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1 Opening items

1.1 Module introduction

Applications of differentiation are widespread throughout physics. For example, given the displacement from the
origin of a moving object as a function of time, the corresponding velocity can be found by differentiating that
function. Or, given a simple electrical circuit consisting of a resistor and an inductor connected in series with a
charged capacitor and a switch (i.e. an LCR circuit), the potential differences across the inductor and resistor are,

respectively, L
dI

dt
(t ) and RI(t) where I(t) is the current in the circuit at time t after the switch is closed and L

and R are constants. It is also the case that in such a circuit I (t ) = dq

dt
(t ) where q(t) is the charge on the

capacitor at time t. Because the need to differentiate arises so often in physics it is essential that you should be
able to differentiate readily a wide variety of functions. The techniques of basic differentiation should enable
you to differentiate certain standard functions such as powers, trigonometric functions, exponentials and
logarithms, or certain combinations of those standard functions such as sums, constant multiples, products and
quotients. This module goes further in that it introduces techniques that, when combined with those of basic
differentiation, will allow you to differentiate almost all the functions of a single variable that you are likely to
meet.
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It is often the case that a physical quantity can be represented by a function of a variable that is itself a function
of another variable. For example, the displacement from equilibrium of a one-dimensional simple harmonic
oscillator may be represented by x = A1cos1(ω1t + φ), but (ω1t + φ) is itself a function of t, so we might write
θ(t) = (ω1t + φ), in which case we can write x = A1cos1(θ(t)). Such an expression makes it clear that x is a function
of a function of t, and that to find the velocity of such an oscillator we need to be able to differentiate a function
of a function of t. Section 2 of this module describes functions of a function in more detail and introduces
(in Subsection 2.2) the chain rule for their differentiation. The chain rule is one of the most useful techniques of
calculus; among other things it enables us to differentiate implicit functions, inverse functions and parametric
functions, all of which are discussed in Subsections 2.3, 2.4 and 2.5.

If we want to find the acceleration of an object given its position then we must proceed via its velocity; the
acceleration is the rate of change of the velocity, which is itself the rate of change of the position. Hence the
process requires two successive differentiations. We say that the acceleration is the second derivative of the
position of the object. Similarly, the potential difference across the inductor in the series LCR circuit mentioned
earlier is proportional to dI/dt but I = dq/dt, so the potential difference is proportional to the second derivative of
the charge. Clearly, second (and higher) derivatives are also of interest to physicists, so they form the second
major theme of this module, discussed in Section 3.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?  If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Find the first four derivatives of the following functions:

(a) F(x) = 31sin1x + 41cos1x

(b) y = loge1x x > 0 ☞
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Question F2

If x = a(θ − sin1θ) and y = a(1 − cos1θ), where a is a constant, find

dy

dx
 and 

d2 y

dx2
.

Question F3

Find the first and second derivatives of the following functions:

(a) F(t) = exp[α 1t + sin1(ω1t)] with respect to t, where α and ω are constants

(b) F(x) = 51loge1(sin2
1x + 1) with respect to x

(c) F(x) = arcsin1(5x) with respect to x ☞

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you should be familiar with the following terms: derivative, differentiate,
domain, function and inverse function. You will need to be familiar with the following specific types of function: exponential
functions, logarithmic functions, power functions, trigonometric functions (cosine, sine, tangent, cosec, sec, cot) and inverse
trigonometric functions (arccos, arcsin, arctan). You should also know the meaning of the term radian and be aware of the
need to express angles in radians when using them in the arguments of trigonometric functions. You should be able to
differentiate powers, exponential functions, logarithmic functions and trigonometric functions, and to use the sum rule,
constant multiple rule, product rule and quotient rule of differentiation. If you are unsure of any of these terms then you can
review them by referring to the Glossary, which will also indicate where in FLAP they are developed. The following Ready
to study questions will let you establish whether you need to review some of these topics before working through this
module.
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Question R1

Which of the following formulae can be used to define a function of x? What restrictions are there on the
admissible values of x?

(a) f1(x) = x5

(b) y = arcsin1x (i.e. sin1y = x)

(c) y2 = 4x2

Question R2

For each of the following, express x as a function of y:

(a) y = 9x3
3(b) y = tan x3(c) y = e2x

3(d) y = loge1(3x)

Question R3

Define the derivative of a function f1(x) at x = a.
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Question R4

For each of the functions f1(x) below find the derivative f1′ (x):

(a) 8x6 + 6x3 − 5x2 − 23(b) 31sin1x + 41cos1x

Question R5

Find dy/dx for each of the following:

(a) y = 6ex
3(b) y = x2 −51loge1x

Question R6

Differentiate the following functions of x:

(a) x2ex
3(b) x3

1sin1x3(c) ex
1cos1x

(d) 
loge x

3x2 + x
,  x > 03(e) 

3 cos x

2 + sin x
3(f) 

x

2 + cos x
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A special note about x 3Generally in FLAP we follow the convention that x  may be positive or negative.
Thus 4 = ±2. A consequence of this convention is that f1(x) = x  does not define a function since it does not
associate a unique value of f1(x) with each value of x. This would be an exceptionally inconvenient convention to
follow in this module so instead we adopt the convention that x  is positive. Of course, it remains true that the
square roots of x may be positive or negative, x  or − x , so within this convention we will call x  the
positive square root of x, and not simply the square root. In a similar spirit x1/2 = x  will also be a positive
quantity.
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2 Derivatives of composite functions
2.1 A function of a function
In this subsection, we introduce the concept and notation of a function of a function  ☞  by considering the
example of a simple harmonic oscillator, ☞ such as a (frictionless) simple pendulum or a weight on an (ideal)
spring. At time t the displacement x of such a simple harmonic oscillator from its equilibrium position (x = 0) is
given by

x = A1cos1(ω1t + φ) (1)

where A is the amplitude of the oscillation, ω the angular frequency and φ the phase constant. The expression
inside the brackets, ω1t + φ, is called the phase; it is a function of time, and its value determines the stage the
oscillator has reached in its cycle of motion. The oscillator returns to the same position each time the phase
increases by 2π. ☞ Now, suppose that A = 5.001cm, ω = 0.601s−1 and φ = π, and that you are asked to calculate
the displacement of the oscillator at t = 101s. To answer this question you would first need to evaluate the phase
when t = 101s. This is given by

