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1 Opening items

1.1 Module introduction
Many of the functions used in physics (including sin1(x), tan1(x) and loge1(x)) are impossible to evaluate exactly
for all values of their arguments. In this module we study a particular way of representing such functions by
means of simpler polynomial functions of the form a0 + a1x + a2x2 + a2x3 …, where a0, a1, a2, etc. are constants,
the values of which depend on the function being represented. Sums of terms of this kind are generally referred
to as series. The particular series we will be concerned with are known as Taylor series. We also show how, in
certain circumstances, the first few terms of a Taylor series can give a useful approximation to the corresponding
function.

For a physicist, the ability to find Taylor approximations is arguably the most useful skill in the whole
‘mathematical tool-kit’. It allows many complicated problems to be simplified and makes some mathematical
models easier to solve and, perhaps more important, easier to understand.

Section 2 of this module begins by showing how some common functions can be approximated by polynomials.
In each case the polynomial has the property that the values of its low-order derivatives, when evaluated at a
particular point, are the same as those of the function which it approximates.
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In Section 3 we show how this feature leads to a general technique for representing functions by means of series,
and how taking the first few terms of such series can provide a useful approximation to the corresponding
function. Subsections 3.1 and 3.2 are concerned with Taylor polynomials and series where the argument, x, of
the corresponding function is close to zero. In Subsections 3.3 and 3.4 we consider polynomials and series for
which x is not close to zero. Subsection 3.6 gives some useful tricks and short-cuts which can be used when
finding Taylor polynomials and series. Subsection 3.5 lists some standard Taylor series, and Subsection 3.7
gives some applications of the ideas introduced in this module.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements  listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Write down the general expression for the Taylor expansion of a function, f1(x), about the point x = a. Use this
series to find the first five terms in the expansion of x  about x = 1. ☞

Question F2

Write down the Taylor expansions of exp1(x) and sin1(x) about x = 0, and hence find the first three non-zero terms
in the Taylor expansion of exp1(x2)1sin1(2x) about x = 0.
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment To begin the study of this module you need to be familiar with the following terms: approximation (≈),
constant, factorial (n!), function, gradient (of a graph), modulus (or absolute value, e.g. |1x1|1), power, radian, root,
summation symbol (∑), tangent (to a curve) and variable. You should also be familiar with the following topics: sketching
graphs of elementary functions (such as y = sin 1(x)); finding nth order derivatives of simple functions; the properties
(including derivatives and values at important points) of the elementary functions, such as the trigonometric, exponential and
logarithmic functions, simplifying, expanding and evaluating algebraic expressions. Some familiarity with infinite series and
the convergence of such series would also be useful, but this is not essential. If you are unfamiliar with any of these topics,
you should consult the Glossary, which will indicate where in FLAP they are developed. The following Ready to study
questions will help you to establish whether you need to review some of the above topics before embarking on this module.

Question R1

Find the value of the derivative of 1 + 2x + 3x2 at x = 2.

Question R2

What are the values of n! for n = 0, 1, 2, 3, 4?

Mike Tinker
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Question R3

Simplify the following expression

2n

n=0

n=4

∑ xn − xn

n=0

n=3

∑

and give your answer without using the summation symbol.

Question R4

Using primes to denote differentiation, find f1(1), f1′(1), f1″(1) and f1(3)(1) for

f1(x) = x3 + x04
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Question R5

If p(x) is defined by

p(x) = 1 + 3x + 2x2

write down simplified expressions for p(−x), p(2x) and p(1 + 2x).

Question R6

Given that P(x) = 1 + x + x02 and Q(x) = 2 − x + 3x02, expand and simplify P(x)Q(x).
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2 Polynomial approximations

2.1 Polynomials
Many different kinds of functions are used throughout mathematics and physics. Whereas some functions, such

as f (x) = x − x3

6
+ x5

120
(1)

g(x) = 1 + x

2
− x2

8
(2)

h(x) = 1 + x (3)

are polynomial functions, others, such as

u(x) = sin1(x) (4)

  v(x) = 1 + x (5)

w(x) = 1
1 − x

(6)

are not.
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A function p(x) is a polynomial function of x (or in x) if it can be expressed in the form

p(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (7)

in other words, as a sum of powers of x, with each power multiplied by a coefficient (a0, a1, and so on).
The powers of x are non-negative integers.

While it is easy to see that expressions such as 1 + 2x − x2 − x3 and x5 + (x − 1)4 are polynomials in x, it is not
always so easy. For example,

(ex −  e−x)2 − (ex + e−x)2 + (x1sin1x)2 + (x1cos1x)2

is actually a polynomial in x (in fact −14 + x2), but it may take a few moments thought to see why this is so.

✦ Which of the following are polynomials in x?

(a) 1 + x + (x − 1)2,4(b) 1 + ex + e2x,4(c) 
1

1 + x + x2
,4(d) 1 + 1

x
+ 1

x2
+ 1

x3
.
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The highest power of the variable in a polynomial is known as the degree of the polynomial. For example, in the
above expression for p(x) (Equation 7),

p(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (Eqn 7)

the degree is n (assuming that an is non-zero).

Question T1

What are the degrees of the polynomial functions f1(x), g(x) and h(x), defined in Equations 1, 2 and 3?

f (x) = x − x3

6
+ x5

120
(Eqn 1)

g(x) = 1 + x

2
− x2

8
(Eqn 2)

h(x) = 1 + x (Eqn 3)

4❏
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Low-order polynomials are often given special names. Polynomials of degree zero are simply constants;
polynomials of degree one are called linear; those of degree two are called quadratic and those of degree three

are called cubic. ☞

An important property of any polynomial, p(x), is that for any value of x, the value of p(x) can be calculated by
simply using the arithmetic operations of addition (or subtraction) and multiplication. This is not the case with
many other functions (for example, u(x), v(x) and w(x), defined in Equations 4, 5 and 6)

u(x) = sin1(x) (Eqn 4)

  v(x) = 1 + x (Eqn 5)

w(x) = 1
1 − x

(Eqn 6)

and it can be very useful to know polynomial approximations to such functions.
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Question T2

Plot the functions h(x) and w0(x) (defined in Equations 3 and 6)

h(x) = 1 + x (Eqn 3)

w(x) = 1
1 − x

(Eqn 6)

on the same graph for 0 ≤ x ≤ 0.9. Compare the two curves. (Hint: You do not need to plot these functions ‘by
hand’. If you have access to a graph plotting calculator or computer program, use it!)4❏
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Figure 94See Answer T2.

The exercise that you have just completed shows that, for
‘small’ values of x , the polynomial function h (x ) is
approximately the same as w(x), so here we have an example
of a polynomial  approximat ion  to the function
1/(1 − x).

However, we can see from Figure 9 that the approximation
becomes progressively worse as x increases towards the
value 1.

Mike Tinker
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−2π −π π 2π
−1

1

y = p1(x) = x 

y = sin(x)

y

x

Figure 14Graphs of the functions y = x and y = sin1(x). Note that
throughout this module the argument of any trigonometric function is either
a dimensionless variable or an angle in radians rather than degrees.

