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1 Opening items

1.1 Module introduction
Integration enters into almost every area of physics, and it does so in two quite different ways. On the one hand,
the process known as indefinite integration allows us, up to a point, to reverse the effect of differentiation and is
therefore of importance wherever differentiation arises, i.e. almost everywhere. On the other hand, the process of
definite integration allows us to extend the idea of summation to the addition of continuous distributions.
For example, a column of air will have a density that increases continuously from its top to its bottom, yet
definite integration allows us to add together the mass of each layer in the column and, in an appropriate limit,
evaluate the total mass of the column. Both aspects of integration1—1reversing differentiation and finding limits
of sums1—1are important in their own right, but they take on increased significance when they are brought
together by the fundamental theorem of calculus, since it allows us to use indefinite integrals in the evaluation of
many definite integrals.

This module contains three main sections, the first (Section 2) deals with fundamental principles and definitions.
It reviews important concepts such as function, variable and graph, introduces indefinite and definite integration,
and explains how definite integrals (the limits of sums) can be interpreted in terms of the area under the graph
of a function. Along the way it introduces the fundamental theorem of calculus, arguably the most important
result in the study of integration.
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Section 3 of the module is mainly concerned with the determination of indefinite integrals. It contains two tables
of standard indefinite integrals, (the more basic in Subsection 3.1 and the more advanced in Subsection 3.3) and
sandwiched between them are various rules for integrating combinations of functions whose individual indefinite
integrals are already known. It almost goes without saying that this section, with its emphasis on simple
functions, is only scratching the surface of a very large topic; other techniques of integration are dealt with
elsewhere in FLAP.

Section 4 concerns definite integrals. It lists the general mathematical properties of definite integrals and looks at
the special simplifications that occur in the physically important cases where the functions being integrated are
odd, even or periodic. The section concludes with a discussion of improper integrals that may involve
integrating over an infinite range of values, or integrating a function which itself becomes infinite at some point
in the range of integration.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A function f1(x) is positive in an interval a ≤ x ≤ b. Explain how the area under the graph of f1(x) between x = a
and x = b can be represented as a definite integral. What are the magnitudes of the various areas enclosed by the
graph of y = x3, the x-axis and the lines x = −2 and x = 1? (Note that this graph crosses the horizontal axis at
x = 0.)
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Question F2

Find the following indefinite integrals:

(a) (4x2 + 7x − 5) dx∫ (b) e−6 x dx∫
(c) [3cos(4x) − 5sin(4x)]dx∫ (d) 3 loge (2x) dx∫

Question F3

Evaluate the following definite integrals (to four decimal places):

(a) (3 − 2x − x2 ) dx
−2

3

∫ (b) [6 cos(3x) − 10 cos(2x)]dx
π 4

π 3

∫

(c) 4 loge x dx
1

2

∫
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment To study this module you will need to be familiar with the following terms: constant, derivative,
differentiation, function, graph, inequality (in particular the symbols <, >, ≤ and ≥ for less than, greater than, less than or
equal to and greater than or equal to), limit,  magnitude (of a vector, in the sense of the strength of a force), modulus
(as in |1−31| = 3) and summation (including the summation symbol, Σ). In addition you will need to be familiar with the
properties of the elementary functions, powers,  roots, reciprocals,  exponentials,  logarithms and trigonometric functions
(including the reciprocal and inverse trigonometric functions such as sec(x) and arcsec(x)), and it would be helpful if you
were familiar with some of the general terminology of functions (domain, codomain, argument, etc.), though this is reviewed
in Subsection 2.1. It is assumed that you are reasonably proficient at differentiation and that you know how to differentiate
sums and products of the elementary functions as well as being able to use the chain rule to differentiate functions of
functions. Implicit differentiation is used in Subsection 3.3 but lack of familiarity with that technique should not prevent you
from studying the module. Finally, you will need to have some idea of what it means to take the limit of an expression.
If you are uncertain about any of these topics you can review them by referring to the Glossary which will also indicate
where in FLAP they are developed. The following Ready to study questions will allow you to establish whether you need to
review some of the topics before embarking on this module.

Note that throughout this module x  represents the positive square root of x.

