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1 Openingitems

1.1 Moduleintroduction

Many of the functions used in physics (including sin (x), tan(x) and log.(x)) are impossible to evaluate exactly

for all values of their arguments. In this module we study a particular way of representing such functions by

means of simpler polynomial functions of the form ay + a;x + a,x2 + a,x3 ..., where ag, a,, ay, etc. are constants,
the values of which depend on the function being represented. Sums of terms of this kind are generaly referred

to as series. The particular series we will be concerned with are known as Taylor series. We aso show how, in
certain circumstances, the first few terms of a Taylor series can give a useful approximation to the corresponding

function.

For a physicist, the ability to find Taylor approximations is arguably the most useful skill in the whole
‘mathematical tool-kit'. It allows many complicated problems to be simplified and makes some mathematical
models easier to solve and, perhaps more important, easier to understand.

Section 2 of this module begins by showing how some common functions can be approximated by polynomials.
In each case the polynomial has the property that the values of its low-order derivatives, when evaluated at a
particular point, are the same as those of the function which it approximates.
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In Section 3 we show how this feature leads to a general technique for representing functions by means of series,
and how taking the first few terms of such series can provide a useful approximation to the corresponding
function. Subsections 3.1 and 3.2 are concerned with Taylor polynomials and series where the argument, X, of
the corresponding function is close to zero. In Subsections 3.3 and 3.4 we consider polynomials and series for
which x is not close to zero. Subsection 3.6 gives some useful tricks and short-cuts which can be used when
finding Taylor polynomials and series. Subsection 3.5 lists some standard Taylor series, and Subsection 3.7
gives some applications of the ideas introduced in this module.

Study comment  Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.

FLAP  M45 Taylor expansions and polynomial approximations e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



1.2 Fast track questions

Study comment  Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Write down the general expression for the Taylor expansion of a function, f (x), about the point x = a. Use this
seriesto find the first five terms in the expansion of +/x about x = 1. (R

Question F2

Write down the Taylor expansions of exp (x) and sin(x) about x = 0, and hence find the first three non-zero terms
in the Taylor expansion of exp (x2) sin (2x) about x = 0.
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Study comment  Having seen the Fast track questions you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment  To begin the study of this module you need to be familiar with the following terms: approximation (=),
constant, factorial (n!), function, gradient (of a graph), modulus (or absolute value, e.g. |x|), power, radian. root,
summation symbol (3), tangent (to a curve) and variable. You should also be familiar with the following topics: sketching
graphs of elementary functions (such as y = sin (x)); finding nth order derivatives of simple functions; the properties
(including derivatives and values at important points) of the elementary functions, such as the trigonometric, exponential and
logarithmic functions, simplifying, expanding and evaluating algebraic expressions. Some familiarity with infinite series and
the convergence of such series would also be useful, but thisis not essential. If you are unfamiliar with any of these topics,
you should consult the Glossary, which will indicate where in FLAP they are developed. The following Ready to study
questions will help you to establish whether you need to review some of the above topics before embarking on this module.

Question R1

Find the value of the derivative of 1+ 2x + 3x2 at x = 2.
Question R2

What arethevauesof n! forn=0, 1, 2, 3, 4?
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Question R3
Simplify the following expression

n=4 n=3
Zznxn - an
n=0 n=0

and give your answer without using the summation symbol.

Question R4
Using primes to denote differentiation, find f (1), f'(1), f (1) and f ®)(1) for
f(x) =x3 + x4
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Question R5
If p(X) is defined by
p(x) =1+ 3x + 2x2
write down simplified expressions for p(—x), p(2x) and p(1 + 2x).

Question R6
Giventhat P(x) = 1+ x + x2and Q(X) = 2 — x + 3x2, expand and simplify P(x)Q(X).
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2 Polynomial approximations
2.1 Polynomials

Many different kinds of functions are used throughout mathematics and physics. Whereas some functions, such

x3 x5
as f(X)=x-—+— 1
(x) 6 120 @)
X X2
X)=1+_—-—-— 2
9(x) > "8 @)
h(x) =1+x (©)]
are polynomial functions, others, such as
u(x) = sin(x) &)
V(X) =1+ X (5)
1
W(x) = 7= ©)
- X
are not.
. | i d pol ial imati
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A function p(x) isapolynomial function of x (or in x) if it can be expressed in the form

p(X) = ag + a;x + ax? + agx® + ... + ax" )

in other words, as a sum of powers of x, with each power multiplied by a coefficient (a5, a;, and so on).
The powers of x are non-negative integers.

While it is easy to see that expressions such as 1 + 2x — x2 — x3 and x® + (x — 1)4 are polynomialsin ¥, it is not
always so easy. For example,

(e*— €92 — (e*+ €92 + (xsinX)2 + (X cosx)?2

isactually apolynomial in x (in fact —4 + x2), but it may take a few moments thought to see why thisis so.

O Which of the following are polynomiasin x?

1 (d)1+£+i2+i_

al+x+(x-12 GOI1+e+eX () ——m—,
@ 1+x+(x-12 (0) © T SRR RE
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The highest power of the variable in a polynomial is known as the degr ee of the polynomial. For example, in the

above expression for p(x) (Equation 7),

p(X) = ag + asX + aX2 + agxd + ... + ax" (Egn7)
the degree is n (assuming that a,, is non-zero).
Question T1

What are the degrees of the polynomial functionsf (x), g(x) and h(x), defined in Equations 1, 2 and 3?

3 5
f(x):x—%+1xz—0 (Eqn 1)
X X2
=1+- -2 Eqn 2
9(x) *>T3 (Ean2)
h(x) =1+x (Ean 3)

O
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Low-order polynomials are often given special names. Polynomials of degree zero are simply constants;
polynomials of degree one are called linear; those of degree two are called quadratic and those of degree three

are called cubic. [ ]

An important property of any polynomial, p(x), is that for any value of x, the value of p(x) can be calculated by
simply using the arithmetic operations of addition (or subtraction) and multiplication. This is not the case with
many other functions (for example, u(x), v(X) and w(x), defined in Equations 4, 5 and 6)

u(x) = sin(x) (Egn 4)

v(X) = V1+ X (Egn 5)

w(x) = 1 (Egn 6)
1-x

and it can be very useful to know polynomial approximations to such functions.
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Question T2

Plot the functions h(x) and w(x) (defined in Equations 3 and 6)
h(x) =1+x (Egn 3)

W(x) = rlx (Eqn 6)

on the same graph for 0 < x < 0.9. Compare the two curves. (Hint: Y ou do not need to plot these functions ‘ by
hand’. If you have access to a graph plotting calculator or computer program, useit!) 0O
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The exercise that you have just completed shows that, for
‘small’ values of x, the polynomial function h(x) is
approximately the same as w(x), so here we have an example
of a polynomial approximation to the function
U(@a - x).

