3and3g(x) = 
1

4 x

Find f1′(x), g′(x), [1f1(x)g(x)]′ and show that [1f1(x)g(x)]′ ≠ f1′(x) × g′(x).

The correct determination of [1f1(x)g(x)]′ involves not only f1′(x) and g′ (x) but also f1(x) and g(x). It is given by the
product rule and is easier to express in symbols than in words:

product rule
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(11) ☞

i.e. [10f1(x)g(x)]′ = f1′(x)g(x) + f1(x)g′(x)3or just3(10fg)′ = f1′g + fg′

The expression of this rule in terms of words is probably not very helpful:

The derivative of f times g equals the derivative of f times g plus f times the derivative of g.
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You may find Figure 4 a more useful memory aid.

f ′1(x)

f1(x) g1(x)

g′1(x)f1(x)g1(x) +
Figure 43Differentiating a product of
functions.

In the case of f1(x) = x2 and g(x) = x3 (discussed earlier) where

f1′(x) = 2x3and3g′(x) = 3x2

the application of the product rule to f1(x)g(x)
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

gives

[1f1(x)g(x)]′ = f1′(x)g(x) + f1(x)g′(x) = 2x × x3 + x2 × 3x2 = 2x14 + 3x14 = 5x14

and 5x14 is what we expect for the derivative of f1(x)g(x) = x2x3 = x5.

✦

If f1(x) = 2x and g(x) = 
1

4 x
 apply the product rule to find the derivative of f1(x)g(x).
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Illustrations of the product rule

With the aid of the product rule we can now differentiate many more functions. The important step is to express
the function that is to be differentiated in terms of the sum, difference or product of functions with known
derivatives. Here are some examples.

Example 1 Differentiate 21sin1x1cos1x.

Solution 21sin1x1cos1x may be written as a product of the functions

f1(x) = 21sin1x3and3g(x) = cos1x

for which f1′(x) = 21cos1x3and3g′(x) = −sin1x

Using the product rule
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

we can therefore write
d

dx
(2 sin x cos x) = (2 cos x)(cos x) + (2 sin x)(− sin x) = 2(cos2 x − sin2 x)4❏ ☞
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Example 2 Differentiate xex + sec2
1x.

Solution xex + sec2
1x is the sum of two functions xex and sec2

1x, each of which is a product. So we differentiate
xex first and then sec2

1x (using the product rule for each) and then add the answers using the sum rule.

First, xex may be written as the product of the functions

f1(x) = x3and3g(x) = ex

for which f1′1(x) = 13and3g′(x) = ex

then, using the product rule
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

we can write
d

dx
(xe x ) = e x × d

dx
(x) + x × d

dx
(e x ) = e x ×1 + x × e x = (1 + x)e x

Second, sec2
1x = sec1x × sec1x,

therefore f1(x) = sec1x 3and3g(x) = sec1x

giving us f1′(x) = sec1x 1tan1x3and3g′(x) = sec1x1tan1x
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Then, again using the product rule
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

we find
d

dx
1(sec2

1x) = (sec1x1tan1x) × (sec1x) + (sec1x) × (sec1x1tan1x) = 21sec2
1x1tan1x

Thus, combining these results, and using the sum rule we find
d

dx
1(xex + sec2

1x) = 
d

dx
1(xex) + 

d

dx
1(sec2

1x) = (1 + x)ex + 21sec2
1x1tan1x3❏

✦ The kinetic energy of a particle of mass m moving with a speed v(t) that varies with time t, is m[v(t)]2/2.
Use the product rule

d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

 to show that the rate of change of m[v(t)]2/2 with time is 
  
mv(t )

dv
dt

(t ) .
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Question T12

Find the derivative of each of the following functions: ☞
(a) x2

1loge1x,3(b) (sin1x − 21cos1x)2,3(c) (1 − x )(1 + x3 ),

(d) e2x,3(e) sec1x1cot1x,3(f) x3F(x), where F(x) is an arbitrary function.3❏

Question T13

The instantaneous motion of a particle moving along a straight line (call it the x-axis) can be described, at time t,
in terms of its displacement sx(t) from a fixed reference position, its velocity vx(t) and its acceleration ax(t). ☞
These quantities are defined in such a way that

ax(t) = 
  

dvx

dt
(t )3and3vx(t) = 

dsx

dt
(t )

If the displacement is given as a function of time by

sx(t) = [cos1(ω1t) − 21sin1(ω1t)]exp(α 1t)3where ω and α  are constants

show that ax(t) = 2α 1vx(t) − (ω12 + α 12)sx(t)333❏
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Question T14

This question extends the product rule to three functions.
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

If f1(x), g(x), h(x) are any three functions, show that
d

dx
f ( x )g( x )h( x )[ ] = ′f ( x )g( x )h( x ) + f ( x ) ′g ( x )h( x ) + f ( x )g( x ) ′h ( x )

3

❏

Question T15

Use the result developed in Question T14 to find
d

dx
(ex
1loge1x1sin1x)3❏
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3.5 Derivative of a quotient of functions

It is frequently the case that we need to find the derivative of the quotient 
f (x)
g(x)

 of two functions f1(x) and g(x).