Mike Tinker


Mike Tinker




FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question R1

For each of the following functions find the derivative f1′(x) = df/dx:

(a) f1(x) = 8x6 + 6x3 − 5x02 − 2 (b) f1(x) = 31sin1(x) + 41cos1(x)

(c) f1(x) = 5e2x − 2e−2x (d) f1(x) = 21loge1x + 31loge1(2x)

Question R2

Find dy/dx for each of the following equations:

(a) y = 51cos1(x) + 2x 02 − 7x,4(b) y = 6e−3x,4(c) y = x2 − 51loge1x.
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Question R3

Evaluate the following

(a) lim
x→1

(2 − x) (i.e. the limit as x tends to 1 of (2 − x))

(b) 2i
i=1

3

∑ (i.e. the sum from i = 1 to i = 3 of 2i)

(c) arcsin1(−1) (i.e. the inverse sine of −1)
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2 Principles of integration

2.1 Functions, variables and graphs

Study comment An understanding of functions is crucial to an understanding of integration, and it is vital that the notation
and terminology used to describe functions should be clear and unambiguous. For that reason, this subsection reviews the
definitions of terms such as function and variable even though it is assumed that you have met these ideas before. If you are
completely unfamiliar with these concepts you can locate a more introductory treatment by consulting the entry on functions
in the Glossary.

The temperature of a cooling cup of coffee varies with time; the frequency of vibration of a stretched string is
determined by its length. We can describe these relationships by saying that the coffee’s temperature is a
function of time, or that the string’s frequency is a function of its length.

Mathematically, a function f is a rule that assigns a single value f1(x) ☞ in a set called the codomain to each
value x in a set called the domain.

Functions are usually defined by formulae, for example f1(x) = x2, and in such cases we assume, unless we are
told otherwise, that the domain is the largest set of real values ☞ for which the formula makes sense.
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In the case of f1(x) = x2 the domain of the function is the set of all real numbers. The function g(x) = 1
1 − x

 is not

defined when x = 1, since 1/0 has no meaning, and so we take the set of all real numbers x with x ≠ 1 as its
domain.

The function f1(x) = 1 + x + x2 (1a)

is another example of a function that is defined for all values of x. One may think of the function as a sort of
machine with x as the input and 1 + x + x2 as the output. The input x is known as the independent variable and, if
we write y = f1(x), the output y is known as the dependent variable, since the function f1(x) determines the way in
which y depends on x.

The same function f could equally well be defined using some other symbol, such as t, to represent the
independent variable:

f1(t) = 1 + t + t02 (1b)

This freedom to relabel the independent variable is often of great use, though it is vital that such changes are
made consistently throughout an equation.
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We may evaluate the function in Equation 1,

The function f1(x) = 1 + x + x2 (Eqn 1a)

whether we call it f1(x) or f1(t), for any value of the independent variable; for example, if we choose to use x to
denote the independent variable, and set x = 1, we have

f1(1) = 1 + 1 + 12 = 3

Similarly, if x = π f1(π) = 1 + π + π2

and, if x = 2a f1(2a) = 1 + 2a + (2a)2 = 1 + 2a + 4a2

When we write expressions such as f1(π) or f1(2a) whatever appears within the brackets is called the argument of
the function. The value of f1(x) is determined by the value of its argument, irrespective of what we call the
argument.

We can often learn a great deal about a function f1(x) by considering its graph which is a plot of the points
(x, f1(x)).

Mike Tinker
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Figure 14(a) Graph of y = x13 + 4. (b) The circle x12 + y12 = 4. (Part (b) is an example
of a relationship that does not fit the strict definition of a function.)

Figure 1a depicts part of the
graph of the function
f1(x) = x3 + 4; for the purposes
of drawing the graph we have
written the relationship as
y = x3 + 4.
In Figure 1b we have drawn the
graph of the relationship

x2 + y2 = 4

Str ict ly speaking,  this
relationship is not a function
because for each value of x in
the interval −2 < x < 2 there are
two values of y ; this is not
possible for a function.
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Question T1

Which of the following expressions define y as a function of x?

(a) y = (x + 2)2,4(b) y = x 4(where x  is the positive square root of x),

(c) y2 = x,4(d) y = 2,4(e) y2 = 2.4❏
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2.2 Indefinite integrals: reversing differentiation
If the height x (in metres) of an object above ground level at time t (in seconds) is given by the function

x(t) = (4001m) − 1
2 gt2 (2)

where g = 9.811m1s−2, then it is a straightforward matter of differentiating the equation to obtain an expression for
the velocity vx of the object in the x-direction, as a function of time.