ω1t + φ = 0.601s−1 × 101s + π = 9.144(to two decimal places)

and then substitute this value into Equation 1 to find

x = 5.001cm × cos1(9.14) = − 4.941cm ☞



FLAP M4.3 Further differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

t

function

multiply by 5 and add 1

find the sixth power of 

input value
output function 

value

5t + 1

t t6

find the sine oft sin t

Figure 13Box representation of a function.

In this example, x is a function of the expression (ω1t + φ),
which is itself a function of t. For this reason x is said to be a
function of a function of t, or a composite function of t.

In Subsection 2.2 we will see how to differentiate such
expressions, but for the moment we concentrate on
reviewing the concept of and notation for a function of a
function.

The use of boxes to represent the action of functions is
helpful here. Figure 1 shows, in this form, the three functions
f1(t) = 5t + 1, f1(t) = t16, f1(t) = sin1t.

In each case the function converts an input value (the
argument of the function) into an output value of the
function. It is an inherent property of functions that a single
output value corresponds to each valid input.
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find the sine oft

function

multiply by 5 and add 1

input value

output function 
of a function 

value

5t + 1 sin (5t + 1)

intermediate 
function valuefunction

find the cosine of
t

multiply by ω and add φ
ωt  + φ cos (ωt + φ)

Figure 23Composite functions.

For the function of a function we use two boxes in series. Figure 2 shows the action of the two composite
functions sin1(5t + 1) and cos1(ω1t + φ).
In each case the output from the first box is used as the input for the second box.
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t apply g

input value

output function 
of a function 

value

g(t) f (g(t))
apply f

intermediate 
function value

put this 
equal to u

f(u)

Figure 33General composite function.

In general, we can consider a composite function f1(g(t)) as depicted in Figure 3. f1(g(t)) is read as ‘f of g of t’.

The composite function can be made more user-friendly by writing u = g(t) so that the output is f1(u).

Hence, if we consider the composite function sin1(5t + 1), we can write g(t) = 5t + 1 so that f(g(t)) = sin1(g(t)) and

we can denote g(t) by u so that f1(u) = sin1u where, in this case, u = 5t + 1. ☞
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Question T1

Draw a box representation of the following functions:

(a) cos1(3t − 4)3(b) (t14 + 2)3
3❏

There are two observations that you may find useful when trying to determine whether or not a function is a
composite. First, decide if the function definition can be read naturally by using the word ‘of’. For example, in

h(x) = loge(x2) (x ≠ 0) ☞

the right-hand side can be read as ‘log to base e of (x squared)’, which helps to identify h(x) as a composite

f1(g(x)), ☞ where

f1(x) = loge1x

and g(x) = x2
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Second, think about how you would calculate function values on a calculator. For h(x) = loge1(x2), you would
proceed as follows:

first enter the value of x and square it,

then find the natural logarithm loge of the result.

A function of a function always involves applying first one process, then another to the result of the first. Table 1
shows some examples of composite functions.

Table 13Some composite functions.

Composite
function

Read as … First … then …

tan1(3x) ‘tan of 3x’ find 3x take tan (of the result)

loge1(1/x) ‘loge of 1/x’ find 1/x take loge (of the result)

esin
1

x ‘exp of sin1x’ find sin1x take exp (of the result)

The following is a very important question. Make sure that you understand it before continuing.
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Question T2

For each of the following functions, decide whether F(x) is a composite function. If F(x) is composite, express F
in the form f1(g(x)), by writing down explicit expressions for u = g(x) and f1(u).

(a) F(x) = e2x

(b) F(x) = ex
1sin1x

(c) F(x) = loge(x3)

(d) F(x) = sin1(x2 + 2x + 1)

(e) F(x) = sin2
1x3(Remember that sin2

1x means (sin1x)2)

(f) F(x) = sin3
1x

(g) F(x) = (cos1x)0.5
3❏
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Two points are worthy of comment to save you from possible errors.

In general f1(g(x)) ≠ g(1f1(x)). The order in which the functions are applied is important. ☞

This is easily illustrated by the following example. When f is the function ‘add 3’ and g is the function ‘square’
then g(1f1(x)) = (x + 3)2 but f1(g(x)) = x2 + 3. The only value of x for which (x + 3)2 = x2 + 3 is x = −1, as you can
verify, so it is generally true that f1(g(x)) ≠ g(1f1(x)). There are some pairs of functions for which f1(g(x)) = g(1f1(x));
for example if g is ‘cube’ and f is ‘square’ then f1(g(x)) = (x3)2 = x6 and g(1f1(x)) = (x2)3 = x6, also. These are
exceptions, however.

✦ Does f1(g(x)) = g(1f1(x)) for the functions g(x) = 2x + 1, f1(x) = 3x + 2?

When dealing with a composite function f1(g(x)), care must be taken to ensure that the function is only
applied to admissible values of x, i.e. to values of x that are within the domain of the composite function.
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Consider the following three examples.