However, we can see from Figure 9 that the approximation
becomes progressively worse as x increases towards the
value 1.

O T T T

1
1

h(x) = 1 +x

0 0.2 0.4 0.6

Figure9 SeeAnswer T2.
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In Figure 1 we have plotted the graphs of
y = sin(x) and y = x on the same axes.
As you can see, the graphs of the two
functions are very similar for small

values of |x|, LI but as |x| increases,
the discrepancy gets progressively
worse, so that for | x| above about 0.7 it

is very noticeable, and above T11/2
(i.e. approximately 1.57) the two graphs
show no similarity at al.

So there may be circumstances where we
would be justified in approximating
sin (x) by x, but such an approximation is
only likely to be useful for small values
of [x].

y y=pi(x) =X

Figurel Graphsof thefunctionsy = xandy=sin(x). Note that
throughout this module the argument of any trigonometric function is either
adimensionless variable or an angle in radians rather than degrees.
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For example, an analysis of the motion of a simple pendulum gives the (apparently
intractable) equation
d2
dt2
where 6(t) is the angle shown in Figure 2 and w is a constant (called the angular

frequency). For small deviations of the pendulum from the vertical, 6(t) is small, and we
arejustified in making the approximation sin(8) = 8, giving

[6(D)] = —w?sin[6(1)] (8 H)

d2
< 160] = -6

(1)

Figure2 A simple

. d? : .
and the equation F[B(t)] = —w?0(t) is straightforward to solve. pendulum.
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Question T3

Show that 8 (t) = sin(wt) isasolution of
d2
dt?

but not of

[6(1)] = —w?6(t)

d2 .
< 160)] = —w?sin[6(1)]

©)

(Egn8) O
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approximationsfor sin (x) 6

Ifweput  py(X) =X (10) y =sin(x)
ya

then our previous discussion amountsto 7 - r\/Zn X

saying that p;(x) is an acceptable 1

approximation for sin(x) provided that

[x]issmall.

However, for many applications,
particularly those involving ‘large’
values of x, approximating sin(x) by
p.(X) isnot at al satisfactory.

Figure3 Graphs of the functions y= x — (x3/6) and y = sin (x).

Fortunately there are better approximations. For example, in Figure 3 we plot the polynomial

P00 = x- % aw [

together with the sin(x) function.

FLAP  M45 Taylor expansions and polynomial approximations e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



If you compare Figure 3 with Figure 1,
you can see that this polynomia is a
much better approximation to the sine
function than the linear polynomial and
is particularly good for |x]| less than
about 1.5.

O How is this new approximation
ps(xX) related to the previous

approximation py(x)?

y y=pi(x) =X

Figurel Graphsof thefunctionsy = xandy=sin(x). Note that
throughout this module the argument of any trigonometric function is either
adimensionless variable or an angle in radians rather than degrees.

Y ou may be wondering how we were able to choose a polynomia ps(x) that works so well.
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The answer lies in acomparison of the derivatives of sin(x) and p;(x) at x = 0, as follows, where for convenience

we have written f (X) = sin(x), and we use primes (') to indicate differentiation.

For convenience we also introduce the notation [ ]y=q to indicate that the function inside the brackets should be

evaluated at the value outside.
The function f (X) = sin(x), The approximating polynomial
=x- (X3 =
ax=0[] pPa(X) =x—(x3/6) at x=0
0 x30
f(0)=sin(0)=0 0)=px-— =0
(0) =sin(0) P(0) = -
2
£1(0) = cos(0) = 1 p§(0)=%—x7D =1
=0
f7(0) = -sin(0) = 0 p5(0) =[-X],co =0
f(3(0) = —cos(0) = -1 p$d (0) = -1

As you can see, the values of the functions sin (x) and ps(x), and their first three derivatives, are precisely the

same when evaluated at x = 0.
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By using higher-degree polynomials it is possible to obtain increasingly accurate approximations to sin (x).
For example,
x3 x5 12
X)=X——+—
Ps(X) =X ="+ o (12)
isapolynomial approximation of degree five to sin(x), which gives very accurate results near x = 0.

Shortly we will show you how we found ps(x), but first, to see how good this new approximation really is, try
the following question.

Question T4

Find p5(0.2) as accurately as you can, and compare your answer to that obtained for sin(0.2) on acalculator. [0

The polynomial ps(x) was chosen so that its value, and the values of its first five derivatives, at x = 0, are the
same as for sin(X). L] We can see that this is the case by performing a calculation similar to that which we
performed for p;(X).
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The function f () = sin(x)
ax=0

The approximating polynomial
(Equation 12) at x =0

f(0) =sin(0) = 0

f'(0) =cos(0) = 1

f7(0) =-sin(0) = 0

f®3)(0) = —cos(0) = -1

f4(0)=sin(0) =0
f&(0) =cos(0) = 1

O x¥, x50
0)=x-—+—p =0
Ps(0) EN 120,

X2 x40
(0 =d-—+27 =1
rs(0) E‘ 2 248,
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O How isthis new approximation, ps(x), for sin(x) related to the previous approximation ps(x)?

The previous discussion suggests that we may be able to construct a sequence of increasingly accurate
approximations to sin (x)

X3 X3 X5
p1(X) =X, ps(X)=X—€, ps(X):X—€+ﬁ,andsoon

which are obtained by adding higher and higher powers of x.

So far we have verified that these polynomials and their derivatives behave very like sin (x) at x = 0, but we have

not shown you how to construct them. We will remedy this deficiency shortly, but first let us try a similar idea
on afunction other than sin (x).
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2.3 Increasingly accurate approximationsfor exp (x)

Since exp (0) = €” = 1, it isclear that exp (X) Llis approximately equal to 1 when x is close to 0 but perhaps we
can find a better approximation.
We could try apolynomial whichislinear in x, that is
0i(X) = ap + arx (13)
and look for numbers, a; and a;, such that the low-order derivatives of exp (x) and g;(x) are identical.
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Remembering that di[exp(x)] = exp(x), and writing g(x) = exp(x) for convenience, we can construct the
X

following table:

The function g(x) = exp (X), The approximating polynomial

ax=0 (Equation 13) at x =0
9(0) =exp(0) =1 ®(0) =[a0 + ax],_o = @
g0 =exp(0)=1 ®(0) =[a] ., =a

So if we choose ay = 1 and a; = 1, the approximating polynomial becomes

0u(X) =1+x

and its value, and the value of itsfirst derivative are, respectively, identical to the values of exp(x) and its first
derivativeat x = 0.