In Figure 1 we have plotted the graphs of
y = sin1(x) and y = x on the same axes.
As you can see, the graphs of the two
functions are very similar for small

values of |1x1|, ☞  but as |1x1| increases,

the discrepancy gets progressively
worse, so that for |1x1| above about 0.7 it
is very noticeable, and above π/2
(i.e. approximately 1.57) the two graphs
show no similarity at all.

So there may be circumstances where we
would be justified in approximating
sin1(x) by x, but such an approximation is
only likely to be useful for small values
of |1x1|.
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θ( t)

Figure 24A simple
pendulum.

For example, an analysis of the motion of a simple pendulum gives the (apparently
intractable) equation

d2

dt2
θ (t)[ ] = −ω 2 sin[θ (t)] (8) ☞

where θ(t) is the angle shown in Figure 2 and ω is a constant (called the angular
frequency). For small deviations of the pendulum from the vertical, θ0(t) is small, and we
are justified in making the approximation sin1(θ0) ≈ θ , giving

d2

dt2
θ (t)[ ] ≈ −ω 2θ (t)

and the equation 
d2

dt2
θ (t)[ ] = −ω 2θ (t)  is straightforward to solve.
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Question T3

Show that θ (t) = sin1(ω00t) is a solution of

d2

dt2
θ (t)[ ] = −ω 2θ (t) (9)

but not of

d2

dt2
θ (t)[ ] = −ω 2 sin[θ (t)] (Eqn 8)4❏
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−2π −π π 2π
−1

1
y = sin(x)

y

x

y = p3(x) = x − x3

6

Figure 34Graphs of the functions  y = x − (x3/6) and y = sin 1(x).

2.2 Increasingly accurate
approximations for sin1(x)

If we put p1(x) = x (10)

then our previous discussion amounts to
saying that p 1 (x) is an acceptable
approximation for sin1(x) provided that
|1x1| is small.

However, for many applications,
particularly those involving ‘large’
values of x, approximating sin1(x) by
p1(x) is not at all satisfactory.

Fortunately there are better approximations. For example, in Figure 3 we plot the polynomial

p3 (x) = x − x3

6
 (11) ☞

together with the sin0(x) function.
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−2π −π π 2π
−1

1

y = p1(x) = x 

y = sin(x)

y

x

Figure 14Graphs of the functions y = x and y = sin1(x). Note that
throughout this module the argument of any trigonometric function is either
a dimensionless variable or an angle in radians rather than degrees.

If you compare Figure 3 with Figure 1,
you can see that this polynomial is a
much better approximation to the sine
function than the linear polynomial and
is particularly good for |1x 1| less than
about 1.5.

✦ How is this new approximation
p3(x) related to the previous
approximation p1(x)?

You may be wondering how we were able to choose a polynomial p3(x) that works so well.
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The answer lies in a comparison of the derivatives of sin1(x) and p3(x) at x = 0, as follows, where for convenience
we have written f1(x) = sin1(x), and we use primes (1′ 1) to indicate differentiation.

For convenience we also introduce the notation [   ]x1=10 to indicate that the function inside the brackets should be
evaluated at the value outside.

The function f1(x) = sin1(x),

at x = 0 ☞

The approximating polynomial
p3(x) = x − (x3/6) at x = 0

f1(0) = sin1(0) = 0 p3 (0) = x − x3

6




 x =0

= 0

f1′(0) = cos1(0) = 1 ′p3 (0) = 1 − x2

2




 x =0

= 1

f1″(0) = −sin1(0) = 0 ′′p3 (0) = −x[ ]x =0 = 0

f1(3)(0) = −cos1(0) = −1 p3
(3) (0) = −1

As you can see, the values of the functions sin1(x) and p3(x), and their first three derivatives, are precisely the
same when evaluated at x = 0.
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By using higher-degree polynomials it is possible to obtain increasingly accurate approximations to sin1(x).
For example,

p5 (x) = x − x3

6
+ x5

120
(12)

is a polynomial approximation of degree five to sin1(x), which gives very accurate results near x = 0.

Shortly we will show you how we found p5(x), but first, to see how good this new approximation really is, try
the following question.

Question T4

Find p5(0.2) as accurately as you can, and compare your answer to that obtained for sin1(0.2) on a calculator.4❏

The polynomial p5(x) was chosen so that its value, and the values of its first five derivatives, at x = 0, are the
same as for sin1(x).  ☞ We can see that this is the case by performing a calculation similar to that which we
performed for p3(x).
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The function f1(x) = sin1(x)

at x = 0

The approximating polynomial

(Equation 12) at x = 0

f1(0) = sin1(0) = 0
p5 (0) = x − x3

6
+ x5

120




 x =0

= 0

f1′(0) = cos1(0) = 1
′p5 (0) = 1 − x2

2
+ x4

24




 x =0

= 1

f1″(0) = −sin1(0) = 0
′′p5 (0) = −x + x3

6




 x =0

= 0

f1(3)(0) = −cos1(0) = −1
p5

(3) (0) = −1 + x2

2




 x =0

= −1

f1(4)(0) = sin1(0) = 0 p5
(4) (0) = x[ ]x =0 = 0

f1(5)(0) = cos1(0) = 1 p5
(5) (0) = 1
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✦ How is this new approximation, p5(x), for sin1(x) related to the previous approximation p3(x)?

The previous discussion suggests that we may be able to construct a sequence of increasingly accurate
approximations to sin1(x)

p1(x) = x,4 p3 (x) = x − x3

6
,4 p5 (x) = x − x3

6
+ x5

120
, and so on

which are obtained by adding higher and higher powers of x.

So far we have verified that these polynomials and their derivatives behave very like sin1(x) at x = 0, but we have
not shown you how to construct them. We will remedy this deficiency shortly, but first let us try a similar idea
on a function other than sin1(x).
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2.3 Increasingly accurate approximations for exp1(x)

Since exp1(0) = e0 = 1, it is clear that exp1(x) ☞ is approximately equal to 1 when x is close to 0 but perhaps we

can find a better approximation.

We could try a polynomial which is linear in x, that is

q1(x) = a0 + a1x (13)

and look for numbers, a0 and a1, such that the low-order derivatives of exp1(x) and q1(x) are identical.
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Remembering that 
d

dx
[exp (x)] = exp(x) , and writing g(x) = exp1(x) for convenience, we can construct the

following table:

The function g(x) = exp (x),
at x = 0

The approximating polynomial
(Equation 13) at x = 0

g(0) = exp1(0) = 1 q1(0) = a0 + a1x[ ]x =0 = a0

g′(0) = exp1(0) = 1 ′q1(0) = a1[ ]x =0 = a1

So if we choose a0 = 1 and a1 = 1, the approximating polynomial becomes

q1(x) = 1 + x

and its value, and the value of its first derivative are, respectively, identical to the values of exp1(x) and its first
derivative at x = 0.