    
vx (t ) = dx

dt
= −gt (3) ☞

However, the reverse process is not possible, i.e. given vx = −gt we cannot find a formula for the height of the
object above ground level. At least, not quite! Any one of the formulae for x below would give the same formula
for vx even though none of them agrees with Equation 2

x(t) = (31m) − 1
2 gt2 (4a)

x(t) = − 1
2 gt2 (4b)

x(t) = (−51m) − 1
2 gt2 (4c)
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Indeed, on the basis of Equation 3,

    
vx (t ) = dx

dt
= −gt (Eqn 3)

the most we can really say about x(t) is that it is of the form

x(t) = C − 1
2 gt2 (5)

where C may be any constant. In order to discover that C should be 4001m in this case we need an additional
piece of information, such as the position of the object at a particular time. In the absence of appropriate
additional information we just have to accept that the value of the arbitrary constant C cannot be determined.

So, we can reverse the process of differentiation, but only up to a point. Since the derivative of any constant is
zero we must accept that when we try to work back from the derivative to the function our answer is bound to
include an arbitrary additive constant, the value of which cannot be determined without the aid of additional
information.
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Now, despite its ambiguities, the process of reversing differentiation in the sense we have just been discussing is
of great importance in physics and mathematics. It is sometimes referred to as inverse differentiation or
antidifferentiation, which captures its spirit, but is more often called indefinite integration. It has its own
notation and terminology, which, like the d/dx notation of differentiation, was introduced by Gottfried Wilhelm
Leibniz (16461–1716).

If f1(x) is a given function and F(x) is any function such that

dF

dx
= f (x) then we write F(x) = f (x) dx∫

and we call F(x) an indefinite integral of f1(x). ☞
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So, we can say that

3x3 dx∫ = 3
4

x4 + C since
d

dx

3
4

x4 + C



 = 3x3 (6)

and we might similarly write

gt dt∫ = 1
2

gt2 + C since
d

dt

1
2

gt2 + C



 = gt (7)

or 4y2 dy∫ = 4
3

y3 + C since
d

dy

4
3

y3 + C



 = 4y2 (8)

Note that in each case we have found the indefinite integral ‘by inspection’, based on our knowledge of
derivatives, and we have taken care to include an arbitrary constant which we have called C. The fact that we
have used the same symbol in each case doesn’t mean that these constants are necessarily the same, it is simply
conventional when writing down an indefinite integral to indicate the presence of the constant by means of a
letter and C  is the most obvious choice. Also note that we have deliberately chosen to use a different
independent variable in each case, to emphasize that there is nothing ‘special’ about x.
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When discussing indefinite integrals such as Equations 6, 7 or 8,

3x3 dx∫ = 3
4

x4 + C (Eqn 6)

gt dt∫ = 1
2

gt2 + C (Eqn 7)

4y2 dy∫ = 4
3

y3 + C (Eqn 8)

the symbol ∫ is called the integral sign, the function being integrated (e.g. 3x3 in Equation 6, or g t

in Equation 7) is called the integrand, and the symbol that terminates the integral (such as the dx in Equation 6)
is called the integration element. The integration element has the important job of telling us the
integration variable with respect to which the integration is to be performed. Without the dt in Equation 7 you
might have forgotten that g was a constant, mistaken it for a variable, and integrated with respect to g.
The arbitrary constant (C)  that appears each time we determine an indefinite integral is called the
constant of integration. Thus, we can read the left-hand side of Equation 8 as ‘the (indefinite) integral of 4y2,
with respect to y’.
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✦ How would you write using the correct symbol notation ‘the indefinite integral of x3 with respect to x is
1
4 x4  plus some arbitrary constant’?

✦ Which of the following are indefinite integrals of f1(x) = 3x2?

(a) x3,4(b) 2x3,4(c) x3 − 4,4(d) x3 + 0.5,4(e) x3 + x.

You will notice that the correct answers to this last question, x3, x3 − 4 and x3 + 0.5 (which are all indefinite
integrals of 3x2), only differ from one another by a constant. This is to be expected from our general discussion
of indefinite integrals, but it still deserves emphasis since the arbitrary constant C is often overlooked, and its
omission is the cause of many errors.