0 Evaluate g;(0.1) and exp(0.1). What is the gradient of y = exp(x) at x = 0? What is the eguation of the
tangent to the graph of y = exp (x) at x = 0? .
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Now let ustry to find a better approximation by considering a quadratic polynomial
0p(X) = ag + X + ax?

and look for numbers, ag, a;, @, such that the low-order derivatives of exp (x) and q,(x) are identical.
Constructing atable of values as before, we have:

The function g(x) = exp (X), The approximating polynomial
ax=0 0o(X) = ag + X+ ax?atx =0
9(0) =exp(0) =1 02(0) = a0 + awx + ax?], _; = a
g(0)=exp(0) =1 G (0) =[a + 28], = &
g'(0)=exp(0) =1 a3(0) =[22] ., = 22

So if we match the functions and their derivatives at x = 0 by choosing a; = 1, a; = 1 and 2a, = 1 the

approximating polynomial becomes
2
G (x) =1+ X+ a4
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2
G(x) =1+ x+x7 (Egn 14)

Compare g,(0.1) with g;(0.1) and exp (0.1).

Once again we have obtained a better approximation by adding a term of higher degree, x%/2 in this case, while
the constant term and the coefficient of x remain unchanged. As you might imagine, we can continue this process
by considering the cubic polynomial

03(X) = ap + X + ax? + agx® (15
and arranging that the low-order derivatives of exp (X) and gs(x) are identical.

O Calculate agand hence find g;(x).

0 Compare gs(0.1) with g;(0.1), g»(0.1) and exp (0.1).
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Question T5

Use your calculator to obtain exp (x) and g3(X) (to three decimal places) for x = 0, 0.1, 0.5, 1.0, 2, 10.
What conclusions can you draw from comparing the two sets of results? 0O

Some conclusions

So it appears that the polynomials

2 3
1, 1+x, 1+x+5, 1+x+X—+X—,andsoon
2 2 6

provide a sequence of increasingly accurate approximations to exp (x) for small values of x, and in particular for
exp(0.1). In each case a better approximation is obtained by adding a term with a higher power of x, and
choosing the coefficient so that the low-order derivatives of the polynomia and exp (x) areidentical at x = 0.
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Sketching exp (x) and these polynomials for a range of values
of x, asin Figure 4, suggests that the polynomials also provide
increasingly accurate approximations for other values of x. Our
aim in the next section is to generalize this technique for
finding polynomial approximations.

y

20 y:@(p(x)

15 A

y:1+x+X72+§
10 ~
y:1+X+L2

5 y=1+x
y=1

O T T T

0 1 2 3 x

Figure4 Polynomial approximations to exp (X).
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3 Finding polynomial approximations by Taylor expansions  [1

3.1 Taylor polynomials (near x = 0)

So far, we have considered polynomial approximations to the sine and exponential functions, but in this
subsection we intend to apply a similar method to approximate the general function f(x) near tox = 0 by a
polynomial

Pn(X) = ag + aix + aX2 + agx3 + ... + axX" 17)
where n = 0 indicates the degree of the approximating polynomial.

The purpose of this subsection is to show you how to choose the coefficients (i.e. the numbers a; , a;, a, and so
on); but first try the following preliminary exercises.

Preliminary exercises

0 Giventhat p(x) = 1 + 3x + 5x2 + 7x3 + 9x* write down expressions for p'(x), p"(x) and p”(0).
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0 Elsewherein this subsection p,(x) refers to the general polynomial defined by Equation 17,

Pr(X) = 8p + ayX + X2 + azx3 + ... + ax" (Eqn 17)

but suppose for the purposes of this question that p,(X) isthe particular polynomial defined by

x2 X3 x"

_ X
)= T 2 e w0

(8) what are the coefficients ay, a3, 8;9 and a,,?

(b) Write down expressionsfor py,(x) and py(X).

(c) What isthevalueof p;(0)? .

O Given that p,(X) is a general polynomial defined by Equation 17, write down expressions for pp(x) and

pn(X). What is p(0)?
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Look carefully at the following pattern, and make sure that you understand what happens to the terms as you
continue to differentiate:

Pa(X) =8y +agx +ax? +agx®  +...+ ax"

differentiate O O O O

ph(X)= @ +2a,x+3ax% +...+nax"t
differentiate O O O

pi(x) = 2a, +3x2a5x +... +a,n(n—1)x" 2

The general approximation
When approximating a general function f (x) by the polynomial in Equation 17,
Pn(X) = a9 + X + X2 + agx + ... + a X" (Egn 17)

we look for values of the coefficients, ag, a, ... a,, for which the derivatives of f (x) (up to the n") are the same
as those of p,(x) (aswe did in the previous section).
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Pn(X) = g + X + X2 + agxe + ... + a X" (Egn 17)
Proceeding one derivative at atime, we first calculate p,(™(0) asfollows L]
Pa(0) = [0 + X + 8x® + agx® + aX* ... + aXy=0 = a
pn(0) = [aq + 2a,x + 3a3X2 + 4a, 3 + ... + napX™ 1, =g
pr(0) = [2a,+3x2a3x+4x 32+ ... +a;,n(n—-1)x" 9, =2a

Pa(0) =[(3x 2)ag + (4 x 3 x 2agX + ... +ayn(n = 1)(n = X" F,o= 3 x 2a3
P@0)= [(4x3x2)ay+... +an(n-1)(N-2)(N-3)x" 4, =4x3x2a,

p(M(0) = [a.n(n=)(n-2)(n-3) ... 2], =nla, Q

So in genera, for the mth derivative (where 0 < m< n) we have

pM(0) = m(m - 1)(m=-2)(M=3) ... 2 x 1la,=m! a,
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We must not forget the purpose of all this algebra, which is to ensure that the mth derivatives of f(x) and p,(X)
(where 0 < m< n) should beidentical at x = 0. Thus we require

fM(0) =m! a,
S0, the coefficients in the polynomial
Pn(X) = ag + asx + aX2 + agxd + ... + ax"

are given by
_fm
T om!

(18)

or, if you prefer to write the formulae out in full they are given in the margin. [
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We can now write down a general result for the nth degree polynomial which approximates a function, f(x) say
near the value x = 0.

The following expression is known asthe Taylor polynomial of degreen for f(x) near x=0:

. " 3 ()
MOy Q) o, 10O s, 4 O 9 L
u 2! 3! n!

pn(x) = £(0) +
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An application of the general formulato exp (x) and (1 — x)!