✦ Evaluate q1(0.1) and exp1(0.1). What is the gradient of y = exp1(x) at x = 0? What is the equation of the
tangent to the graph of y = exp1(x) at x = 0?
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Now let us try to find a better approximation by considering a quadratic polynomial

q2(x) = a0 + a1x + a2x2

and look for numbers, a0, a1, a2, such that the low-order derivatives of exp1(x) and q2(x) are identical.
Constructing a table of values as before, we have:

The function g(x) = exp (x),
at x = 0

The approximating polynomial

q2(x) = a0 + a1x + a2x2 at x = 0

g(0) = exp1(0) = 1 q2 (0) = a0 + a1x + a2 x2[ ]x =0
= a0

g′(0) = exp1(0) = 1 ′q2 (0) = a1 + 2a2 x[ ]x =0 = a1

g″(0) = exp1(0) = 1 ′′q2 (0) = 2a2[ ]x =0 = 2a2

So if we match the functions and their derivatives at x  = 0 by choosing a0 = 1, a1 = 1 and 2a2  = 1 the
approximating polynomial becomes

q2 (x) = 1 + x + x2

2
(14)
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✦

q2 (x) = 1 + x + x2

2
(Eqn 14)

Compare q2(0.1) with q1(0.1) and exp1(0.1).

Once again we have obtained a better approximation by adding a term of higher degree, x2/2 in this case, while
the constant term and the coefficient of x remain unchanged. As you might imagine, we can continue this process
by considering the cubic polynomial

q3(x) = a0 + a1x + a2x2 + a3x3 (15)

and arranging that the low-order derivatives of exp1(x) and q3(x) are identical.

✦ Calculate a3 and hence find q3(x).

✦ Compare q3(0.1) with q1(0.1), q2(0.1) and exp1(0.1).
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Question T5

Use your calculator to obtain exp1(x) and q3(x) (to three decimal places) for x = 0, 0.1, 0.5, 1.0, 2, 10.
What conclusions can you draw from comparing the two sets of results?4❏

Some conclusions

So it appears that the polynomials

1,41 + x,41 + x + x

2
,41 + x + x2

2
+ x3

6
, and so on

provide a sequence of increasingly accurate approximations to exp1(x) for small values of x, and in particular for
exp1(0.1). In each case a better approximation is obtained by adding a term with a higher power of x, and
choosing the coefficient so that the low-order derivatives of the polynomial and exp1(x) are identical at x = 0.
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y
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5

y = 1 + x + x2
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Figure 44Polynomial approximations to exp1(x).

Sketching exp1(x) and these polynomials for a range of values
of x, as in Figure 4, suggests that the polynomials also provide
increasingly accurate approximations for other values of x. Our
aim in the next section is to generalize this technique for
finding polynomial approximations.
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3 Finding polynomial approximations by Taylor expansions ☞

3.1 Taylor polynomials (near x = 0)
So far, we have considered polynomial approximations to the sine and exponential functions, but in this
subsection we intend to apply a similar method to approximate the general function f1(x) near to x = 0 by a
polynomial

pn(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (17)

where n ≥ 0 indicates the degree of the approximating polynomial.

The purpose of this subsection is to show you how to choose the coefficients (i.e. the numbers a0 , a1, a2 and so
on); but first try the following preliminary exercises.

Preliminary exercises

✦ Given that p(x) = 1 + 3x + 5x2 + 7x3 + 9x04 write down expressions for p′(x), p″(x) and p″(0).
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✦ Elsewhere in this subsection pn(x) refers to the general polynomial defined by Equation 17,

pn(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (Eqn 17)

but suppose for the purposes of this question that pn(x) is the particular polynomial defined by

  

pn (x) = 1 + x

1.1
+ x2

1.2
+ x3

1.3
+ K + xn

(1 + n × 0.1)

(a) what are the coefficients a0, a3, a10 and an?

(b) Write down expressions for ′pn (x) and ′′pn (x).

(c) What is the value of ′′pn (0)?

✦ Given that pn(x) is a general polynomial defined by Equation 17, write down expressions for ′pn (x) and
′′pn (x). What is ′′pn (0)?
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Look carefully at the following pattern, and make sure that you understand what happens to the terms as you
continue to differentiate:

  

pn (x) = a0 + a1x + a2 x2 + a3x3 + K + an xn

differentiate ⇓ ⇓ ⇓ ⇓

′pn (x) = a1 + 2a2 x + 3a3x2 + K + nan xn−1

differentiate ⇓ ⇓ ⇓

′′pn (x) = 2a2 + 3 × 2a3x + K + ann(n − 1)xn−2

The general approximation

When approximating a general function f1(x) by the polynomial in Equation 17,

pn(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (Eqn 17)

we look for values of the coefficients, a0, a1, … an, for which the derivatives of f1(x) (up to the nth) are the same
as those of pn(x) (as we did in the previous section).
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pn(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n (Eqn 17)

Proceeding one derivative at a time, we first calculate pn
(n)(0) as follows  ☞

pn(0) = [a0 + a1x + a2x2 + a3x3 + a4x4 … + anxn]x=0 = a0

′pn (0) = [a1 + 2a2x + 3a3x2 + 4a4x3 + … + nanxn−1]x=0 = a1

′′pn (0) = [2a2 + 3 × 2a3 x + 4 × 3a4x2 + … + ann(n − 1)xn−2]x=0 = 2a2

pn
(3)(0) = [(3 × 2)a3 + (4 × 3 × 2)a4 x + … + ann(n − 1)(n − 2)xn−3]x=0 = 3 × 2a3

pn
(4)(0) = [(4 × 3 × 2)a4 + … + ann(n − 1)(n − 2)(n − 3)xn−4]x=0 = 4 × 3 × 2a4

  
M

  
M

  
M

pn
(n)(0) = [ann(n − 1)(n − 2)(n − 3) … 2]x=0 = n!1an ☞

So in general, for the mth derivative (where 0 ≤ m ≤ n) we have

pn
(m)(0) = m(m − 1)(m − 2)(m − 3) … 2 × 1am = m!1am
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We must not forget the purpose of all this algebra, which is to ensure that the mth derivatives of f1(x) and pn(x)
(where 0 ≤ m ≤ n) should be identical at x = 0. Thus we require

f1(m)(0) = m!1am

So, the coefficients in the polynomial

pn(x) = a0 + a1x + a2x2 + a3x3 + … + anx0n

are given by

am = f (m) (0)
m!

(18)

or, if you prefer to write the formulae out in full they are given in the margin. ☞
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We can now write down a general result for the nth degree polynomial which approximates a function, f1(x) say
near the value x = 0.

The following expression is known as the Taylor polynomial of degree n for f1(x) near x = 0:

pn (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + … + f (n) (0)
n!

xn (19) ☞
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An application of the general formula to exp0(x) and (1 - x)-1

As an example, let us find the Taylor polynomial of degree n for exp1(x) near x = 0. In this case, f1(x) = exp1(x) in
the general expression, Equation 19.

pn (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + … + f (n) (0)
n!

xn (Eqn 19)

But the nth derivative of exp1(x) is exp1(x) and, since exp1(0) = 1, we have f1(n)(0) = 1 for all integers n.
Consequently we find

  

exp(x) = 1 + x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ K + xn

n!
(20)

This is a generalization of the result obtained in Subsection 2.3 (Equation 16).

q3 (x) = 1 + x + x2

2
+ x3

6
(Eqn 16)
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Question T6

Show that if f1(x) = (1 − x)−1 then

dn

dxn
f (x) = n!