1 g(x) = x2 + 1,  f1(x) = loge1(x)

Here f1(g(x)) = loge1(x2 + 1).

The logarithmic function loge(x) is defined only if x > 0, that is, only if the input to the function is positive.
However, in this case x2 + 1 > 0 for all x, so the composite function is well defined for all (real) values of x.

2 g(x) = x2 −1, f1(x) = x1/2

Here f1(g(x)) = (x2 −1)1/2.

Any input value x will lead to a value of g(x), but the input to the function f must be non-negative. Hence
values of x that satisfy x ≥ 1 or x ≤ −1 are admissible, but values such that −1 < x < 1 are excluded from the
domain of f1(g(x)).

3 g(x) = sin1(x), f1(x) = loge1(x)

Here f1(g(x)) = loge1(sin1(x)).

The values of x for which sin1(x) ≤ 0 are not admissible since they provide an unacceptable input for the loge

function. ☞
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The box diagram presents a useful check. In Figure 4 we show the function loge1(sin1(x)).

x
take the sine

input value

output function 
of a function 

value
intermediate 

function value

sin (x)
take the natural logarithm

loge (sin (x))

Figure 43The function loge1(sin1(x)).

✦ What are the entry requirements for each box in Figure 4?

Question T3

If f1(x) = (x  + 1)1/2 and g(x) = loge1x what are the restrictions on x in order that we may define f1(g(x)) and
g(1f1(x))?3❏
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2.2 The chain rule
It is often necessary to differentiate a function of a function. This can sometimes be achieved by using basic
differentiation techniques. Here, we will consider two special cases where this is possible, and then we will
generalize the results to provide a powerful general rule (the chain rule) that can be used to differentiate any
function of a function.

Using the product rule

Consider the function sin2
1x.

This can be regarded as a function of a function, for if we write g(x) = sin1(x) and f1(x) = x2

then f1(g(x)) = (sin1x)2 = sin2
1x

However, it can also be regarded as a product since sin2
1x = sin1x × sin1x, so it can be differentiated by means of

the product rule to give
d

dx
(sin2

1x) = 
d

dx
(sin1x × sin1x) = (cos1x × sin1x) + (sin1x × cos1x)

i.e.
d

dx
(sin2

1x) = 21sin1x 1cos1x
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Now, the derivative of a function does not depend on how we choose to ‘regard’ the function. So, in this
particular case, we have been able to use the product rule to find the derivative of a function of a function.

Similarly, the function cos2
1x can be considered as a product, so

d

dx
(cos2

1x) = 
d

dx
 (cos1x × cos1x)

= (−sin1x × cos1x) + [cos1x × (−sin1x)] = 21cos1x × (−sin1x) = −21cos1x × sin1x

and 
d

dx
(x3 + 4)2 = 

d

dx
[(x3 + 4) × (x3 + 4)]

= 3x2 (x3 + 4) + (x3 + 4) × 3x2

= 2(x3 + 4) × 3x2
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In each of these three cases the pattern is the same; we start with an expression of the form

q(x) = (function of x)2

and we find that
dq

dx
 = 2(function of x) × (derivative of function)

So, if q(x) = [1p(x)]2

then q′(x) = 2p(x) × p′(x)

Question T4

Find the derivatives of the following composite functions:

(a) q(x) = (2x − 3)2

(b) q(x) = (3x14 + 1)2

(c) q(x) = (x + sin1x)2
3❏
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Using the properties of the logarithmic function
The function loge1(x3) can be regarded as a function of a function, but thanks to the special properties of
logarithmic functions it can also be written as 31loge1x, and it then follows from the constant multiple rule that

d

dx
[loge1(x3)] = 3 × 

d

dx
[loge1(x)] = 3 × 1

x
= 3

x
So, once again, we have been able to use a technique of basic differentiation to find the derivative of a function
of a function. In this case it would have been tempting to have taken the result that the derivative of loge1(x) is
1/x and to have concluded that the derivative of loge1x3 is 1/x3. But this is clearly wrong. In fact, the correct

answer, 
3
x

= 1
x3

× 3x2  and the ‘correction factor’ of 3x2 is the derivative of the function x3.

✦ What is the derivative of loge1(x5)?

We can summarize this result as follows:

if q(x) = loge1[p(x)]

then q′(x) = 
1

p( x )
 × p′(x)
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The general case1—1the chain rule
The two boxed results given above are special cases of a general rule for differentiating functions of functions.
That general rule is known as the chain rule.

The chain rule
If q(x) = f1(g(x))

then q′(x) = f1′(g(x)) × g′(x) (2a)

Alternatively, if we write

u = g(x) and q = f1(u)

then we can express the chain rule in the form
dq

dx
= dq

du
× du

dx
(2b)

The chain rule, expressed in either of these equivalent forms is also known as the function of a function rule.

You will also see the rule written in various ‘mixed’ notations such as 
dq

dx
= ′f (u) × du

dx
.



FLAP M4.3 Further differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

When we use the chain rule in the form of Equation 2b,
dq

dx
= dq

du
× du

dx
(Eqn 2b)

it is almost as if we are multiplying together two fractions, dq/du and du/dx, and cancelling the du terms to leave
dq/dx. We most definitely are not doing this, but it must be admitted that the idea makes the rule easier to
remember!