As an example, let us find the Taylor polynomial of degree n for exp (X) near x = 0. In this case, f(X) = exp(X) in
the general expression, Equation 19.

f'(0 f"(0 f3(0 f(MW(0
Pn(x) = f(0) + 1(!)x+ 2(!)x2+ 3!()x3+...+—n!()x” (Egn 19)

But the nth derivative of exp(x) is exp(x) and, since exp(0) = 1, we have f(™M(0) = 1 for al integers n.
Consequently we find

2 3 4 n
X XS XS X X
B T T I TIM ] (20
Thisisageneraization of the result obtained in Subsection 2.3 (Equation 16).
x? X3
Q3(X):1+X+?+? (Egn 16)
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Question T6

Show that if f (x) = (1 = x)™1 then
dan n!
=)= ——
dxn (x) @a- X)n+l

and use thisresult to find the Taylor polynomia of degreen for f(x) near x=0. O
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3.2 Taylor series (expanding about zer0)

Our intention is to replace a function such as exp (x) by
a simpler function, a polynomial, while maintaining an
acceptable degree of accuracy; but look again at the
results in Question T5, in which you were asked to
compare the cubic Taylor polynomia for exp (x) with
the values for the exponential function obtained on your
calculator.

For x = 2, the polynomial gave the value g3(2) = 6.333
whereas the calculator gave the value exp (2) = 7.389.

Thus replacing exp (2) by gs(2) would give rise to an
unacceptable discrepancy for many physical
applications.

Table2 SeeAnswer T5.

X exp (x) 93(¥)
0 10 1.0
0.1 1.105 1.105
05 1.649 1.646
10 2.718 2.667
20 7.389 6.333
100 22026.466 227.667
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We might imagine that we could obtain a more accurate result by usinga Table 1
Taylor polynomial with more terms, and this is indeed the case, as The degree n of the Result of

Table 1 shows. polynomial g,(X) evaluating the
that approximates  approximating
exp (X) polynomial gn(x) at
X=2

1
3
5
6.333

7.267
7.356

o g0 b~ WODN P O
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For any function, f(x), we could let the number of terms in the corresponding Taylor polynomial become larger
and larger in order to get an increasingly accurate result. We could even go one stage further and consider the
limit as the number of terms tends to infinity, in which case we find

the Taylor seriesor Taylor expansion for f (x) near x =0

f(x)=f(0)+ M0, "0, A0 X3+ RO X"+ (21)
1 2! 3! n!

O In what way does the Taylor series given in Equation 21 differ from the Taylor polynomial of degree n
given in Equation 19?

The series expansion of Equation 21 can be written more compactly using the summation symbol, as follows

(=3 1005 2 O
n=0 .
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Study comment  The expression Taylor expansion is often used in place of Taylor series. The terms Taylor expansion of a
function about or at x = O rather than near to x = 0 are al in common usage.

As an example of a Taylor series, we can consider the expansion of exp (x) about x = 0. Thisis a particularly
simple function to expand since each of its derivatives is equal to the exponential function and exp (0) = 1.
We therefore have

Odn 0
f(O(0) = exp(x) =[exp(X)]x=0 =1 for all valuesof n
Ftxn a:o "

and putting thisin the general formulafor a Taylor series (Equation 21 or 22)

(=3 F0©0% (Eqn 22)
n=0 '
gives
ep(x) = y X (23)
n=0""
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Study comment  For any specified value of x, this series gives increasingly accurate results for exp (x) as the number of
terms in the series is increased. In such a case we say that the series converges to exp (X) for al values of x. Further
information on the convergence of infinite series can be obtained through the Glossary, but in this module we are more
concerned with the methods of obtaining the desired series than with their convergence.

Question T7
Show that the Taylor expansion

f00= 3 100 (Ean 22)
of (1+X)" near x = 0isgiven by

(L+x)" :1+rx+r(rzjl)xur(r_13)l(r_2)x3+... (24)

wherer isany real number. [
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The approximate error

If we ignore the higher terms in the Taylor series, so that we approximate the given function by a Taylor
polynomial, then we commonly use an approximately equal symbol rather than equality, so that, for example,
we may write
X2  x3

exp(x)~1+x+E+§
If we use a Taylor polynomial of degree n to approximate a given function then we are clearly ignoring the rest
of the infinite series. But how accurate is such a polynomial approximation? Can we estimate the size of the
error?

An accurate estimate of the error involved in such approximations is beyond the scope of FLAP, but a useful
rule of thumb is that if terms involving x"*1 and higher powers of x are ignored, then the error is of the same

order of magnitude as the first non-zero term that has been ignored. (R
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For example, if we calculate the third-order Taylor polynomial for exp (0.5), namely

x2  x30
exp(X)]y=05 = A+ X+ —+—
[ep0lieos =+ X+ 5+ 5
2 3
—1+(05) + 0 L (O5° ) gysg
2! K]
then we would expect the approximate error to be given by

x4 0

= 0.0026
HHoos

which is about 0.16%. The value for exp (0.5) given by my calculator is approximately 1.6487, corresponding to
an error in the Taylor polynomial approximation of about 0.003 which is about 0.17%. Of course, the reason for
the inaccuracy in the estimation of the error is that we are neglecting al the other terms in the series, but such

approximations are usually acceptable, and particularly so if we are interested in small values of x.

Question T8

Use the third-order Taylor polynomial for sin(x) near x = 0 to obtain an approximation to sin(1v4).

Derive an estimate for the percentage error in your result. [
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3.3 Taylor polynomials (near x = a)

If you enter sin (1) on your calculator you should find that you get zero, or something very close. (Try it! Q)
Now look at the Taylor polynomial of degree 5 for sin(x) near x =0
. x3 x5
sn(x)=x-—+—
31 5l
If we substitute x = 11, we obtain
3
sn(m=m-"+ <052
3t 5
Although the infinite Taylor series for sin (1) sums to zero, we can see that the above polynomial does not
provide anything like a reasonable approximation. The value x = Ttis simply too far from the value x = O for the
Taylor polynomial of degree 5 to provide an adequate approximation to the full Taylor expansion of sin (x) about
x = 0. So, how can we find a simple polynomial representation of sin(x) that will work at X = 1? The resolution
of this difficulty isto find a Taylor expansion which is valid in the vicinity of a point other than zero, we can
then use as many terms as we want from that expansion to provide the required polynomial approximation near
X=TL

FLAP  M45 Taylor expansions and polynomial approximations e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



More generally, suppose that we want to approximate a function, f(x), near to x = a by a polynomial of order n,
where n = 0. Asin Subsection 3.1, we want to look for values of the coefficients for which the derivatives of f (x)
are the same as those of the polynomial.

Previously we calculated the derivatives at x = 0, but now we calculate the derivatives at x = a.