☞  The derivative of a quotient, like that of a product, depends not only on the values of f1′1(x) and g′(x), but

also on f1(x) and g(x). The quotient rule states:

quotient rule
d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(12) ☞

i.e. 
f (x)
g(x)










′

= f ′ (x)g(x) − f (x)g′ (x)
[g(x)]2

3or just3
f

g







′
= ′f g − f ′g

g2
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1

1

f ′1(x) –

f1(x)

g′1(x)f1(x)g1(x) ÷ [g1(x)]2

g1(x)

Figure 53The quotient rule.

You may find Figure 5 a useful memory aid.

To apply this result

d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(Eqn 12)

to the function y = 
sin x

x

take f1(x) = sin1x3and3g(x) = x

so that f1′(x) = cos1x3and3g′(x) = 1

Then
dy

dx
= (cos x ) x − (sin x ) × 1

x2
= x cos x − sin x

x2
3☞
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✦ Write y = x3 as x5/x2 and use the quotient rule

 
d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(Eqn 12)

to find dy/dx.

✦ Use the quotient rule

to find 
d

dx

1
F( x )







 in terms of F1′ (x) and F(x).

You may find this useful, but there is no point in remembering it if you know the quotient rule since it is just a
special case of that more general rule.
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Question T16

Find dy/dx in each of the following cases:

(a) y = x

e x
3(b) y = 1 − x2

cos x
3(c) y = x5 − x4 + x3 − x2

( x + 1)2
3(d) y = x loge x

tan x
2❏

Question T17

If f1(x) = (x − 1)2 and g(x) = xex, find the following:

(a) d

dx
f ( x ) − g( x )[ ]    (b) d

dx
f ( x )g( x )[ ]   (c) 

d

dx

f ( x )
g( x )









    (d) 

d

dx

g( x )
f ( x )









  3❏ ☞

The aim of the next question is to derive the quotient rule from the product rule. It begins by showing how to
obtain the reciprocal rule without using the quotient rule.
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Question T18
(a) Let f1(x) be an arbitrary function and let h(x) = 1/f1(x) so that

f1(x)h(x) = 1

Differentiate both sides of this equation and hence obtain a formula for 
d

dx

1
f ( x )









  

(similar to that given in Equation 13).

the reciprocal rule
d

dx

1
F(x)







= − ′F (x)

[F(x)]2 (Eqn 13)

(b) Let f1(x) and g(x) be any two functions, and write 
f ( x )
g( x )

= f ( x ) × 1
g( x )

, then use the answer to part (a) and

the product rule 
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

to derive the quotient rule
d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(Eqn 12)3❏
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Question T19

Use 
d

dx
(sin x ) = cos x , 

d

dx
(cos x ) = − sin x , and the quotient rule

d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(Eqn 12)

to differentiate (a) tan1x, and (b) cot1x.3❏
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Question T20

(a) Use the reciprocal rule

d

dx

1
F(x)







= − ′F (x)

[F(x)]2 (Eqn 13)

to find 
d

dx
(e− x ).

(b) The function f1(x) = 
1
2

(e x + e− x ) is sometimes known as the hyperbolic cosine of x 

(and is denoted by cosh1x).

Find 
df

dx
 and show that f ( x )[ ]2 − df

dx






2

= 1.3❏



FLAP M4.2 Basic differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T21

Let F(x) = G
Mm

( x − a)2
 where G, M, m and a are constants. Find F1′(x).3❏

Question T22

Using 
d

dx
1(sin1x) = cos1x and 

d

dx
1(cos1x) = −sin1x, along with the reciprocal rule,

d

dx

1
F(x)







= − ′F (x)

[F(x)]2 (Eqn 13)

find the derivatives of (a) sec1x and (b) cosec1x.3❏
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4 More about logarithmic and exponential functions

4.1 Why exp(x) is considered to be special
Of all the functions listed in Table 1, f1(x) = exp1(x) = ex is the only one which is its own derivative. Far from
being a technical curiosity this fact turns out to be of great significance and ultimately explains why the

exponential function plays such an important role in physics. ☞
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y

4

3

2

1

0

B
1 2 x(a, 0)

C

A (a, e  )a

y = ex

−1
(a − 1, 0)

Figure 63The graph of y = ex.