If F1(x) and F2(x) are both indefinite integrals of the same function f1(x), then
there exists a constant K such that

F1(x) = F2(x) + K ☞

An obvious consequence of this is that if F(x) is an indefinite integral of f1(x) then F(x) + C, where C is any
constant, is also an indefinite integral of f1(x).
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Question T2

Show that if F(x) is an indefinite integral of f1(x) then aF(x) is an indefinite integral of the function af1(x) where a
is a constant. Further, if G(x) is an indefinite integral of another function g(x) show that F(x) + G(x) is an
indefinite integral of the function f1(x) + g(x). Write down an indefinite integral of the function af1(x) + bg(x)
where b is a constant.4❏

Question T3

Find the following indefinite integrals:

(a) 3dx∫ ,4(b) x5∫ dx ,4(c) 5x1 4 dx∫ .4❏
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Question T4

Verify the following results by differentiation:

(a) 
1

2x + 2
dx⌠

⌡
= 2x + 2 + C

(b) (x2 − 2x)8 (x − 1) dx∫ = 1
18 (x2 − 2x)9 + C

(c) 
cos x

(2 + sin x)2
dx⌠

⌡
= − 1

2 + sin x
+ C4❏
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pistonx ∆x
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(a)
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(b)

volume Va
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Figure 24(a) Expansion of a gas by a

small amount ∆V = A∆x. (b) A more
substantial expansion from an initial
value Va to a final volume Vb.

2.3 Definite integrals: the limit of a sum
Up to now we have been concerned with indefinite integration, the
reverse process to differentiation; however, there is another kind of
integration, definite integration, that is closely related to summation.

Formulating definite integrals ☞

To see how this second kind of integration arises let us consider the
physical problem of calculating the work done by an expanding gas.
For the sake of simplicity, let us suppose that the gas is confined in a
cylindrical vessel (Figure 2a) of cross-sectional area A , by a piston
which is free to move in the x-direction. When the position coordinate of
the piston is x  (measured to the right from the left-hand end of the
cylinder), the volume of the gas will be V = xA and we may denote the
pressure in the gas by P(V0). For a fixed mass of gas at a fixed
temperature, this pressure will decrease as V increases.
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Whatever its value, the pressure will exert a force in the x-direction on the piston and for a given value of V that
force will be

Fx(V0) = A × P(V0)

If the gas causes the piston to move to the right through a small distance ∆x then the gas will have done a small
amount of work ∆W. If the force Fx remained constant throughout this small expansion we could say

∆W = Fx(V) × ∆x

However, Fx will not remain constant throughout the expansion, it will decrease as x increases and the pressure
falls. Nonetheless, if we make ∆x very small then the pressure will change very little during the expansion and
we can use the approximation

∆W ≈ Fx(V0) × ∆x ≈ A × P(V0) × ∆x

Note   The symbol ≈ should be read as ‘is approximately equal to’.
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Figure 24(a) Expansion of a gas by a

small amount ∆V = A∆x. (b) A more
substantial expansion from an initial
value Va to a final volume Vb.

As a result of this expansion the volume of the gas will have increased
by a small amount ∆V which will be equal to A∆x, so we may rewrite the
last result

∆W ≈ Fx(V0) × ∆x ≈ A × P(V0) × ∆x

as

∆W ≈ P(V0)∆V (9)

Now, if we want to calculate the work done by the gas when it increases
its volume from an initial value Va to a final volume Vb (Figure 2b), we
can do so, at least approximately, by dividing the expansion into many
small steps and using Equation 9 to find the work done in each step.
To do this we introduce n + 1 values of V such that 

Va = V 1  < V 2  < V 3  < … Vn 1−11 < V n < V n 1+11 = V b, ☞   and we let

∆Vi = Vi1+11 − Vi where i can be any whole number in the range 1 ≤ i ≤ n.
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We can then say that the work done by the gas when its volume increases from Vi to Vi1+11 is approximately
P(Vi)∆Vi and the total work W done during the expansion is approximately

P(V1)∆V1 + P(V2)∆V2 + P(V3)∆V3 + … + P(Vn)∆Vn = P(Vi )∆Vi
i=1

n

∑ (10)
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Figure 34A visualization of Equation 10.

Remember, this is only an approximation to the amount of
work actually done because it erroneously assumes that the
pressure is constant throughout each step. (This is indicated
graphically in Figure 3, which provides a visualization of
Equation 10).