For this reason we consider the polynomial
Pa(X) =@ + ay(x —a) +ay(x —a)? + ag(x —a)° + ... + a,(x - a)" 25 L1

Such a series is sometimes known as a power series, or a series of powers of (x — a). In order to pick out the mh
term in this expression we differentiate m times with respect to x and then set x = a. To see how this works, let
uslook at a specific example. Suppose that we wish to approximate sin (X) near X = 17/4.
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An approximation for sin (x) near x = 174
We will attempt to find an approximating polynomial of degree 3 so that
Sin(x) = pa(X) = ag + ay(x — TV4) + ay(x — TV4)2 + ag(x — TV4)3 (26) LI

First we put x = 174 in Equation 26 so that p3(T/4) = ag

Then we differentiate Equation 26 to obtain

ps(X) = @y + 2a,(x — TU4) + 3ag(x — T/4)? 27)
and put X = 774 in Equation 27 to give
Now we differentiate Equation 27 to obtain

p3(Xx) = 2a, + 6ag(x — 1U4) (28

and put x = 174 in Equation 28 to give p3(174) = 2a,

Finaly we differentiate Equation 28 to obtain
P (x) = 6ag (29)
and put x = 174 in Equation 29 to give p$? (174) = 6ag

FLAP  M45 Taylor expansions and polynomial approximations e 0
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

& @



All that remains is to ensure that the value of the polynomial p;(x) and its first three derivatives coincide with
those of sin(x) a x = T74. The relevant values of sin(x) and its derivatives are:

[sin(x)]xzm =12

ontof] ~loos0] o =32

2
E;X—zsin(x)é =[-s$n(0)] e = ~YV2
:]'[/4

3
Eﬂ%dn(x)é = [—cos(x)]xzm =-1/y2
=14

and the values on the right must be made to coincide with the boxed values above. This gives

a=1YV2, a=12, 2a,=-1/vV2 and 6az=-1/2
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from which we seethat a, = - 1ﬁ and a3 = - 15
242 62

and the required approximating polynomial is

(x~T4P _ (x-14P [ -
2 6

1 o
ps(x)—ﬁéﬂx ry4)

0 The value 0.8 is quite close to 11/4 = 0.7854. Use the polynomial ps(x) defined in Equation 30 to find an
approximation for sin (0.8), and compare this value with the value for sin(0.8) obtained on a calculator. .

The argument can be generalized to polynomials of any degree if we use the result of the following question.
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Question T9
gm gnn-)(n-2) ... [n=-(m=-D}(x—-a)»™ ifm<n
Showthat ——(x-a)"=n! ifm=n
dxm .
EO ifm>n

wheren=0. O

If we differentiate the polynomial

pPr(X) =ag +a;(x—a) +ay(x —a)2 + ag(x —a)3 + ... + a,(x —a)" (Egn 25)
m times (where mlies between 0 and n) and then set x = a, only the term involving a,, can give a non-zero result.
To see this, consider a typical term a,(x — a)k. If k is too small (k < m) then (x — a)¥ is eliminated by
differentiation. On the other hand, if k is too big (k > m) then differentiation leaves a factor of (x — a) raised to

some power, but this gives zero on setting x = a. Consequently, the general result is exactly as our previous
examples suggest:

™ @ =20 p 0B =miay
Hixm " E

FLAP  M45 Taylor expansions and polynomial approximations e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Don't forget that we are trying to estimate some general function, f (x) say, near x = a, and the requirement that
the mt derivatives of f(x) and p,(x) (where 0 < m < n) should beidentical at x = a leadsto

F(m(a) = Edi_mmf(x)é_ = miay,

and therefore the coefficientsin the polynomial, p,(x), are given by
_ ™)
T om
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We can now write down the Taylor polynomial of degreen for f (X) near tox = a.

The Taylor polynomial of degreen for f (x) near x = ais

' " (3
(0= (@) + D (=) + B (- + B xapp e

(x-a)" (31)

which can be written more compactly using the summation symbol, as follows

n (m) — a\m
() = y AT

m=0

(32)

This formula makes the calculation of Taylor approximations very straightforward.
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n (m) — a\m
() = y AT

m=0

(Egn 32)

Find the Taylor polynomial of degree 3 for sin (x) near to x = 11, then estimate the value of sin (3), and compare
your estimate with the value given on a calculator.

Question T10

Use Equation 32 to find:
(a) the Taylor polynomial of degree threefor log.(X) near tox = 1;
(b) the Taylor polynomial of degree threefor exp (2x) neartox=0. 0O
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3.4 Taylor seriesabout a general point

We know that the Taylor polynomial of order nfor f(x) near x = ais
o f(M(a)(x-a)m

Pn(X) = Z mi

m=0

(Ean 32)

In general the accuracy of the approximation improves with the degree of the approximating polynomial, and in

the limit as n tends to infinity we find the Taylor series (or Taylor expansion) for f (X) near tox = a. O

TheTaylor series (expansion) for f (x) near x =ais

f(x) = f(a)+%(x—a)+%(x—a)2+%(x—a)3+...

f(M(a) (x
n!

+

—a)" +...
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which can be written more compactly using the summation symbol as

f=Yy

n=0

n!

o fM(@)(x-a)"

@4 L[

O What isthe distinction between approximating afunction near x = a by a Taylor polynomial of degree 3 say,

and finding the Taylor series for the given function near x = a?

As an example, suppose we require the Taylor seriesfor sin (x) near to x = 1t In this case wefirst need to find all
derivatives of sin (x) evaluated at X = Tt
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Question T11

Extend the cal culations which gave rise to Equation 33

sn(x) = —(x -1 + & ;!”)3

and show that (for n= 0)
d2n ( ) —o
an X H(
Dd2n+1

WSH(X)EX =-(-)" O

(Egn 33)
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Putting the results derived in Question T11 into Equation 34,

©  £(n) — a\n
(0= 3 10@0-a)

n=0 n!
wefind
] _ [ (_1)n(x_.r[)2n+l _ ) (X_.,.[)2n+l
SNO==3 an+n -2, (@n+D)]
OO € o ) M € N
3! 5!
Question T12

Show that the Taylor expansion of x™1 near to x= 1 is given by

(Ean 34)

(35

%: i(l—x)“ =1+(1-x)+(1-x)* +(1-x)°+(1-x)*+(1-x)°+... O

n=0
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Question T13

Use Equation 34
< fM(a)(x-a)"

f(=Yy

n=0 n!

to show that
_ < e"f(x)
f(x+¢)= ZT

n=0

(Thisform of the Taylor expansion isused in Subsection 3.7.) O

(Ean 34)

@6 L
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3.5 Someuseful Taylor series

In this subsection we list some standard Taylor series which are commonly used in physics. o

2 x" x x* x3
exp(x)=e*=Y - =1+—+"+" 4+ x[R 3 N
P(x) P T T S
o [_q\N 20+l 3 U5 7
gn(x):z%:x—x—ﬁ‘——x—h. x R (39)
2 (2n+1)! 3 5 7l
® (_4\ny2n 2 4 B
cos(x):Z&: —X—+X——X—+... x OR (39
2 (2n)! 21 4 6
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o0 Xn X2 X3 X4
log,(1-x) ==y —=-Xx-—-—-—+... -1<x<1 40
Je(1-X) nZOn >3 2 (40)
1152 V(1 — 91y3
(1+X)r:1+z+r(r DXE rr=D =%, qex<t (41 [
1! 2! 3!