It also has an interesting interpretation in terms of the graph of y = ex,
shown in Figure 6. Since f1′(x) = ex the gradient of the tangent to the
graph at the point A which has coordinates x = a and y = ea is f1′ 1(a) = ea

which is the same as the height of A above C.

So the rate of change of f1(x) when x = a is simply f1(a), that is, the rate of
change of the exponential function at any point is equal to the value of
the function itself at that point. In Figure 6 the point B has coordinates (a
− 1, 0). Since A is the point (a, ea), the line AB has a gradient of

CA
BC

= ea

1
= ea

and is therefore the tangent to the graph at A.
So, to draw a tangent to y = ex at  (a, ea), simply join (a, ea) to (a − 1, 0)
and the resulting line is bound to have a gradient of ea.
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✦ Is f1(x) = ex the only function which is its own derivative? 
(Think about the rules of differentiation that you already know.)

✦ Using the product rule
d

dx
[ f (x)g(x)] = g(x)

df

dx
+ f (x)

dg

dx
(Eqn 11)

find the derivatives of (a) e2x, (b) e3x, (c) e4x.

Deduce the formula for the derivative of enx where n is any positive integer.

A similar result holds true even when n is not a positive integer. This was given in Table 1, but it deserves to be
emphasized again here.

d

dx
1(ekx) = kekx for any constant k (14)



FLAP M4.2 Basic differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T23

If y = Ce x

1 + Ce x
 for some constant C, show that 

dy

dx
= y(1 − y) .  ❏

Question T24

Differentiate f1(x) = (ex + e−x)(ex − e−x).3❏
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4.2 Derivative of ax

The previous subsection considered the derivative of ex. However, functions such as 2x and πx sometimes arise in
physical applications, and so it is necessary to know how to differentiate any function of the form ax, where the
positive number a being raised to the power x is not necessarily e. As an example we will consider the
differentiation of 2x, but the method is of general applicability. First note that exp is the inverse function of loge,
this means that exp reverses the effect of loge so that

eloge 2 = exp(loge 2) = 2

since 2 = exp(loge 2) 2 x = [exp (loge 2)]x = exp(x loge 2)

So, 
d

dx
(2 x ) = d

dx
[exp(x loge 2)]
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Now, from Equation 14 (or Table 1)
d

dx
1(ekx) = kekx for any constant k (Eqn 14)

we know that
d

dx
1(ekx) = kekx for any constant k

and, if we choose k to be loge12, this gives us
d

dx
(2 x ) = d

dx
[exp(x loge 2)] = (loge 2)[exp(x loge 2)] = (loge 2)2 x

A similar argument applies with any positive number, a say, in place of 2. So we have the result:

d

dx
1(ax) = (loge1a)ax (a > 0) (15)

Rather than trying to remember this result you would probably be wiser to try to remember the method that was
used to obtain it. Notice the way that the properties of exponentials and logarithms have been used to express a
function of the form ax in terms of ekx, and how the simple properties of ekx have then been exploited.
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✦

Find 
d

dx
1(πx).

✦

Apply the formula for differentiating ax (Equation 14)
d

dx
1(ekx) = kekx for any constant k (Eqn 14)

when a = e.

Question T25

Differentiate each of the following functions:

(a) f1(x) = 3x,3(b) f1(x) = 3x1−11,3(c) f1(x) = (2 + 3)x,3(d) f1(x) = 2x1ex.3❏
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4.3 Derivative of loga1x
As stated in Table 1:

d

dx
1(loge1x) = 

1
x

From this it is easy to deduce the derivative of loge kx, where k is a constant

loge1(kx) = loge1k + loge1x

so
d

dx
1(loge1(kx)) = 

d

dx
1(loge1k) + 

d

dx
1(loge1x) = 

1
x

☞
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If we had been compelled to differentiate log10 x or log2 x  the problem would have been a little more difficult,
but still not intractable. The general method for differentiating logs to an arbitrary base, such as loga1x is
remarkably similar to that for dealing with ax: it involves expressing loga1x in terms of loge1x which can be
differentiated easily. As an example, let us consider log101x. To express it in terms of loge1x we write

y = log101x

then x = 100y

and, taking logarithms to the base e of both sides of this equation, we obtain

loge1x = loge1(100y) = y1loge110

and recalling that y = log101x this can be rearranged to give

y = log101x = 
loge x

loge 10
☞
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We may now easily differentiate log101x because 1/loge110 is a constant, so

d

dx
(log10 x) = d

dx

loge x

loge 10







= 1
loge 10







d

dx
(loge x) = 1

loge 10







× 1
x

= 1
x loge 10

A similar argument applies for any positive base a giving the general result:

d

dx
( loga x ) = 1

x loge a
(16) ☞

✦ If a = e, check that the above formula gives our previous result for the derivative of loge1x.
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✦ Differentiate logπ1x.