The curve shows the pressure P as a function of the volume
V. The work done in any small part of the expansion, from
Vi to Vi1+11 is approximately represented by the area of the
corresponding rectangular strip, P(Vi0)∆Vi0. The total amount
of work done in expanding from Va to Vb is approximately
represented by the sum of the areas of the rectangles.
Note that as the number of rectangles increases and they
become narrower, their total area approaches the area under
the graph between Va and Vb; this point is explored in the
next subsection.
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However, it is an approximation that will become increasingly accurate if we increase the number of steps and
let the size ∆Vi of each step become smaller and smaller. Thus, if we take the limit of the above sum as ∆V, the
width of the widest step, tends to zero, we have the exact result

W = lim
∆V →0

P(Vi )∆Vi
i=1

n

∑








 (11)

A limit of a sum of the kind given in Equation 11 is clearly very important (it has real physical significance) but
it is also very cumbersome, so such limits of sums are given a special symbol and a special name.
They are called definite integrals and the one we have been considering —1the definite integral of P(V0) with
respect to V, from Va to Vb1—1is denoted by

W = P(V ) dV
Va

Vb

∫ (12) ☞

As you can see the notation used to denote definite integrals is very similar to that used for indefinite integrals;
there is an integral sign, an integrand (P(V0) in this case) and an integration element. The only obvious difference
is the inclusion of lower and upper limits of integration, Va and Vb respectively, in the definite integral.
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There are good reasons for this similarity, as you will soon see, but you shouldn’t be deceived by it, definite and
indefinite integrals are radically different, the indefinite integral of a function is another function, the definite
integral of a function between given limits is a value (so many joules in the case of Equation 12) not a function.

Before going on to consider the evaluation of limits of sums, whether we write them as in Equation 11

W = lim
∆V →0

P(Vi )∆Vi
i=1

n

∑








 (Eqn 11)

or use the definite integral notation of Equation 12,

W = P(V ) dV
Va

Vb

∫ (Eqn 12)

it is worth pausing to stress the generality of this concept and its independence of any specific physical context.
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This is done in the following box.

Given a function f1(x) and two values x = a, and x = b, the definite integral of f1(x) with respect to x, from a
to b is defined by

f (x) dx
a

b

∫ = lim
∆x→0

f (xi ) ∆xi
i=1

n

∑






where x1 < x2 < x3 < … xn1− 11< xn < xn + 1, and ∆ x i = xi + 1 −  x i, with x 1 = a  and
xn + 1 = b, and ∆x is the largest of the ∆xi.
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Evaluating definite integrals

The task of evaluating a limit of a sum may seem a daunting one, and indeed, it can be. However, there are many
cases in which the evaluation is really rather straightforward, thanks to the existence of a deep link between
definite integrals and indefinite integrals. This link is embodied in what is arguably the most important result of
elementary calculus, the so-called fundamental theorem of calculus:

Fundamental theorem of calculus

If F(x) is any indefinite integral of f1(x), so that f (x) dx = F(x)∫ , then

f (x)
a

b

∫ dx = F(b) − F(a) (13) ☞

So, if asked to find the definite integral of a given function between given limits, it is easy to do so provided you
know, or can work out, an indefinite integral of the given function. Once you have that vital piece of information
you only have to evaluate the indefinite integral at the upper and lower limits and then take the difference.
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Example 1

Use the fundamental theorem of calculus to evaluate the definite integral 3x2

1

4

∫ dx .

Solution4In this case the integrand of the definite integral is 3x2, and an indefinite integral of this is

F(x) = 3x2 dx∫  = x3 + C

Consequently, 3x2

1

4

∫ dx  = F(4) − F(1)

i.e. 3x2

1

4

∫ dx  = (43 + C) − (13 + C)

so 3x2

1

4

∫ dx  = 634❏
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There are several points to note about this example:

14The definite integral is a constant value (63), as expected, not a function of x. This means that the x which
appears in the definite integral could have been replaced by any other symbol without affecting the answer.
Hence we can be sure that

3x2

1

4

∫ dx = 3X2

1

4

∫ dX = 3ξ 2

1

4

∫ dξ

They are all alternative ways of writing the number 63. A variable that can be replaced in this way without
altering the value of an expression is called a dummy variable. In a definite integral the integration variable is
always a dummy variable.

24The arbitrary constant C that we included in the indefinite integral played no role in the final answer. ☞
This will always be the case and is fully consistent with the fact that the wording of the fundamental theorem
allows us to use any indefinite integral of the integrand when evaluating a definite integral. For this reason, when
using the fundamental theorem it is conventional to choose the simplest indefinite integral, i.e. that in which
C = 0.
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34Expressions such as F(b) − F(a) occur very frequently when evaluating definite integrals, so it is convenient

to abbreviate F(b) − F(a) to F(x)[ ]a
b .

Using these notational conventions we can show the steps in an evaluation very concisely. For example:

4x
2

4

∫ dx = 2x2[ ]2

4 = (32) − (8) = 24 ☞

Of course, it is quite possible for the value of a definite integral to be expressed in terms of algebraic constants
rather than pure numbers as in the next question.