Notice that Equations 37 to 39 are valid for all (real) values of x (in the sense that the series is convergent),
whereas Equations 40 and 41 are only valid for the indicated values of x.

The series given in Equation 41 is particularly useful in the caser = -1, and when x is replaced by —x, for then
%:1+x+x2+x3+... -1<x<1 (42)
- X
This seriesis easy to remember and can be used to derive many other useful series.
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3.6 Simplifying thederivation of Taylor expansions
In this subsection we consider afew tricks that can be used to simplify the derivation of Taylor expansions. The
first is similar to the method we used in Question T13.

Method 1 Substitution into a known series

Suppose we require the Taylor expansion of f (x) = exp(5x) near x = 0. We could find the nt" derivative of
exp (5x) and then use Equation 34. However, it is much easier to start with the result we aready have for exp (x),
namely

exp(x) = ) X— (Egn 37)

and then to substitute x = 5u, so we obtain

= (Bu)n
exp(5u) = Z%
n=0 n:
We can use any symbol in place of u and in particular we may choose to replace u by x. In which case
= (5x)"
exp(5x) = z%
n=0 n:
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0 UseEquation 42

%:1+x+x2+x3+... -1<x<1 (Eqgn 42)
1 1 3x.. .
to show that = — - — if xissmall comparedtoL, andL #O.
L+3x L L2

Method 2 Combinationsof known series

Suppose that we want the expansion of [|
f(x) = ZPO) ~exp(=x)
2
near to x = 0, then we can use the known expansion for exp (x) together with the expansion obtained when —x is
substituted for x. In thisway we find
exp(x)—exp(-x) _1&x" 18 x)" _o xa
2 25n 2 Z ZO(Zn+1)!
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Question T14

Use Equation 24 (or 41)
(L+Xx) =1+rx+ r(rZT Do 4 10 _13)|(r "2y (Ean 24)
—1)x2 —\(r — 2\ 3
@+x)" =1+ %4 rr=Dx® , rr=Dr=2)x* ... —1<x<1 (Egn4l)
1 2! 3!
to find the Taylor expansion for
F(¥) = 210+ + 1= %]
about x=0. 0O
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Method 3 Combinations of the approximating polynomials

Sometimes we need to approximate rather unpleasant functions, which are perhaps a combination of functions
whose Taylor series are known. In such a case it may be quite sufficient to find just one or two terms of the
series.

Suppose, for example, that we wish to find a cubic approximation to exp (2x) sin (3x) near to x = 0; we can use
the first few terms of the standard Taylor series for sin (x) and exp (x) as follows

3 3
exp(2x)sin(3x) = H+ 2X+ —— (ZX) @ + %x _(397 + E
3! 1] 3! 0
If we expand the brackets and ignore the terms of degree 4 and above, we find

2 3
exp(2x)sin(3x) = §+ 2X + (22x!) %x + (1)5— (3;) E

:3x+6x2+gx3

Question T15
Find the Taylor polynomial of degree 2 which approximates exp[sin(X)] neartox=0. 0O
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Method 4 Differentiating a known series

In some cases it is possible to obtain one Taylor series by differentiating another series. For example, we know
that

isin(x) = cos(Xx)

dx
and that the Taylor seriesfor sin(x) is
2 x> X
SN(X)=X——+—-—+
3 5 7
We also have
9 n = et
dx
and so putting all these results together we get the Taylor series for cos(x), we find

3 x> X’ 0 x2 x* x5

cos(x):isjn(x):iD -2 42 2 4 =1-2 42 -2 g
ax xH 3 s o T T e
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Question T16

Use Equation 42
1
1—:1+x+x2+x3+... -1<x<1 (Egn 42)
- X
to find the Taylor seriesfor near
1-x)*
x=0. 0
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3.7 Applications and examples

In this subsection we consider some applications of Taylor series in both mathematics and physics.

Examplel Thefield strength of a magnet of length 2L at a point on its axis at a distance x from its centreis
proportiona to

1 1

(x=L)* (x+L)

Show that for | x| < L this expression is approximately 4—';
X

Solution Using Equation 41
_ 2 _ _ 3
Q+r(r 1)x +r(r D(r -2)x +
1! 2! 3!

we can write this expression as
2

X_zgl_%. _X_ZBH%-Z:X_Z% 210 Sl 2L 4L .

Q+x) =1+

-1<x<1 (Egn 41)

FLAP  M45 Taylor expansions and polynomial approximations e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Example2 L] A particle movesin one dimension subject to a potential, V(x), which has a minimum at
X = Xg. Show that the motion is simple harmonic for small displacements from the equilibrium position.

Solution Expanding V(X) as a Taylor series about the point x = X, we find (from Equation 34)
2
X -_—
V() = V() + V' (x0)(x = 1) v (xg) X200
Since V(x) has aminimum at x,, we know that V' (xg) = 0 and V" (X)) must be a positive constant L] whichwe
can call w?, hence

V(X) = V(o) + mzw

— 2
0 V() - Vo) = w2 S
If wewritey = X — Xg, then we can define a new potential, U(y), given by

02
U(y) =V(y + Xo) = V(%) = 7)’2
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thisisthe potential of simple harmonic motion about y = 0 (i.e. about x = xy) and the corresponding component
of forcein the y-direction, Fy, is

Newton—Raphson method

The next example concerns a famous method of solving algebraic equations known as the Newton—Raphson
method.

Often we wish to find an exact solution, x = a say, of an equation f(x) = 0, so that f(a) = 0 but unfortunately this
is not always possible, and we have to be content with an approximate solution. The Newton—Raphson technique
isremarkablein that it allows us to use an approximate solution of the equation, say X = x4, to construct an even
better estimate of the solution, say X = X,.
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First we find the Taylor approximation of degree one about x = x;
y=F(x0) + ' (x)(x = %)

Thisisthe equation of aline, and it isin fact the equation of the tangent
line to the graph of y = f(x) at the point (X;, f (x1)), the dashed line
through the point P in Figure 5. This line meets the x-axis at the point

(X,, 0), and so
0=1f(xg) + (X)) (% = %)

which can be rearranged to give the formula

(43)

YA

fo) 1

XY

Figure5 Thegraph of y=f (X) showing
arootat x=a.