(1 − x)n+1

and use this result to find the Taylor polynomial of degree n for f1(x) near x = 0.4❏
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Table 24See Answer T5.

x exp1(x) q3(x)

0 1.0 1.0

0.1 1.105 1.105

0.5 1.649 1.646

1.0 2.718 2.667

2.0 7.389 6.333

10.0 221026.466 227.667

3.2 Taylor series (expanding about zero)
Our intention is to replace a function such as exp1(x) by
a simpler function, a polynomial, while maintaining an
acceptable degree of accuracy; but look again at the
results in Question T5, in which you were asked to
compare the cubic Taylor polynomial for exp1(x) with
the values for the exponential function obtained on your
calculator.

For x = 2, the polynomial gave the value q3(2) = 6.333
whereas the calculator gave the value exp1(2) = 7.389.

Thus replacing exp1(2) by q3(2) would give rise to an
unacceptable discrepancy for many physical
applications.



FLAP M4.5 Taylor expansions and polynomial approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Table 1

The degree n of the
polynomial qn(x)
that approximates

exp1(x)

Result of
evaluating the
approximating

polynomial qn(x) at
x = 2

0 1
1 3
2 5
3 6.333
4 7
5 7.267
6 7.356

We might imagine that we could obtain a more accurate result by using a
Taylor polynomial with more terms, and this is indeed the case, as
Table 1 shows.
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For any function, f1(x), we could let the number of terms in the corresponding Taylor polynomial become larger
and larger in order to get an increasingly accurate result. We could even go one stage further and consider the
limit as the number of terms tends to infinity, in which case we find

the Taylor series or Taylor expansion for f1(x) near x = 0

  

f (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + K + f (n) (0)
n!

xn + K (21)

✦ In what way does the Taylor series given in Equation 21 differ from the Taylor polynomial of degree n
given in Equation 19?

The series expansion of Equation 21 can be written more compactly using the summation symbol, as follows

f (x) = f (n) (0)
xn

n!n=0

∞

∑ (22) ☞
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Study comment The expression Taylor expansion is often used in place of Taylor series. The terms Taylor expansion of a
function about or at x = 0 rather than near to x = 0 are all in common usage.

As an example of a Taylor series, we can consider the expansion of exp1(x) about x = 0. This is a particularly
simple function to expand since each of its derivatives is equal to the exponential function and exp1(0) = 1.
We therefore have

f (0) (0) = dn

dxn
exp(x)





 x =0

= [exp (x)]x =0 = 14for all values of n

and putting this in the general formula for a Taylor series (Equation 21 or 22)

f (x) = f (n) (0)
xn

n!n=0

∞

∑ (Eqn 22)

gives

exp(x) = xn

n!n=0

∞

∑ (23)
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Study comment For any specified value of x, this series gives increasingly accurate results for exp1(x) as the number of
terms in the series is increased. In such a case we say that the series converges to exp1(x) for all values of x. Further
information on the convergence of infinite series can be obtained through the Glossary, but in this module we are more
concerned with the methods of obtaining the desired series than with their convergence.

Question T7

Show that the Taylor expansion

f (x) = f (n) (0)
xn

n!n=0

∞

∑ (Eqn 22)

of (1 + x)r near x = 0 is given by

  

(1 + x)r = 1 + rx + r(r − 1)
2!

x2 + r(r − 1)(r − 2)
3!

x3 + K (24)

where r is any real number.4❏
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The approximate error

If we ignore the higher terms in the Taylor series, so that we approximate the given function by a Taylor
polynomial, then we commonly use an approximately equal symbol rather than equality, so that, for example,
we may write

exp (x) ≈ 1 + x + x2

2!
+ x3

3!

If we use a Taylor polynomial of degree n to approximate a given function then we are clearly ignoring the rest
of the infinite series. But how accurate is such a polynomial approximation? Can we estimate the size of the
error?

An accurate estimate of the error involved in such approximations is beyond the scope of FLAP, but a useful
rule of thumb is that if terms involving x 0n0+01 and higher powers of x are ignored, then the error is of the same

order of magnitude as the first non-zero term that has been ignored. ☞
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For example, if we calculate the third-order Taylor polynomial for exp1(0.5), namely

[exp(x)]x =0.5 ≈ 1 + x + x2

2!
+ x3

3!




 x =0.5

= 1 + (0.5) + (0.5)2

2!
+ (0.5)3

3!
≈ 1.6458

then we would expect the approximate error to be given by
x4

4!




 x =0.5

= 0.0026

which is about 0.16%. The value for exp1(0.5) given by my calculator is approximately 1.6487, corresponding to
an error in the Taylor polynomial approximation of about 0.003 which is about 0.17%. Of course, the reason for
the inaccuracy in the estimation of the error is that we are neglecting all the other terms in the series, but such
approximations are usually acceptable, and particularly so if we are interested in small values of x.

Question T8

Use the third-order Taylor polynomial for sin1(x) near x = 0 to obtain an approximation to sin1(π/4).
Derive an estimate for the percentage error in your result.4❏
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3.3 Taylor polynomials (near x = a)

If you enter sin1(π) on your calculator you should find that you get zero, or something very close. (Try it! ☞)
Now look at the Taylor polynomial of degree 5 for sin1(x) near x = 0

sin (x) ≈ x − x3

3!
+ x5

5!

If we substitute x = π, we obtain

sin (π) ≈ π − π3

3!
+ π5

5!
≈ 0.524

Although the infinite Taylor series for sin1(π) sums to zero, we can see that the above polynomial does not
provide anything like a reasonable approximation. The value x = π is simply too far from the value x = 0 for the
Taylor polynomial of degree 5 to provide an adequate approximation to the full Taylor expansion of sin1(x) about
x = 0. So, how can we find a simple polynomial representation of sin1(x) that will work at x = π? The resolution
of this difficulty is to find a Taylor expansion which is valid in the vicinity of a point other than zero, we can
then use as many terms as we want from that expansion to provide the required polynomial approximation near
x = π.



FLAP M4.5 Taylor expansions and polynomial approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

More generally, suppose that we want to approximate a function, f1(x), near to x = a by a polynomial of order n,
where n ≥ 0. As in Subsection 3.1, we want to look for values of the coefficients for which the derivatives of f1(x)
are the same as those of the polynomial.

Previously we calculated the derivatives at x = 0, but now we calculate the derivatives at x = a.