All of the results obtained earlier in this subsection using the product rule, or the special properties of
logarithmic functions, can also be obtained from the chain rule. For example, if we look again at the function
q(x) = sin2

1x but we now identify g(x) = u = sin1x and q = u2, the chain rule tells us that

′q ( x ) = dq

du
× du

dx
= 2u × cos x = 2 sin x cos x

Similarly, in the second example, if q(x) = (x3 + 4)2 and we identify u = x3 + 4 and q = u2

then q′(x) = 
dq

du
× du

dx
 = 2u × (3x2) = 2(x3 + 4) × 3x2 = 6x2(x3 + 4)

Also, if q(x) = loge1(x3) and we identify u = x3 and q = loge u

then q′(x) = 
dq

du
× du

dx
 = 

1
u

× (3x2 ) = 3x2

x3
= 3

x
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Moreover, the chain rule can be applied to many other composite functions that could not be differentiated using
more elementary techniques. We can summarize the steps involved in applying the chain rule as follows:

To differentiate a function of a function q(x) = f1(g(x)) using the chain rule:

1 Identify u = g(x) and q = f1(u)

2 Differentiate to find 
du

dx
 and 

dq

du
.

3 Multiply the last two expressions to find 
dq

dx
.

4 Rewrite u in terms of x and simplify. ☞

Here are some worked examples to show how this procedure works in practice.
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Example 1 Find the derivative of esin1x.

Solution Let  u = sin1x and q = eu

then
du

dx
= cos x ,

dq

du
= eu

so
dq

dx
= dq

du
× du

dx
= eu × cos x

thus
dq

dx
= esin x × cos x = cos x esin x

3❏



FLAP M4.3 Further differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Example 2 Find the derivative of sin1(x2 + 1).

Solution Let  u = x2 + 1 and q = sin1u

then du

dx
= 2 x ,

dq

du
= cos u

so dq

dx
= dq

du
× du

dx
= cos u × 2 x

thus dq

dx
= cos ( x2 + 1) × 2 x = 2 x cos ( x2 + 1)

3❏

Question T5

Using the chain rule, find the derivatives of the following functions:

(a) e2x,  (b) exp1(x2),  (c) (x2 + 1)5,  (d) sin1(6x),  (e) cos1(3x),  (f) loge1(ex),

(g) loge1(1 + x2),  (h) cos1(ω1t + φ).3❏
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In practice you may have to deal with much nastier functions, and they may include functions of functions of
functions or worse! This is where the chain rule really justifies its name since we can go on applying it as though
adding links to a chain. For example, if q = f1(g(h(x))) then we can let v = h(x), u = g(v) and q = f1(u) and use the
chain rule to obtain

  

dq

dx
= dq

du
× du

dv
× dv

dx
= ′f (u) × ′g (v) × ′h ( x )

In practice, when faced with this kind of problem, it is often easier to just repeatedly apply the usual two-step
form of the chain rule. Part (c) of the next question will give you the chance to try this for yourself.
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✦ Differentiate the following composite functions, which all arise in physical problems, with respect to the
indicated variable.

(a) The Gaussian function, y = 
1

σ 2π
exp[− (x − m)2 (2σ 2 )],

with respect to x, where σ, m and π are constants.

(b) The Boltzmann factor, y = e−E/kT, 
with respect to T, where E and k are constants.

(c) The Planck function, y = 
2hc2

λ5

1
(ehc / λkT − 1)

, 

with respect to λ, where h, c, k and T are all constants.
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2.3 Differentiating implicit functions
Functions are often specified explicitly in terms of equations or formulae such as f1(x) = ax2 or θ(t) = ω1t + φ,
where the dependent variable is isolated on the left-hand side as the subject of the equation. However, it is also
possible to specify a function implicitly by means of a formula that relates the dependent and independent
variables, but does not isolate the dependent variable as the subject. For instance, the formula

y

a
 − x = 0 (3)

implicitly defines y as a function of x, even though it does not do so explicitly. In this particular case a little
algebraic manipulation soon leads to the explicit relationship y = ax2, but there are also cases where an implicitly

defined function has no explicit representation at all. ☞  In general, a dependent variable y will be defined

implicitly as a function of an independent variable x if x and y are related by an equation of the form

F(x, y) = 0

where F(x, y) is a function of both x and y. A function y(x) defined in this way is called an implicit function.
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The chain rule makes it possible to differentiate implicit functions by means of a technique known as implicit
differentiation. As a simple example, suppose that y is defined as an implicit function of x by the equation

y3 = x5

Differentiating both sides of this equation (with respect to x) gives us
d

dx
(y3 ) = 5x4

But, if we put u = y3 and use the chain rule 
du

dx
= du

dy
× dy

dx
 we find

d

dx
( y3 ) = 3y2 dy

dx

thus 3y2 dy

dx
= 5x4  and hence 

dy

dx
= 5x4

3y2

We can now use the original relationship between x and y to express the right-hand side entirely in terms of x. In
this case, y2 = x10/3

so dy

dx
= 5

3
x2 3
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In physics, implicit differentiation often arises in proofs and derivations, and frequently involves functions that
have no exact explicit representation.

Question T6

Use the technique of implicit differentiation to find dy/dx if y5 = sin1x. Leave your answer as an expression in
both x and y.3❏
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2.4 Differentiating inverse functions
This subsection shows how the chain rule can be used to differentiate inverse functions such as the inverse
trigonometric function arcsin1x. However, before introducing the general method for differentiating such
functions we consider a simple problem that illustrates a useful ancillary rule.

✦ If y = x1/2, write down dy/dx. ☞  Then write down an expression for x in terms of y, and hence find dx/dy as
a function of y. Finally, express dx/dy in terms of x.

Notice that the expression for 
dy

dx
 in the last question is the reciprocal of that for 

dx

dy
. This is illustrative of a

very useful general rule, the inversion rule:

the inversion rule:
dx

dy
= 1

dy

dx




 (4) ☞

This looks as if we are finding the reciprocal of a fraction dy/dx. That is definitely not what we are doing, but it
does make the rule easy to remember.