Although it appears from Figure 5 that X, is likely to be a better approximation to the root o than x;, such an
argument is unlikely to convince a mathematician and something like the following discussion is required.
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Example3  Show that if X, isagood approximation for aroot of the VA
equation f (xX) = 0, then

Xo =X — @ (Eqn 43)
f'(x)
is (generally) a better approximation to the root. Use this expression to ) )
find a better solution of the equation
X2 -2x-5=0

XY

starting from the approximate solution x = 4.

Solution  Suppose that x4 is agood approximate solution, then the error,
£ (seeFigure 5) in our approximate solution, isgiven by € = a — x4, and

cissmall. Figure5 Thegraph of y=f (X) showing

. . o ) ) arootat x= a.
Noticethat X, = a — &, and our intention isto estimate the size of ¢, so
that we can (partially) correct the error in x;.
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Unusually, we regard ¢ as the independent variable, then consider what happens when we expand an arbitrary
function of ¢, say F(€), asa Taylor series (in powers of €) about € = 0. From Equation 21

T n (3) (n)
f(x):f(0)+f(0)x+f @, 770 s, T Oy
1! 2! 3l n!

we have (with € in place of x)

2
F(e) = F(0)+ F'(O)% ¥ F”(O)%+

Now we choose F(¢) to be a particular function of &, in fact we put o
F(e) =f(x +¢)
sothat F(0)=f(xy) and F'(0)=f"(xy)

and Equation 44 becomes

f(x + €) =f(x)) + ef'(x1) + (termsinvolving €2 and higher powers of ¢)

(Egn 21)

(44)

(45)
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Remember that X, + € = a isaroot of the original equation, so that
f(x; + €) =0, so that Equation 45

f(xg + &) =f(xq) + f'(xq) + (termsinvolving &2 and higher powers of &) (Egn 45)
implies that

ef'(x)) = —f (x;) — (termsinvolving £2 and higher powers of &)

and this gives us an estimate for € in terms of x;, and the original function, as follows
__f(x)

T ) - (termsinvolving €2 and higher powers of &) (46)
1
It follows that the true solution
_ f(x)

— (termsinvolving £ and higher powers of €)

thisis even smaller

thisis (%)
small
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We know that ¢ is small and therefore the terms involving £2 and higher powers of £ must be very much smaller,
and so

%o = 3 — 100
f'(x)
must be even closer to the true solution than our first estimate x;.

The calculation can go wrong if f'(x;) is very small, but generally thisimproved solution can be used as the
starting point for the calculation of an even better solution. We therefore have an iterative technique for solving
equations, and the iteration can be continued indefinitely and so provide solutions that are as accurate as we
please.

In the particular case of f (X) =x2 — 2x- 5 and x; = 4, we have
f(x)=16-8-5=3
and  f'(x)) =[2x-2]x=4=6
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For thefirst iteration we therefore obtain (from Equation 43)

Xo = X1 _@ (Eqn 43)
(%)

X, =4-2=35
6

We can now repeat the process and use this value as a starting point for another approximation

f(xz):§—7—5:0.25

f'(X2) =[2X = 2]x=35 = 5
and using Equation 43 again

(with xzin place of x,, and x, in place of x,) gives us

Xo = Xp —2) _35_005=345
f'(%2)
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Continuing in this fashion we could obtain the following approximations to the root
4.0, 35, 345, 3.44948980, 3.44948974, ...
and thereafter the first eight decimal places will not change.
If x,, is the nth approximation to the root of the equation f(x) = 0, then the next approximation is given by

Thisis known as the Newton—Raphson formula.

Since f(x) = 0 is a quadratic equation, the standard formula for such equations gives the exact rootsa =1+ /6.

(The positive root gives good agreement with our result.) [0 (R
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Question T17
If afunction, f (X), is defined by
f(X) =xlog.(x) — 1

use three iterations of the Newton—Raphson technique, [ with the starting value of 2, to find an approximate
solution to the equation f(x) =0. O

Thermal expansion and anhar monicity

Many materials expand when they are heated, and it is possible to construct a mathematical model which
explains why this happens in terms of the behaviour of their molecules. Taylor series are central to this

mathematical model, and therefore crucial to an understanding of the mechanism which causes thermal
expansion.

Two atoms in close proximity exert forces on each other, rather like the tension or compression in a spring. In
the case of atoms the force between them is composed of two components, one of repulsion and one of
attraction. The repulsive forces between two atoms, caused by the overlapping of two electron clouds, act over a
short range; while the attractive force (the van der Waals force), due to the distortion of the electron cloud of one
molecule because of the presence of the other, acts over arather greater distance.
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Just as a stretched spring can store
energy, so too can a pair of atoms—
energy is required to pull them apart, or
to push them together—and this
(potential) energy, V say, isafunction of
the distance r between the atoms. In
Figure 6 we show two examples of such
functions.

The mid-point of the line AB in Figure | |
6a represents the mean distance between  (3) B r () B r
two atoms at this particular energy level.

Figure6 Potential energy V asafunction of the distance r between two
atoms.
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Notice that as we increase the energy the
mid-point (of the line PQ say) remains
directly above the value r = 3. Such a
case represents a material in which it is
just as difficult to push the atoms
together as it is to pull them apart, and
when they vibrate (which they will do as
the temperature rises) they will do so in
an harmonic fashion, so that their mean
separation remains unchanged. In other
words, the material does not expand as
the temperature is raised. This
corresponds to a graph which is
symmetric about theliner = S.

@ B ' (®) B '

Figure6 Potential energy V asafunction of the distance r between two
atoms.
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On the other hand, Figure 6b represents
the behaviour of a material in which two
atoms can be more easily pulled apart
than pushed together. In this case the
mid-point of the line moves to the right
as the energy increases (from the mid-
point of A;B; to the mid-point of P,Q;
say) so that the mean displacement
between the atoms increases with

temperature, i.e. the material expands.
Such systems are said to be anharmonic,
and correspond to a graph which is not
symmetric about a vertical axis through

r=_

@ B ' (®) B '

Figure6 Potential energy V asafunction of the distance r between two
atoms.
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The function V(r) may be expanded as a Taylor series about a point 3
say, so that Equation 34 becomes

_m3
V) =V(B)+ V() - B)+v(p) P By v Bl

The potential energy is often modelled by the Lennard—Jones 6-12
function (shown in Figure 7). One form of this function is given below:

V(r)—.s%aDu DaDGD 48 LI

DrDD

M

where ¢ and a are constants and r is the distance between the atoms. Figure7 The Lennard—Jones 6-12
Such a mathematical model is appropriate for molecular solids, such as  function.

argon (and less so for metals).
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We will examine the behaviour of this function close to its minimum value at r = 3 and hence determine how a
material modelled by Equation 48