Question T26

Differentiate each of the following functions:

(a) f1(x) = log21x

(b) f1(x) = log101x2

(c) f1(x) = 
log2 x

log10 x
 3[Hint: loga1b = (loga1c)(logc1b)]

(d) f1(x) = ax
1loga1x3where a is a positive constant.3❏
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4.4 Resisted motion under gravity: an example
Imagine a parachutist falling to Earth with velocity, vx(t) downwards, at time t. For convenience we will choose
the positive x-axis to be the downward vertical, with the origin at the point where the parachute opens. The
parachutist is subject to two forces, gravity acting downwards and the resistance of the air on his parachute
acting upwards. Suppose that the resistive force is proportional to [vx(t)]2 with a constant of proportionality k
(which has to be determined experimentally). It follows from Newton’s second law that the equation governing
the motion is

m
d

dt
[vx(t)] = mg − k[vx(t)]2 (17)

where m is the mass of the parachutist and g is the magnitude of the acceleration due to gravity. The forces on
the right-hand side have opposite sign because they act in opposite directions.

Now, suppose you want to check that the following expression for vx(t) satisfies Equation 17

vx(t) = 
mg

k

1 + B exp (−2 t gk m )

1 − B exp (−2 t gk m )









 (18)

where B is a constant (determined by the speed of the parachutist at time t = 0). It appears that we must first
differentiate vx(t), which is a rather complicated multiple of the quotient of two functions.
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We could certainly proceed directly, and just differentiate the function as it stands, but a little thought should tell
you that the algebra is going to get very nasty; so it is worth trying to simplify the expression. To simplify the
notation let A = mg k  and α = 2 gk m , and let us write vx rather than vx(t). So we have a simplified version
of Equation 18

vx(t) = 
mg

k

1 + B exp (−2 t gk m )

1 − B exp (−2 t gk m )









 (Eqn 18)

  
vx = A

1 + B exp(−α t)
1 − B exp(−α t)









 (19)
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Now, using the quotient rule

d

dx

f (x)
g(x)









 =

g(x)
df

dx
− f (x)

dg

dx
[g(x)]2

(Eqn 12)

to differentiate this equation

  
vx = A

1 + B exp(−α t)
1 − B exp(−α t)









 (Eqn 19)

with respect to t, we find

  

dvx

dt
= A

d

dt
(1 + Be−α t )




(1 − Be−α t ) − d

dt
(1 − Be−α t )




(1 + Be−α t )

(1 − Be−α t )2



















  

dvx

dt
= A

(−Bαe−α t )(1 − Be−α t ) − (Bαe−α t )(1 + Be−α t )
(1 − Be−α t )2






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dvx

dt
= A

(−Bαe−α t + B2αe−2α t ) − (Bαe−α t + B2αe−2α t )
(1 − Be−α t )2







  

dvx

dt
= A

−2Bαe−α t

(1 − Be−α t )2







Substituting this expression for dvx(t)/dt into the left-hand side of Equation 17

m
d

dt
[vx(t)] = mg − k[vx(t)]2 (Eqn 17)

and using the fact that Aα = 2g we obtain

mA
−2Bαe−α t

(1 − Be−α t )2







= −4mgBe−α t

(1 − Be−α t )2
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and substituting the same expression for dvx(t)/dt

  

dvx

dt
= A

−2Bαe−α t

(1 − Be−α t )2







into the right-hand side of Equation 17

m
d

dt
[vx(t)] = mg − k[vx(t)]2 (Eqn 17)

and using the fact that kA2 = mg we obtain

mg − mg
1 + Be−α t

1 − Be−α t







2

= mg
(1 − Be−α t )2 − (1 + Be−α t )2

(1 − Be−α t )2







= −4mgBe−α t

(1 − Be−α t )2
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Thus, the two sides of Equation 17

m
d

dt
[vx(t)] = mg − k[vx(t)]2 (Eqn 17)

are indeed equal if vx has the form given in Equation 18.

vx(t) = 
mg

k

1 + B exp (−2 t gk m )

1 − B exp (−2 t gk m )









 (Eqn 18)

This really completes the differentiation and subsequent manipulation, but having introduced an expression
(Equation 18) for the downward velocity under gravity in the presence of a resistive force it is worth noting at
least one of its mathematical properties.