FLAP M4.3 Further differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

−1 −0.5 0.5 1

−π/2

π/2

y

x

Figure 53The graph of y = arcsin1x.

In a few cases the inversion rule is sufficiently powerful on its own to
enable us to differentiate some inverse functions. For instance, using
the inversion rule we can differentiate loge x, the inverse function of ex.
If y = loge x, then x = ey and dx/dy = ey. Now, using this result together
with the inversion rule,

d ( loge x )
dx

= dy

dx
= 1

dx

dy







= 1
ey

= 1
x

Often, though, the inversion rule is not enough and we have to use the
chain rule to differentiate inverse functions. As an example, consider
the problem of finding the derivative dy/dx when

y = arcsin1x ☞

The graph of this function is shown in Figure 5. Taking the sine of both sides gives us

sin1y = sin1(arcsin1x) = x

Now differentiate both the right and left-hand sides of this equation with respect to x. The right-hand side is
simply 1, but to differentiate the left-hand side we have to apply the chain rule.
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Figure 53The graph of y = arcsin1x.

If we let z = sin1y,
dz

dx
= dz

dy
× dy

dx
= cos y × dy

dx

Hence, the result of differentiating both sides of the equation sin1y = x is

cos y × dy

dx
= 1

so that
dy

dx
= 1

cos y

All that remains is to express the right-hand side in terms of x.

To do this note that cos2
1y = 1 − sin2

1y = 1 − x2, so cos y = ± 1 − x2 .

Now, an examination of Figure 5 shows that the graph of y = arcsin1x has a positive gradient throughout its
domain of definition, so only positive values of cos1y are admissible and hence we must use the positive square
root when writing the final answer.

Thus
dy

dx
= 1

1 − x2
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Table 2 records this result together with the derivatives of some other inverse functions.

Table 2   Derivatives of some inverse functions.

f1(x) f1′(x)

arcsin1x 1

1 − x2

arccos1x −1

1 − x2

arctan1x 1

1 + x2

arcsec1x 1

x x2 − 1

arccosec1x −1

x x2 − 1

arccot1x −1

1 + x2

Finally let us look at a more complicated example that uses both the chain rule and the inversion rule.
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Figure 63Motion of an object
released from an aircraft.

Example 3 Figure 6 shows the trajectory of a falling object released at
point O from an aircraft moving horizontally with a constant speed u. The
tangent at any point on the trajectory is inclined at an angle θ to the
horizontal as shown, and this angle increases throughout the fall. What is the
rate of change of θ with time?

Solution Assuming that air resistance may be neglected, and using the
coordinate system shown in Figure 6, in which x increases to the right and y
increases downwards, the components of velocity in the horizontal and
vertical direction will be

dx

dt
= u4and4 dy

dt
= gt

where g is the magnitude of the acceleration due to gravity.

Now, you should be able to see from Figure 6 that tan1θ = dy/dx

But using the chain rule and the inversion rule we find
dy

dx
= dy

dt
× dt

dx
= dy

dt

dx

dt
= gt

u
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Thus, tan θ = gt

u

and from this we obtain θ = arctan
gt

u






So, to find the rate of change of θ with t, i.e. 
dθ
dt

, we need to differentiate the inverse function arctan1
gt

u




 .

To do this we first take the tangent of both sides:

tan θ = tan arctan
gt

u












= gt

u

and then differentiate with respect to t. The right-hand side gives g/u, so applying the chain rule to the left-hand
side we obtain

sec2 θ × dθ
dt

= g

u

so
dθ
dt

= g

u sec2 θ
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Now we only need to express sec2
1θ in terms of t, and we can do this using a standard trigonometric identity ☞

and the expression for tan1θ we obtained earlier sec2 θ = 1 + tan2 θ = 1 + g2t2

u2

Thus
dθ
dt

= g

u
× 1

1 + g2t2

u2







= gu

u2 + g2t2
3❏
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A word of caution3If you differentiate the function θ = arctan1(t) then,

as Table 2 indicates, you should find that 
dθ
dt

= 1
1 + t2

. It would be quite wrong to conclude from this that the

process of differentiating θ = arctan
gt

u




  can be accomplished by simply replacing t on the right-hand side by

gt/u. You can obtain the right answer by replacing t by gt/u on both sides, but the safest way is to go through the
full method as we have just done.3❏

Question T7

Find the derivative of each of the following functions:

(a) arcsin1(x2),4(b) arccos1(x2 + 4)  (☞),4(c) arctan1(3 − x)3❏ ☞
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2.5 Differentiating parametric functions

It is sometimes useful to express two variables x and y each in terms of a third variable called a parameter. For
example, in coordinate geometry  ☞ the equation that represents a circle of radius a, centred on the origin, is
usually written in the form

x2 + y2 = a2

However, thanks to the trigonometric identity cos2
1θ + sin2

1θ = 1, the same circle can also be represented in
terms of the parameter θ by the pair of equations

x = a1cos1θ (5a)

y = a1sin1θ (5b)

where θ may take any value in the range 0 to 2π.