2
V(r) = s%ad ZDaDBD (Eqn 48)

behaves as the energy increases. To do so we will need the first three derivatives of the function V(r) evaluated
at the point r = 3 (bearing in mind that the first derivative must be zero at M because thisis a minimum point on

the graph).
First we rearrange Equation 48 alittle to obtain

01 pa?®  1pacfC

V(r) =12¢ — - =
(r) ﬁmrm emrmg

then we use the fact that r = 3 corresponds to the minimum point on the graph of V(r), so that

, _12¢ Garf® DadD _ aldl® CadC
V() = %a - %ﬁ -Bgoo

from which it follows immediately that B —a.
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Now we differentiate again to find

12¢ J_rad* U 72¢e
vip) =2 gBd’ ;0B 72 O
a 0 r r Q:ﬁ a
| 5 0 -
and V(?ﬂ)(ﬁ):_12_38[13><14DED1L _7x8[EDgD - ~1512¢
a O O O O as
D m:ﬁ
The purpose of these calculationsisto simplify Equation 47,
r —B)2 r —B)3
vy =v(B) +v' () -+ v (B B v B e
and we can simplify it still further if welet x = (r — ) and E,(X) = V(r) — V() to obtain L)
o X o OXCT
Epot (X) = 36£D§D 252£D5D (49)
and as afurther ssimplification we let P = 36¢ and Q = 252¢, so that Equation 49 can be written as
_oXIf _ AOXOP
Epot(x) - PDaD QDaD (50)
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Effectively this means that we have
moved the graph of Figure 7 so that the

point M is at the origin, and the right-

Epot(x) 1
hand side of Equation 50

Epot (X) = P%g - Q%g (Eqn 50)

v { quadratic
| ! approximation
\
\
is the cubic approximation illustrated in
Figure 8.

3

2

Now consider a pair of vibrating atoms A
with fixed total energy E,. At any instant

EO = Epot(x) + Ekin(x)

®
@

where E;(X) represents their

; ", cubic
\ EiPias
“' .>'
2
. X . . X
instantaneous kinetic energy when their A
separationisr = B+ X.

~approximation

Xg X
Figure8 A cubic approximation
to Epot(X)-
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The quantity E;(X) must be positive, so the greatest and least possible values of x for the atoms will be given by
the roots (i.e. solutions) of the equation Ey = E,«(X), and their approximate values will be given by x = x, and x
= Xg the solutions of the equation

£, = P& f QDXD3

Oa0 Oa0

Once we have found x, and xg, the amount by which the average separation at energy E, exceeds the minimum
Xa * Xg

(51)

energy separation will be given by

We can easily obtain afirst estimate of x, and xg by ignoring the term involving x3 in Equation 51, so that x4

and xg are approximately the roots of the equation Ey = szg
E
then X —a , Xg =+ 52
A = B a'\ P (52)
and XA_ZXB =0 (53)
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This estimate is not sufficiently accurate for our purpose, but the estimates for x, and Xg in Equation 52

~aB o 24aBo
Xp = aV 5 Xg +aV b (Egn 52)

can be used to obtain an improved estimate as follows. Since x, and xg are roots of Equation 51

xf _ ~OXCT

we have
P~ 213 = a6, (54
and Px3 — 9x3 = a2k, (55)
B a B

Subtracting these equations, and factorizing the result, we obtain

P(Xa = Xg)(Xa + xB>—§<xA — Xa)(X} + Xa X +X§) = 0
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and therefore (since X, # Xg)

Xa +Xg _ Q

X2 + XaXg + X 56
5= 5o Ok + xaxe + ) (56)
Substituting the estimates for xA and xg from Equation 52
Eo
X —a —, Xg =+ Eqn 52
A = B a,\ = (Ean 52)

into the right-hand side of Equation 56 we obtain
Xa +Xg _ Q a’E,  ayEy ayEp . a?Ey0_ aQE,

2 22P0P P P P O 2P

and after substituting P = 36¢ and Q = 252¢ we obtain
Xa +Xg _ 7aEg
2 T2¢

From Equation 57 it follows that as the energy E, increases, the mean distance between the atoms also increases,
in other words the material expands.

(67
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Study comment  In this module we have studied Taylor polynomials as approximations to various functions. Such
approximations are valuable in certain circumstances, such as obtaining the equation for a simple pendulum near to its
equilibrium position. However, it is important that you should realize that in other circumstances a Taylor polynomia may
not be the best approximation since it becomes less accurate as we move further away from the point about which we are

expanding. Y ou should be aware that there are other polynomial approximations which may be better in some circumstances.
However, such polynomials are not considered within FLAP.
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4 Closingitems

4.1 Modulesummary

1 TheTaylor polynomial of degreen for f(x) near x=0is

pn(x) = £(0) + T 3 -

2 TheTaylor seriesor expansion for f(x) near x=0is

f(x) = f(0)+ > a et

3 TheTaylor polvnomial of degreen for f(x) near x=ais

ey, 100

(0= (@) + 2 (x-a) +

1O, 0, 90 5, 170 .,

f (0) L0 5, 190 5, L, 00

(Egn 19)

(Egn 21)

i

(Egn 31)
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4 TheTaylor series, or expansion, for f(x) near x=ais

fr f(3)
3l

f™(a)
n!

f(x)—f(a)+f(a)(x a)+ (a)(x a)? + (x—a)"+...

5 For aconvergent series, the error in using a Taylor polynomial is approximately equal to the next (non-zero)
term in the corresponding Taylor series.

6 If x, isthe nth approximation to the root of the equation f(x) = 0, then the next approximation is given by
n+l = Xn — f(Xn)
f'(Xn)
Thisis known as the Newton—Raphson formula.
7 New Taylor series can be found from known series by various methods, including:
o substitution;
o combinations of series;
o differentiation.
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4.2 Achievements

Having completed this module, you should be able to:

A1l Define the termsthat are emboldened and flagged in the margins of the module.

A2 Use the general form of a Taylor series to find series expansions for given functions about x = 0 or about
X=a.

A3 Describe and estimate the approximation involved in replacing a Taylor expansion by the corresponding
polynomial.

A4 Derive new Taylor series from known series.

Study comment You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents to review some of the
topics.
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4.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1
(A2) Findthe Taylor polynomial of degree 4 for +/1+ X near x = 0.
Question E2

(A2 and A3) Obtain an approximate value of sin (50°) by taking the first two non-zero terms in the Taylor
expansion of sin (X) about x = 45°. Give an estimate of the likely error in your approximation.

Question E3
(A2 and A3) Find the Taylor expansion of loge (X) near x = 1.
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Question E4
(A4) Usethe known Taylor expansion for exp (x) about x = 0 to obtain the expansion about x = 1.
Question E5

(A4) Usethe known Taylor expansion for log. (1 — X) to obtain the expansion for
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Study comment  Thisisthe fina Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questionsif you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.

- ~
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