✦

What is the behaviour of vx(t) as t becomes large? In other words, what is 
  t→∞
lim vx (t )[ ]?
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✦ What is the terminal velocity if m = 801kg, k = 301kg1m−1 and g = 9.811m1s−2?

Question T27

Show that y(x) = loge 2 − x

loge 2 + x
 satisfies the equation

2y′(x)1loge12 + [1 + y(x)]2
3❏
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5 Closing items

5.1 Module summary
1 A function, f say, is a rule that assigns a single value of the dependent variable, y say, (in the codomain) to

each value of the independent variable x in the domain of the function, such that y = f1(x).

2 The rate of change, or derivative of a function f1(x) at x = a, can be interpreted as the gradient of the graph
of the function at the point x = a. Some standard derivatives are given in Table 1a (repeated here for
reference).

3 The derivative is defined more formally in terms of a limit, and may be represented in a variety of ways.
If y = f1(x)

′f ( x ) = dy

dx
= lim

∆x→0

∆y

∆x




 = lim

h→0

f ( x + h) − f ( x )
h






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Table 1(a)   Some standard
derivatives.

f 1(x) f 1′ 1(x)

k (constant) 0

kxn nkxn1−11

sin 1kx k1cos kx

cos1kx −k1sin1kx

tan1kx k1sec2
1kx

cosec1kx −k1cosec1kx1cot1kx

sec1kx k1sec1kx1tan1kx

cot1kx −k1cosec2
1kx

exp1(kx) k1exp1(kx)

loge1(kx) 1/x

4 The sum, constant multiple, product  and quotient rules for
differentiating combinations of functions are as follows:

sum rule (1f + g)′ = f1′ + g′
constant multiple rule (k0f1)′  = kf1′
product rule (1fg)′  = f1′g + fg′

quotient rule
f

g







′
= ′f g − f ′g

g2

5 The derivatives of the standard functions are given in Table 1.
6 The derivatives of ax and loga1x are given by

d

dx
1(ax) = (loge1a)ax (Eqn 15)

and
d

dx
( loga x ) = 1

x loge a
(Eqn 16)

7 You should be aware that logarithms to different bases are related by

loga1b = (loga1c)(logc1b)
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5.2 Achievements
Having completed the module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Define the derivative of a function (at a point) as a limit and give the definition a graphical interpretation.

A3 Use the definition of the derivative as a limit to calculate the derivative of simple functions.

A4 Know the derivatives of a range of standard functions.

A5 Use addition, subtraction, multiplication and division to express a given function in terms of ‘simpler’
ones in appropriate cases.

A6 Differentiate a constant multiple of a function.

A7 Apply the rule for differentiating the sum (and difference) of functions.

A8 Apply the product rule of differentiation.

A9 Apply the quotient rule of differentiation.

A10 Use the properties of logarithms and exponentials to determine the derivatives of loga 1x and ax.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A1, A2 and A4)3Write down the derivative of f1(x) = loge1x. As x increases from zero how does the gradient of
the tangent to the graph change? What is the behaviour of loge1x as x approaches infinity?

Question E2

(A3)3Using the definition of the derivative as a limit, differentiate f1(x) = 1/x2.
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Question E3
(A4, A5 and A6)3Find dy/dx for each of the following functions:

(a) y = 2x(x − 1)(x + 2)

(b) y = sin1(x + π/4) (Hint: sin1(A + B) = sin1A1cos1B + cos1A1sin1B)

(c) y = loge1x2
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Question E4

(A4 to A9)3Find f1′(x) for each of the following functions:

(a) f1(x) = x 1cos1x + x2
1sin1x

(b) f1(x) = x − 1
x







2

e x

(c) f1(x) = 
1 + x + x2

1 − x2

(d) f1(x) = 
x sin x

loge x

(e) f1(x) = 
exp ( x + loge x )

x

(f) f1(x) = axxa
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Question E5

(A4, A5, A6, A8 and A9)3If n is a positive integer, the series

1 + x + x2 + x3 + … + xn
3has the sum3

xn+1 − 1
x − 1

show that the sum of the series

1 + 2x + 3x2 + … + nxn 1−11
3is3

nxn+1 − n + 1( )xn + 1

x − 1( )2 ☞
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Question E6

(A7 and A8)3If f and g are functions show that

1
f (x)g(x)







′
= 1

f (x)







′ 1
g(x)

+ 1
f (x)

1
g(x)







′

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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