Eliminating θ from Equations 5a and 5b (by squaring and adding the two equations) immediately yields the
usual equation of the circle. Equations 5a and 5b are called the parametric equations of the circle. Functions
defined in terms of parametric equations are called parametric functions. Whenever we describe the motion of
a moving object by specifying its position coordinates x, y and z as functions of time, we are really writing down
the parametric equations of the object’s pathway, with time t as the parameter.
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Returning to the case of the circle x2 + y2 = a2, if we want to find dy/dx, the gradient of the tangent at a point on
the circle, we can use the parametric equations and employ a variation of the chain rule, namely

dy

dx
= dy

dθ
× dθ

dx
= dy

dθ
dx

dθ
(6)

Now,
dy

dθ
= a cos θ 3and3

dx

dθ
= −a sin θ

so we obtain
dy

dx
= a cos θ

−a sin θ
= − cot θ

This is an example of parametric differentiation. ☞
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x

y

O

Figure 73Trajectory of a projectile.

Example 4

As illustrated in Figure 7, a projectile is fired into the air at an angle of
60° to the horizontal with a speed of u = 61m1s−1, so its initial horizontal
velocity is ux = u1cos1(60°) = 31m1s−1, and its initial vertical velocity is uy

= u1sin1(60°) = 3 3 1m1s−1. What is the flight time for the projectile to
reach the top of its trajectory (i.e. how long does it take to reach the
point at which the tangent to the trajectory is horizontal)?

Solution If we neglect air resistance, and take upwards as the positive

y-direction, the equations describing its trajectory are ☞

x = uxt3and3 y = uyt − 1
2 gt2

where x and y are, respectively, the horizontal and vertical displacements from the point of projection at time t,
and g is the magnitude of the acceleration due to gravity. The horizontal and vertical components of the velocity
are given by

dx

dt
= ux

3

and
3

  

dy

dt
= uy − gt
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At the top of the trajectory the tangent to the trajectory is horizontal, therefore 
dy

dx
= 0  but, using the chain rule

and the inversion rule
dy

dx
= dy

dt
× dt

dx
= dy

dt

dx

dt
=

uy − gt

ux

so at the top of the trajectory

uy − gt

ux

= 0 , i.e. t =
uy

g
3❏

Question T8

Find the derivative dy/dx for each of the following pairs of parametric equations:

(a) x = a1cos1θ, y = b1sin1θ
(b) x = at2, y = 2at

(c) x = ct, y = c/t3❏
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3 Second and higher derivatives

3.1 The derivative of a derivative
In the same way that we can differentiate a function f1(x) to obtain its derivative (or derived function) f1′(x), so we
can differentiate the function f1′(x) to obtain its derivative which is denoted f1″(x). This is called the second
derivative of f1(x).

Hence if f1(x) = 4x3 + 7x2 + 6x − 83it follows that

f1′(x) = 12x2 + 14x + 6

and f1″(x) = 24x + 14 ☞
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If we write y = f1(x) and denote its derivative (sometimes called its first derivative in this context) by dy/dx, then

an alternative notation for the second derivative is 
d2 y

dx2
. ☞  For example, if y = 41sin1(2x) + e3x, then the first

derivative is
dy

dx
= 8 cos (2 x ) + 3e3x

and the second derivative is

d

dx

dy

dx




 = d2 y

dx2
= 8 × [−2 sin (2 x )] + 3 × (3e3x )

i.e.
d2 y

dx2
= −16 sin (2 x ) + 9e3x
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Notice that the notation 
d2 y

dx2
 is a rather natural one since it suggests that the operation of differentiation has

been repeated twice. Indeed, the symbol d/dx is sometimes referred to as a differential operator since it
conveys the instruction to differentiate whatever appears immediately to its right. Also notice the precise
position of the superscript 2s in the second derivative symbol; it is the differential operator that is ‘squared’, not
the independent variable y.

Some important physical quantities are often thought of as second derivatives. For instance, in kinematics1

—1the study of motion1— 1velocity is defined as the rate of change of position, so 
  
vx = dx

dt
 for example, but

acceleration is defined as the rate of change of velocity, so 
  
ax = dvx

dt
 and consequently we can regard

acceleration as a second derivative, with ax = d2 x

dt2
. Indeed, derivatives with respect to time arise so often in

physics that you will often see them denoted by a special notation that uses a dot to indicate differentiation; thus
vx = ẋ (t) and ax = ˙̇x (t).
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Question T9

Find f1″(x) for each of the following functions:

(a) f1(x) = x6 − 2x2 + 7

(b) f1(x) = ax + b,3where a and b constants

(c) f1(x) = a1sin1x + b1cos1x

(d) f1(x) = e3x

(e) f1(x) = loge1(x2 + 1)

(f) Rewrite your answers to parts (a) to (e) using 
d2 y

dx2
 notation.3❏

Question T10

(a) If the x-coordinate of a moving object is given as a function of time by x(t) = pt + qt2, find expressions for the
components of velocity and acceleration in the x-direction.

(b) Find ˙̇x (t ) when x(t) = A1sin1(ω1t) and when x(t) = B1cos1(ω1t).3❏



FLAP M4.3 Further differentiation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3.2 Higher derivatives
Assuming that the necessary derivatives exist, we can differentiate a function y = f1(x) as many times as we want.
The third derivative is the derivative of the second derivative, the fourth derivative is the derivative of the third
derivative and so on. All these are known collectively as higher derivatives, and we define them by

d3y

dx3
= d

dx

d2 y

dx2







, 
d 4y

dx4
= d

dx

d3y

dx3







, and so on.

In general, the nth derivative is defined by 
dny

dxn
= d

dx

dn−1y

dxn−1







 (7) ☞

To be consistent with this notation we should write 
dy

dx
 as 

d1y

dx1
 but this is never done in practice.

In the alternative functional notation, derivatives higher than the third are usually denoted by lower case Roman

numerals: f1′(x), f1″(x), f1″′ (x), f1(iv)(x) …, but the nth derivative is usually denoted f1(n)(x). ☞
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Example 5

Find the first three derivatives of y = 1
x3

.