For this reason we consider the polynomial

pn(x) = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + … + an(x − a)n (25) ☞

Such a series is sometimes known as a power series, or a series of powers of (x − a). In order to pick out the mth

term in this expression we differentiate m times with respect to x and then set x = a. To see how this works, let
us look at a specific example. Suppose that we wish to approximate sin1(x) near x = π/4.
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An approximation for sin1(x) near x = p0/4
We will attempt to find an approximating polynomial of degree 3 so that

sin1(x) ≈ p3(x) = a0 + a1(x − π/4) + a2(x − π/4)2 + a3(x − π/4)3 (26) ☞

First we put x = π/4 in Equation 26 so that p3 (π 4) = a0

Then we differentiate Equation 26 to obtain

′p3 (x)  = a1 + 2a2(x − π/4) + 3a3(x − π/4)2 (27)

and put x = π/4 in Equation 27 to give ′p3 (π 4) = a1

Now we differentiate Equation 27 to obtain

′′p3 (x)  = 2a2 + 6a3(x − π/4) (28)

and put x = π/4 in Equation 28 to give ′′p3 (π 4) = 2a2

Finally we differentiate Equation 28 to obtain

p3
(3) (x)  = 6a3 (29)

and put x = π/4 in Equation 29 to give p3
(3) (π 4) = 6a3
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All that remains is to ensure that the value of the polynomial p3(x) and its first three derivatives coincide with
those of sin1(x) at x = π/4. The relevant values of sin1(x) and its derivatives are:

sin (x)[ ]x =π 4
= 1 2

d

dx
sin (x)



 x =π 4

= cos(x)[ ]x =π 4
= 1 2

d2

dx2
sin (x)





 x =π 4

= − sin (x)[ ]x =π 4
= −1 2

d3

dx3
sin (x)





 x =π 4

= − cos(x)[ ]x =π 4
= −1 2

and the values on the right must be made to coincide with the boxed values above. This gives

a0 = 1 2 ,4a1 = 1 2 ,42a2 = −1 2  4and46a3 = −1 2
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from which we see that a2 = − 1
2 2

 and a3 = − 1
6 2

and the required approximating polynomial is

p3 (x) = 1
2

1 + (x − π 4) − (x − π 4)2

2
− (x − π 4)3

6






(30)

✦ The value 0.8 is quite close to π0/4 ≈ 0.7854. Use the polynomial p3(x) defined in Equation 30 to find an
approximation for sin1(0.8), and compare this value with the value for sin1(0.8) obtained on a calculator.

The argument can be generalized to polynomials of any degree if we use the result of the following question.
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Question T9

Show that

  

d m

dxm
(x − a)n =







n(n − 1)(n − 2)

n!

0

K [n − (m − 1)](x − a)n−m if m < n

if m = n

if m > n

where n ≥ 0.4❏

If we differentiate the polynomial

pn(x) = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + … + an(x − a)n (Eqn 25)

m times (where m lies between 0 and n) and then set x = a, only the term involving am can give a non-zero result.
To see this, consider a typical term ak(x −  a)k. If k is too small (k  < m ) then (x  − a )k is eliminated by
differentiation. On the other hand, if k is too big (k > m) then differentiation leaves a factor of (x − a) raised to
some power, but this gives zero on setting x = a. Consequently, the general result is exactly as our previous
examples suggest:

pn
(m) (a) = d m

dxm
pn (x)





 x =a

= m!am
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Don’t forget that we are trying to estimate some general function, f1(x) say, near x = a, and the requirement that
the mth derivatives of f1(x) and pn(x) (where 0 ≤ m ≤ n) should be identical at x = a leads to

f (m) (a) = d m

dxm
f (x)





 x =a

= m!am

and therefore the coefficients in the polynomial, pn(x), are given by

am = f (m) (a)
m!
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We can now write down the Taylor polynomial of degree n for f1(x) near to x = a.

The Taylor polynomial of degree n for f1(x) near x = a is

  

pn (x) = f (a) + ′f (a)
1!

(x − a) + ′′f (a)
2!

(x − a)2 + f (3) (a)
3!

(x − a)3 + K

K + f (n) (a)
n!

(x − a)n

                                          

(31)

which can be written more compactly using the summation symbol, as follows

pn (x) = f (m) (a)(x − a)m

m!m=0

n

∑ (32)

This formula makes the calculation of Taylor approximations very straightforward.
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✦

pn (x) = f (m) (a)(x − a)m

m!m=0

n

∑ (Eqn 32)

Find the Taylor polynomial of degree 3 for sin1(x) near to x = π, then estimate the value of sin1(3), and compare
your estimate with the value given on a calculator.

Question T10

Use Equation 32 to find:

(a) the Taylor polynomial of degree three for loge1(x) near to x = 1;

(b) the Taylor polynomial of degree three for exp1(2x) near to x = 0.4❏
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3.4 Taylor series about a general point
We know that the Taylor polynomial of order n for f1(x) near x = a is

pn (x) = f (m) (a)(x − a)m

m!m=0

n

∑ (Eqn 32)

In general the accuracy of the approximation improves with the degree of the approximating polynomial, and in

the limit as n tends to infinity we find the Taylor series (or Taylor expansion) for f1(x) near to x = a. ☞

The Taylor series (expansion) for f1(x) near x = a is

  

f (x) = f (a) + ′f (a)
1!

(x − a) + ′′f (a)
2!

(x − a)2 + f (3) (a)
3!

(x − a)3 + K

+ f (n) (a)
n!

(x − a)n + K
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which can be written more compactly using the summation symbol as

f (x) = f (n) (a)(x − a)n

n!n=0

∞

∑ (34) ☞

✦ What is the distinction between approximating a function near x = a by a Taylor polynomial of degree 3 say,
and finding the Taylor series for the given function near x = a?

As an example, suppose we require the Taylor series for sin1(x) near to x = π. In this case we first need to find all
derivatives of sin1(x) evaluated at x = π.
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Question T11

Extend the calculations which gave rise to Equation 33

sin (x) ≈ −(x − π) + (x − π)3

3!
(Eqn 33)

and show that (for n ≥ 0)

d2n

dx2n
sin (x)





 x =π

= 0

d2n+1

dx2n+1
sin (x)





 x =π

= −(−1)n4❏
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Putting the results derived in Question T11 into Equation 34,

f (x) = f (n) (a)(x − a)n

n!n=0

∞

∑ (Eqn 34)

we find

  

sin (x) = − (−1)n (x − π)2n+1

(2n + 1)!n=0

∞

∑ = − (x − π)2n+1

(2n + 1)!n=0

∞

∑

= −(x − π) + (x − π)3

3!
− (x − π)5

5!
+ K (35)

Question T12

Show that the Taylor expansion of x0−1 near to x = 1 is given by

  

1
x

= (1 − x)n

n=0

∞

∑ = 1 + (1 − x) + (1 − x)2 + (1 − x)3 + (1 − x)4 + (1 − x)5 + K4❏
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Question T13

Use Equation 34

f (x) = f (n) (a)(x − a)n

n!n=0

∞

∑ (Eqn 34)

to show that

f (x + ε ) = ε n f (n) (x)
n!n=0

∞

∑ (36) ☞

(This form of the Taylor expansion is used in Subsection 3.7.)4❏
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3.5 Some useful Taylor series

In this subsection we list some standard Taylor series which are commonly used in physics. ☞

    

exp(x) = e x = xn

n!n=0

∞

∑ = 1 + x

1!
+ x2

2!
+ x3

3!
+ K x ∈R (37) ☞

    

sin (x) = (−1)n x2n+1

(2n + 1)!n=0

∞

∑ = x − x3

3!
+ x5

5!
− x7

7!
+ K x ∈R (38)

    

cos(x) = (−1)n x2n

(2n)!n=0

∞

∑ = 1 − x2

2!
+ x4

4!
− x6

6!
+ K x ∈R (39)
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loge (1 − x) = − xn

nn=0

∞

∑ = −x − x2

2
− x3

3
− x4

4
+ K − 1 ≤ x < 1 (40)

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K − 1 < x < 1 (41) ☞

Notice that Equations 37 to 39 are valid for all (real) values of x (in the sense that the series is convergent),
whereas Equations 40 and 41 are only valid for the indicated values of x.

The series given in Equation 41 is particularly useful in the case r = −1, and when x is replaced by −x, for then

  

1
1 − x

= 1 + x + x2 + x3 + K − 1 < x < 1 (42)

This series is easy to remember and can be used to derive many other useful series.
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3.6 Simplifying the derivation of Taylor expansions
In this subsection we consider a few tricks that can be used to simplify the derivation of Taylor expansions. The
first is similar to the method we used in Question T13.

Method 14Substitution into a known series
Suppose we require the Taylor expansion of f1(x) = exp1(5x) near x = 0. We could find the nth derivative of
exp1(5x) and then use Equation 34. However, it is much easier to start with the result we already have for exp1(x),
namely

exp(x) = xn

n!n=0

∞

∑ (Eqn 37)

and then to substitute x = 5u, so we obtain

exp(5u) = (5u)n

n!n=0

∞

∑

We can use any symbol in place of u and in particular we may choose to replace u by x. In which case

exp(5x) = (5x)n

n!n=0

∞

∑
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✦ Use Equation 42

  

1
1 − x

= 1 + x + x2 + x3 + K − 1 < x < 1 (Eqn 42)

to show that 
1

L + 3x
≈ 1

L
− 3x

L2
 if x is small compared to L, and L ≠ 0.

Method 24Combinations of known series

Suppose that we want the expansion of ☞

f (x) = exp(x) − exp(−x)
2

near to x = 0, then we can use the known expansion for exp1(x) together with the expansion obtained when −x is
substituted for x. In this way we find

exp(x) − exp(−x)
2

= 1
2

xn

n!n=0

∞

∑ − 1
2

(−x)n

n!n=0

∞

∑ = x2n+1

(2n + 1)!n=0

∞

∑
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Question T14

Use Equation 24 (or 41)

  

(1 + x)r = 1 + rx + r(r − 1)
2!

x2 + r(r − 1)(r − 2)
3!

x3 + K (Eqn 24)

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K − 1 < x < 1 (Eqn 41)

to find the Taylor expansion for

f (x) = 1
2

[(1 + x)r + (1 − x)r ]

about x = 0.4❏
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Method 34Combinations of the approximating polynomials
Sometimes we need to approximate rather unpleasant functions, which are perhaps a combination of functions
whose Taylor series are known. In such a case it may be quite sufficient to find just one or two terms of the
series.

Suppose, for example, that we wish to find a cubic approximation to exp 1(2x)1sin1(3x) near to x = 0; we can use
the first few terms of the standard Taylor series for sin1(x) and exp1(x) as follows

  

exp(2x)sin (3x) ≈ 1 + 2x + (2x)2

2!
+ (2x)3

3!
+ K









 3x − (3x)3

3!
+ K











If we expand the brackets and ignore the terms of degree 4 and above, we find

exp(2x)sin (3x) ≈ 1 + 2x + (2x)2

2!





3x + (1) − (3x)3

3!






= 3x + 6x2 + 3
2

x3

Question T15

Find the Taylor polynomial of degree 2 which approximates exp1[sin1(x)] near to x = 0.4❏
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Method 44Differentiating a known series

In some cases it is possible to obtain one Taylor series by differentiating another series. For example, we know
that

d

dx
sin (x) = cos(x)

and that the Taylor series for sin1(x) is

  

sin (x) = x − x3

3!
+ x5

5!
− x7

7!
+ K

We also have
d

dx
xn = nxn−1

and so putting all these results together we get the Taylor series for cos1(x), we find

  

cos(x) = d

dx
sin (x) = d

dx
x − x3

3!
+ x5

5!
− x7

7!
+ K







= 1 − x2

2!
+ x4

4!
− x6

6!
+ K
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Question T16

  Use Equation 42

  

1
1 − x

= 1 + x + x2 + x3 + K − 1 < x < 1 (Eqn 42)

to find the Taylor series for 
1

(1 − x)4
 near

x = 0. ❏
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3.7 Applications and examples
In this subsection we consider some applications of Taylor series in both mathematics and physics.

Example 1 The field strength of a magnet of length 2L at a point on its axis at a distance x from its centre is
proportional to

1
(x − L)2

− 1
(x + L)2

Show that for |1x1| < L this expression is approximately 
4L

x3 .

Solution4Using Equation 41

  

(1 + x)r = 1 + rx

1!
+ r(r − 1)x2

2!
+ r(r − 1)(r − 2)x3

3!
+ K − 1 < x < 1 (Eqn 41)

we can write this expression as

x−2 1 − L

x






−2

− x−2 1 + L

x






−2

≈ x−2 1 + 2L

x




 − 1 − 2L

x












= 4L

x3
4❏



FLAP M4.5 Taylor expansions and polynomial approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Example 2  ☞ A particle moves in one dimension subject to a potential, V(x), which has a minimum at
x = x0. Show that the motion is simple harmonic for small displacements from the equilibrium position.

Solution4Expanding V(x) as a Taylor series about the point x = x0 we find (from Equation 34)

  

V(x) = V(x0 ) + ′V (x0 )(x − x0 ) + ′′V (x0 )
(x − x0 )2

2!
+ K

Since V(x) has a minimum at x0, we know that V1′ (x0) = 0  and V″(x0) must be a positive constant ☞ which we

can call ω02, hence

V(x) ≈ V(x0 ) + ω 2 (x − x0 )2

2

so V(x) − V(x0 ) ≈ ω 2 (x − x0 )2

2

If we write y = x − x0, then we can define a new potential, U(y), given by

U(y) = V(y + x0 ) − V(x0 ) ≈ ω 2

2
y2
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this is the potential of simple harmonic motion about y = 0 (i.e. about x = x0) and the corresponding component
of force in the y-direction, Fy, is

Fy = − dU

dy
= −ω 2 y4❏

Newton–Raphson method

The next example concerns a famous method of solving algebraic equations known as the Newton–Raphson
method.

Often we wish to find an exact solution, x = α say, of an equation f1(x) = 0, so that f1(α) = 0 but unfortunately this
is not always possible, and we have to be content with an approximate solution. The Newton–Raphson technique
is remarkable in that it allows us to use an approximate solution of the equation, say x = x1, to construct an even
better estimate of the solution, say x = x2.
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αx1 xx2ε

P

y = f (x)
f(x1)

y

Figure 5 The graph of y = f 1(x) showing

a root at x = α.

First we find the Taylor approximation of degree one about x = x1

y = f1(x1) + f1′(x1)(x − x1)

This is the equation of a line, and it is in fact the equation of the tangent
line to the graph of y = f 1(x) at the point (x1, f 1(x1)), the dashed line
through the point P in Figure 5. This line meets the x-axis at the point
(x2, 0), and so

0 = f1(x1) + f1′(x1)(x2 − x1)

which can be rearranged to give the formula

x2 = x1 − f (x1)

′f (x1)
(43)

Although it appears from Figure 5 that x2 is likely to be a better approximation to the root α  than x1, such an
argument is unlikely to convince a mathematician and something like the following discussion is required.
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αx1 xx2ε

P

y = f (x)
f(x1)

y

Figure 5 The graph of y = f 1(x) showing

a root at x = α.