Solution

dy

dx
= −3

x4
,

d2 y

dx2
= +12

x5
,

d3y

dx3
= −60

x6
3❏

✦ Find the first three derivatives of xn, where n ≥ 3. What happens if n = 2?

Example 6 Find the first four derivatives of f1(x) = 3x4 − 8x3 + 5x2 − 6.

Solution f1′(x) = 12x3 − 24x2 + 10x

f1″(x) = 36x2 − 48x + 10

f1″′(x) = 72x − 48

f1(iv)(x) = 723☞3❏
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Example 7 Find the nth derivative of f1(x) = e3x.

Solution The first, second and third derivatives are

f1′(x) = 3e3x, f1″(x) = 3 × 3e3x = 32e3x, and f1″′(x) = 32 × 3e3x = 33e3x.

It is clear from these that in general, the nth derivative is given by

f1(n)(x) = 3ne3x
3❏

Question T11

Find the first four derivatives and the nth derivative of the following functions:

(a) y = f1(x) = 4e5x

(b) y = 3x3

(c) y = A1cos1(2x) + B1sin1(2x)3where A and B are constants.

(d) y = loge1x3where x ≠ 03❏
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3.3 Second derivatives of implicit and parametric functions
The techniques we have accumulated so far to obtain f1′(x) from f1(x) can, in most cases, be applied to f1′(x) to
obtain f1″(x) with no major difficulties. There are, however, two points which need great care. First is the fact
that

dx

dy
= 1

dy

dx




  is an exception

d2 x

dy2
3and31

d2 y

dx2







 are not generally equal.
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Consider, for example the relationship

y = 1
x

Differentiating this expression twice we obtain

dy

dx
= − 1

x2
4and4 d2 y

dx2
= + 2

x3

Now, if x = 1
y

,
dx

dy
= − 1

y2 4
and

4

d2 x

dy2
= + 2

y3

So, while it is true that 
dx

dy
= −1

y2
= − x2 = 1

dy

dx






it is also the case that 
d2 x

dy2
≠ 1

d2 y

dx2






3☞

since
d2 x

dy2
= 2

y3
= 2 x3, whereas 1

d2 y

dx2







= 1
2
x3





 = x3

2
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We also need to take great care over parametric differentiation. We have seen that for the pair of equations

x = a1cos1θ4and4y = a1sin1θ

dy

dx
= dy

dθ
× dθ

dx
= dy

dθ
dx

dθ
= a cos θ

−a sin θ
= − cot θ

But to obtain 
d2 y

dx2
 we need to determine 

d2 y

dx2
= d

dx
− cot θ( ) .

This can be done with the aid of the chain rule, either by writing z = −cot1θ and using
dz

dx
= dz

dθ
× dθ

dx

or more directly, by writing

d

dx
(− cot θ ) = d

dθ
(− cot θ ) × dθ

dx

In either case we use the inversion rule to replace dθ/dx by the reciprocal of dx/dθ and hence obtain

d2 y

dx2
= d

dθ
(− cot θ )

dx

dθ
= +cosec2 θ

−a sin θ
= − 1

a
cosec3 θ
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Example 8

If x = at2 and y = 2at, determine 
d2 y

dx2
.

Solution
dx

dt
= 2at3and3

dy

dt
= 2a

so dy

dx
= dy

dt
× dt

dx
= dy

dt

dx

dt
= 2a

2at
= 1

t

hence
d2 y

dx2
= d

dx

dy

dx




 = d

dx

1
t







using the chain rule, we find
d2 y

dx2
= d

dt

1
t





 × dt

dx
= − 1

t2
× dt

dx

and using the inversion rule, we find
d2 y

dx2
= −1

t2

dx

dt
= −1

t2

1
2at

= −1
2at3
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It is worth observing that implicit differentiation provides an alternative way of dealing with this example. To
adopt this approach start by noting that y2 = 4a2t2 = 4a × at2 = 4ax.

So implicit differentiation of this with respect to x gives us

2 y
dy

dx
= 4a

A second implicit differentiation, in which y
dy

dx
 is treated as a product, gives

2 y
d2 y

dx2
+ 2dy

dx
× dy

dx
= 0

so 2 × 2at × d2 y

dx2
+ 2

1
t

× 1
t

= 0

i.e. 4at
d2 y

dx2
+ 2

t2
= 0

hence, as before
d2 y

dx2
= −2

t2
× 1

4at
= −1

2at3
3❏
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Question T12

Find 
d2 y

dx2
 for each of the following pairs of parametric equations:

(a) x = cos1θ, y = sin1θ
(b) x = a1cos1θ, y = b1sin1θ
(c) x = ct, y = c/t3❏
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4 A further example
We will end by tackling a set of related electrical problems1—1all of which involve a circuit containing an
inductor and capacitor (an LC circuit). Working through each of the steps in these problems for yourself will
help you to review what you have learned in this module.

4.1 An example from electrical circuits
In a series LC circuit the charge q(t) on the capacitor at time t > 0 satisfies the equation

L
d2q

dt2
+ 1

C
q = 0 (8) ☞

where L and C are constants, known as the inductance and capacitance, respectively.

The first problem we consider is that of showing that

q(t ) = A cos
t

LC






+ B sin
t

LC






 (9)

satisfies Equation 8 for arbitrary values of the constants A and B.