Example 3 Show that if x1 is a good approximation for a root of the
equation f1(x) = 0, then

x2 = x1 − f (x1)

′f (x1)
(Eqn 43)

is (generally) a better approximation to the root. Use this expression to
find a better solution of the equation

x02 − 2x − 5 = 0

starting from the approximate solution x ≈ 4.

Solution4Suppose that x1 is a good approximate solution, then the error,
ε  (see Figure 5) in our approximate solution, is given by ε = α − x1, and
ε is small.

Notice that x1 = α − ε, and our intention is to estimate the size of ε, so
that we can (partially) correct the error in x1.
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Unusually, we regard ε as the independent variable, then consider what happens when we expand an arbitrary
function of ε, say F(ε), as a Taylor series (in powers of ε) about ε = 0. From Equation 21

  

f (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + K + f (n) (0)
n!

xn + K (Eqn 21)

we have (with ε in place of x)

  

F(ε ) = F(0) + ′F (0)
ε
1!

+ ′′F (0)
ε 2

2!
+ K (44)

Now we choose F(ε) to be a particular function of ε, in fact we put ☞

F(ε) = f1(x1 + ε)

so that F(0) = f1(x1)4and4F0′(0) = f01′(x1)

and Equation 44 becomes

f1(x1 + ε) = f1(x1) + ε1f1′(x1) + (terms involving ε02 and higher powers of ε) (45)
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Remember that x1 + ε  = α  is a root of the original equation, so that

f1(x1 + ε) = 0, so that Equation 45

f1(x1 + ε) = f1(x1) + ε1f1′(x1) + (terms involving ε02 and higher powers of ε) (Eqn 45)

implies that

ε1f1′(x1) = −0f1(x1) − (terms involving ε02 and higher powers of ε)

and this gives us an estimate for ε in terms of x1, and the original function, as follows

ε = − f (x1)

′f (x1)
 − (terms involving ε02 and higher powers of ε) (46)

It follows that the true solution

  

α = x1 +    ε   
this is
 small

{

= x1 − f (x1)

′f (x1)
− (terms involving ε 2 and higher powers of ε )

this is even smaller
1 244444444 344444444
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We know that ε is small and therefore the terms involving ε02 and higher powers of ε must be very much smaller,
and so

x2 = x1 − f (x1)

′f (x1)

must be even closer to the true solution than our first estimate x1.

The calculation can go wrong if f1′(x1) is very small, but generally this improved solution can be used as the
starting point for the calculation of an even better solution. We therefore have an iterative technique for solving
equations, and the iteration can be continued indefinitely and so provide solutions that are as accurate as we
please.

In the particular case of f1(x) = x2 − 2x − 5 and x1 = 4, we have

f1(x1) = 16 − 8 − 5 = 3

and f1′(x1) = [2x − 2]x1=14 = 6
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For the first iteration we therefore obtain (from Equation 43)

x2 = x1 − f (x1)

′f (x1)
(Eqn 43)

x2 = 4 − 3
6

= 3.5

We can now repeat the process and use this value as a starting point for another approximation

f (x2 ) = 49
4

− 7 − 5 = 0.25

′f (x2 ) = [2x − 2]x =3.5 = 5

and using Equation 43 again

(with x3 in place of x2, and x2 in place of x1) gives us

x3 = x2 − f (x2 )

′f (x2 )
= 3.5 − 0.05 = 3.45
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Continuing in this fashion we could obtain the following approximations to the root

4.0,   3.5,   3.45,   3.4491489180,   3.4491489174, …

and thereafter the first eight decimal places will not change.

If xn is the nth approximation to the root of the equation f1(x) = 0, then the next approximation is given by

xn+1 = xn − f (xn )

′f (xn )

This is known as the Newton–Raphson formula.

Since f1(x) = 0 is a quadratic equation, the standard formula for such equations gives the exact roots α = 1 ± 6 .

(The positive root gives good agreement with our result.)4❏ ☞
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Question T17

If a function, f1(x), is defined by

f1(x) = x 1loge1(x) − 1

use three iterations of the Newton–Raphson technique, ☞ with the starting value of 2, to find an approximate
solution to the equation f1(x) = 0.4❏

Thermal expansion and anharmonicity
Many materials expand when they are heated, and it is possible to construct a mathematical model which
explains why this happens in terms of the behaviour of their molecules. Taylor series are central to this
mathematical model, and therefore crucial to an understanding of the mechanism which causes thermal
expansion.

Two atoms in close proximity exert forces on each other, rather like the tension or compression in a spring. In
the case of atoms the force between them is composed of two components, one of repulsion and one of
attraction. The repulsive forces between two atoms, caused by the overlapping of two electron clouds, act over a
short range; while the attractive force (the van der Waals force), due to the distortion of the electron cloud of one
molecule because of the presence of the other, acts over a rather greater distance.
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Figure 64Potential energy V as a function of the distance r between two
atoms.

Just as a stretched spring can store
energy, so too can a pair of atoms1—
1energy is required to pull them apart, or
to push them together1—1and this
(potential) energy, V say, is a function of
the distance r between the atoms. In
Figure 6 we show two examples of such
functions.

The mid-point of the line AB in Figure
6a represents the mean distance between
two atoms at this particular energy level.
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Figure 64Potential energy V as a function of the distance r between two
atoms.

Notice that as we increase the energy the
mid-point (of the line PQ say) remains
directly above the value r = β. Such a
case represents a material in which it is
just as difficult to push the atoms
together as it is to pull them apart, and
when they vibrate (which they will do as
the temperature rises) they will do so in
an harmonic fashion, so that their mean
separation remains unchanged. In other
words, the material does not expand as
the temperature is raised. This
corresponds to a graph which is
symmetric about the line r = β.
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Figure 64Potential energy V as a function of the distance r between two
atoms.

On the other hand, Figure 6b represents
the behaviour of a material in which two
atoms can be more easily pulled apart
than pushed together. In this case the
mid-point of the line moves to the right
as the energy increases (from the mid-
point of A1B1 to the mid-point of P1Q1
say) so that the mean displacement
between the atoms increases with
temperature, i.e. the material expands.
Such systems are said to be anharmonic,
and correspond to a graph which is not
symmetric about a vertical axis through
r = β.
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V

r

M

β

Figure 7 The Lennard–Jones 6–12
function.

The function V(r) may be expanded as a Taylor series about a point β
say, so that Equation 34 becomes

  

V(r) = V(β ) + ′V (β )(r − β ) + ′′V (β )
(r − β )2

2!
+ V (3) (β )

(r − β )3

3!
+ K(47)

The potential energy is often modelled by the Lennard–Jones 6–12
function (shown in Figure 7). One form of this function is given below:

V(r) = ε a

r






12

− 2
a

r






6







 (48) ☞

where ε and a are constants and r is the distance between the atoms.
Such a mathematical model is appropriate for molecular solids, such as
argon (and less so for metals).
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We will examine the behaviour of this function close to its minimum value at r = β and hence determine how a
material modelled by Equation 48

V(r) = ε a

r






12

− 2
a

r






6







 (Eqn 48)

behaves as the energy increases. To do so we will need the first three derivatives of the function V(r) evaluated
at the point r = β (bearing in mind that the first derivative must be zero at M because this is a minimum point on
the graph).

First we rearrange Equation 48 a little to obtain

V(r) = 12ε 1
12

a

r






12

− 1
6

a

r






6









then we use the fact that r = β corresponds to the minimum point on the graph of V(r), so that

′V (β ) = − 12ε
a

a

r






13

− a

r






7









r =β

= − 12ε
a

a

β






13

− a

β






7











= 0

from which it follows immediately that β = a.
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Now we differentiate again to find

′′V (β ) = 12ε
a2

13
a

r






14

− 7
a

r






8









r =β

= 72ε
a2

4☞

and V (3) (β ) = − 12ε
a3

13 × 14
a

r






15

− 7 × 8
a

r






9









r =β

= −1512ε
a3

The purpose of these calculations is to simplify Equation 47,

  

V(r) = V(β ) + ′V (β )(r − β ) + ′′V (β )
(r − β )2

2!
+ V (3) (β )

(r − β )3

3!
+ K (Eqn 47)

and we can simplify it still further if we let x = (r − β0) and Epot(x) = V(r) − V(β0) to obtain ☞)

Epot (x) ≈ 36ε x

a






2

− 252ε x

a






3

(49)

and as a further simplification we let P = 36ε and Q = 252ε, so that Equation 49 can be written as

Epot (x) ≈ P
x

a






2

− Q
x

a






3

(50)
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Epot(x)

xM xBxA

E0A B

quadratic
approximation

cubic
approximation

Figure 84A cubic approximation
to Epot(x).

Effectively this means that we have
moved the graph of Figure 7 so that the
point M is at the origin, and the right-
hand side of Equation 50

Epot (x) ≈ P
x

a






2

− Q
x

a






3

(Eqn 50)

is the cubic approximation illustrated in
Figure 8.

Now consider a pair of vibrating atoms
with fixed total energy E0. At any instant

E0 = Epot(x) + Ekin(x)

where Ekin(x) represents their
instantaneous kinetic energy when their
separation is r = β + x.
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The quantity Ekin(x) must be positive, so the greatest and least possible values of x for the atoms will be given by
the roots (i.e. solutions) of the equation E0 = Epot(x), and their approximate values will be given by x = xA and x
= xB the solutions of the equation

E0 = P
x

a






2

− Q
x

a






3

(51)

Once we have found xA and xB, the amount by which the average separation at energy E0 exceeds the minimum

energy separation will be given by 
xA + xB

2
.

We can easily obtain a first estimate of xA and xB by ignoring the term involving x3 in Equation 51, so that xA

and xB are approximately the roots of the equation E0 = P
x

a






2

.

then xA ≈ −a
E0

P
, xB ≈ +a

E0

P
 (52)

and
xA + xB

2
≈ 0 (53)
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This estimate is not sufficiently accurate for our purpose, but the estimates for xA and xB in Equation 52

xA ≈ −a
E0

P
, xB ≈ +a

E0

P
 (Eqn 52)

can be used to obtain an improved estimate as follows. Since xA and xB are roots of Equation 51

E0 = P
x

a






2

− Q
x

a






3

(Eqn 51)

we have

PxA
2 − Q

a
xA

3 = a2E0 (54)

and PxB
2 − Q

a
xB

3 = a2E0 (55)

Subtracting these equations, and factorizing the result, we obtain

P(xA − xB )(xA + xB ) − Q

a
(xA − xB )(xA

2 + xA xB + xB
2 ) = 0
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and therefore (since xA ≠ xB)

xA + xB

2
= Q

2aP
(xA

2 + xA xB + xB
2 ) (56)

Substituting the estimates for xA and xB from Equation 52

xA ≈ −a
E0

P
, xB ≈ +a

E0

P
 (Eqn 52)

into the right-hand side of Equation 56 we obtain

xA + xB

2
≈ Q

2aP

a2E0

P
−

a E0

P

a E0

P
+ a2E0

P







= aQE0

2P2

and after substituting P = 36ε and Q = 252ε we obtain

xA + xB

2
≈ 7aE0

72ε
(57)

From Equation 57 it follows that as the energy E0 increases, the mean distance between the atoms also increases,
in other words the material expands.
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Study comment In this module we have studied Taylor polynomials as approximations to various functions. Such
approximations are valuable in certain circumstances, such as obtaining the equation for a simple pendulum near to its
equilibrium position. However, it is important that you should realize that in other circumstances a Taylor polynomial may
not be the best approximation since it becomes less accurate as we move further away from the point about which we are
expanding. You should be aware that there are other polynomial approximations which may be better in some circumstances.
However, such polynomials are not considered within FLAP.
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4 Closing items

4.1 Module summary
1 The Taylor polynomial of degree n for f1(x) near x = 0 is

pn (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + … + f (n) (0)
n!

xn (Eqn 19)

2 The Taylor series or expansion for f1(x) near x = 0 is

  

f (x) = f (0) + ′f (0)
1!

x + ′′f (0)
2!

x2 + f (3) (0)
3!

x3 + K + f (n) (0)
n!

xn + K (Eqn 21) ☞

3 The Taylor polynomial of degree n for f1(x) near x = a is

  

pn (x) = f (a) + ′f (a)
1!

(x − a) + ′′f (a)
2!

(x − a)2 + f (3) (a)
3!

(x − a)3 + KK+ f (n) (a)
n!

(x − a)n  (Eqn 31)



FLAP M4.5 Taylor expansions and polynomial approximations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4 The Taylor series, or expansion, for f1(x) near x = a is

  

f (x) = f (a) + ′f (a)
1!

(x − a) + ′′f (a)
2!

(x − a)2 + f (3) (a)
3!

(x − a)3 + KK + f (n) (a)
n!

(x − a)n + K

5 For a convergent series, the error in using a Taylor polynomial is approximately equal to the next (non-zero)
term in the corresponding Taylor series.

6 If xn is the nth approximation to the root of the equation f1(x) = 0, then the next approximation is given by

xn+1 = xn − f (xn )

′f (xn )

This is known as the Newton–Raphson formula.

7 New Taylor series can be found from known series by various methods, including:

o substitution;

o combinations of series;

o differentiation.
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Use the general form of a Taylor series to find series expansions for given functions about x = 0 or about
x = a.

A3 Describe and estimate the approximation involved in replacing a Taylor expansion by the corresponding
polynomial.

A4 Derive new Taylor series from known series.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)4Find the Taylor polynomial of degree 4 for 1 + x  near x = 0.

Question E2

(A2 and A3)4Obtain an approximate value of sin1(50°) by taking the first two non-zero terms in the Taylor
expansion of sin1(x) about x = 45°. Give an estimate of the likely error in your approximation.

Question E3

(A2 and A3)4Find the Taylor expansion of loge1(x) near x = 1.
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Question E4

(A4)4Use the known Taylor expansion for exp1(x) about x = 0 to obtain the expansion about x = 1.

Question E5

(A4)4Use the known Taylor expansion for loge1(1 − x) to obtain the expansion for

1
2

loge
1 + x

1 − x






about x = 0.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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