To do this we need to deduce an expression for d2q/dt2 from Equation 9 and substitute it into Equation 8.
The first step is to find dq/dt from Equation 9.
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Now, q(t) is the sum of two terms, each of which is a function of a function. Taking just the second term and

calling it y  we have y = B sin
t

LC






 and if we put u = t

LC
 we find y  = B1sin1u. From this, we see

du

dt
= 1

LC
 

and

 

dy

du
 = B1cos1u, and if we then use the chain rule, we find

dy

dt
= dy

du
× du

dt
= B cos u × 1

LC
= B

LC
cos u = B

LC
cos

t

LC






✦ If we now repeat the process for the first term in Equation 9,

q(t ) = A cos
t

LC






+ B sin
t

LC






 (Eqn 9)

what is the derivative of the term?

y = A cos
t

LC





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✦ From the above discussion, what is dq/dt from Equation 9?

q(t ) = A cos
t

LC






+ B sin
t

LC






 (Eqn 9)

So we now know dq/dt. We now need to find 
d2q

dt2

✦

What is the derivative of y = − A

LC
sin

t

LC






?

✦ What is the derivative of y = B

LC
cos

t

LC






?
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✦

What is 
d2q

dt2
?

Therefore, if we substitute this result (and Equation 9) into Equation 8,

q(t ) = A cos
t

LC






+ B sin
t

LC






     (Eqn 9 L
d2q

dt2
+ 1

C
q = 0 (Eqn 8)

we find

L
d2q

dt2 + 1
C

q = L
− A

LC
cos

t

LC







− B

LC
sin

t

LC















 + 1

C
A cos

t

LC







+ Bsin
t

LC

















= − A

C
cos

t

LC







− B

C
sin

t

LC







+ A

C
cos

t

LC







+ B

C
sin

t

LC







= 0

Thus the given expression (Equation 9) does satisfy the equation L
d2q

dt2
+ 1

C
q = 0 , irrespective of the values of

A and B.
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Now we can consider a related problem. Given that Equation 9 provides a solution to Equation 8 for any values
of A and B, what are the specific choices of A and B needed to ensure that at time t = 0 the charge on the
capacitor has the value q0 and the rate of flow of charge in the circuit is zero? In other words, what choices of A
and B ensure that

q(0) = q04and4 dq

dt
(0) = 0

To satisfy the second of these conditions we require

− A

LC
sin (0) + B

LC
cos (0) = 0

i.e.
B

LC
= 0

We must therefore choose B = 0, so q = A cos
t

LC






To satisfy the additional condition that q(0) = q0 we require

A1cos1(0) = q0 i.e. A = q0

so the solution satisfying both the given initial conditions is q(t ) = q0 cos
t

LC





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5 Closing items

5.1 Module summary
1 A function of a function produces an output by applying first one process, then another to an input.

2 In general f1(g(x)) ≠ g(1f1(x)). The order in which the functions are applied is important.

3 When dealing with a composite function f1(g(x)), care must be taken to ensure that the function is only
applied to admissible values of x, i.e. to values of x that are within the domain of the composite function.

4 A function of a function can be differentiated using the chain rule, which states that if u = g(x) and q = f1(u),
then

dq

dx
= dq

du
× du

dx
= ′f (u) × ′g ( x ) (Eqn 2)

5 An implicit function is a function that is defined by means of a relation such as F(x, y) = 0. The chain rule
makes it possible to differentiate implicit functions by the technique of implicit differentiation.

e.g. if y3 = x5 then 3y2 dy

dx
= 5x4 , so 

dy

dx
= 5x4

3y2
= 5

3
x2 / 3
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6 According to the inversion rule

dx

dy
= 1

dy

dx




 (Eqn 4)

7 Inverse functions can be differentiated by applying the inversion rule and the chain rule.

8 If x and y are both defined in terms of a parameter θ, then the derivative 
dy

dx
 may be determined by the

technique of parametric differentiation

dy

dx
= dy

dθ
× dθ

dx
= dy

dθ
dx

dθ
(Eqn 6)

9 If y = f1(x), then the nth derivative of y is defined by

dny

dxn
= d

dx

dn−1y

dxn−1







(Eqn 7)

The first four derivatives of f1(x) may also be represented by f1′(x), f1″(x), f1″′ (x), f1(iv)(x), and the nth derivative
by f1(n)(x).
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Identify a function of a function.

A3 Use the chain rule to find the derivative of a function of a function.

A4 Find the derivative of an inverse function.

A5 Find the derivative of a function defined parametrically or implicitly.

A6 Find the second derivative of a function of a function.

A7 Find the second derivative of an inverse function.

A8 Find the second derivative of a function defined parametrically or implicitly.

A9 Find the nth derivative of a function.

A10 Recognize and use the different notations for higher derivatives.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)3Which of the following is a function of a function? If it is necessary to restrict the values of x, then say so.

(a) F(x) = sin1(3x)

(b) F(x) = loge1(1 − x2)

(c) y3 = x.

Question E2

(A2 and A3)3Find the derivative of:

(i) each of the functions in Question E1,

(ii) f1(g(x)) and g(1f1(x)), where u = g(x) = x3 + 2 and f1(x) = 5x + 4.
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Question E3

(A2, A3 and A4)3Find the derivative dy/dx of y = arccos1(3x − 2).

Question E4

(A2, A3 and A5)3Find the derivative dy/dx when

x = 2 + 3 2t3and3 y = 1 + 3 2t − 4. 9t2

Questions E5

(A2 to A8)3Find the second derivatives of the functions in Questions E1, E3 and E4. If it is necessary to restrict
the values of x, then say so.
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Question E6

(A6 and A9)3Find the first five derivatives and the nth derivative of the following functions:

(a) f ( x ) = x6 − 2 x4 − x3 + 6 x

(b) f ( x ) = xe x

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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