✦

Evaluate the definite integral x1 2

0

c

∫ dx .
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Question T5

Evaluate the following definite integrals:

(a) 3
−1

2

∫ dx ,4(b) x5 dx
0

2

∫ ,4(c) 5x1 4 dx
16

81

∫ .4❏

Question T6
O L∆xx

Figure 44See Question T6.

Figure 4 shows a thin horizontal beam of length L and uniform mass per
unit length λ (i.e. the mass of the whole beam is λ1L).

Such a beam can be thought of as an assembly of small elements of length ∆x, each of which has a weight of
magnitude λg∆x  ☞ (where g is the magnitude of the acceleration due to gravity), and exerts a torque Γ  ☞
of magnitude xλg∆x about an axis through O that is perpendicular to the plane of Figure 4. Write down an
expression, involving the limit of a sum, for the magnitude of the total torque about the axis through O due to the
weight of the entire beam. Rewrite this expression as a definite integral and evaluate it.4❏
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x

f(x)

0 x2x3
x1 = a

xn + 1 = b
xn 

xn − 1

Figure 54The area under the graph of an arbitrary
function may be approximated by a sum of
rectangles.

2.4 Definite integrals: the area under a graph

In the last subsection we noted in passing, when discussing
Figure 3, that a definite integral can be interpreted graphically
as the area under a graph. This subsection is devoted to that
geometrical interpretation.

Given a function f1(x) and two values of x, such as a and b
with a < b (see Figure 5), it is fairly easy to see that if f1(x) is
never negative between a and b then

f (x)
a

b

∫ dx  = the area under the graph of f1(x) 

between x = a and x = b

provided we measure the area in the scale units used on the
graph’s axes and take it to mean the area below the curve but
above the horizontal axis between the given limits.
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x

f(x)

0 x2x3
x1 = a

xn + 1 = b
xn 

xn − 1

Figure 54The area under the graph of an arbitrary
function may be approximated by a sum of
rectangles.

The proof of this assertion follows directly from the
definition of the definite integral as the limit of a sum, since

each of the terms f1(xi0)∆xi that appear in the sum f (xi ) ∆xi
i=1

n

∑
provides an approximate value for the area of one of the
vertical strips shown in Figure 5, and their sum approximates
the total area of all the strips. In the limit, when the sum
becomes the definite integral from a to b, the approximation
becomes exact.

The situation is a little more complicated if a > b, or if f1(x) is
negative between those limits since we then have to take care
over signs. Different authors deal with this problem in
different ways and there is therefore considerable confusion
over terminology. However, in FLAP the convention is clear:
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x

f(x)

a0 b
A1

A2

Figure 64The area under a graph in
any region where the graph is below the
horizontal axis, such as A2, will be
negative.

The area under the graph of a function f1(x) between 
x  = a  and x = b is equal to the corresponding definite integral,

f (x)
a

b

∫ dx = F(b) − F(a) .

It is a consequence of this definition that if, as in Figure 6, a < b, but part
of the graph is below the horizontal axis, then the area under the graph in
that region will be a negative quantity. ☞

When calculating the area under a graph between a and b, with
a  < b, any regions that are below the horizontal axis should be
regarded as having negative areas.
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x

y = cos1x

π 3π
2

1

−π
2

π
2

−1

Figure 74The graph of the function

cos1x.

✦ Find the area under the graph of y = cos1x  (Figure 7) in each of the
following cases.

(a) between x = 0 and x = π/2;

(b) between x = π/2 and x = π;

(c) between x = 0 and x = π;

(d) between x = π/2 and x = 0.
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x

y = cos1x

π 3π
2

1

−π
2

π
2

−1

Figure 74The graph of the function

cos1x.

In various problems you may be required to determine the (positive) area
enclosed between various parts of the graph of f1(x) and the horizontal
axis, between given limits. We will indicate this by asking for the sum of
the magnitudes of the enclosed areas. Since a magnitude is always a
positive quantity this terminology should avoid any ambiguity.
In order to determine such magnitudes you will need to consider
separately each of the regions in which f1(x) has a particular sign (+ or −).
Thus, the sum of the magnitudes of the various regions enclosed between
the graph of y = cos(x) and the x-axis, between 0 and π, is

cos(x)
0

π 2

∫ dx + cos(x)
π 2

π

∫ dx  = |111| + |1−11| = 2

This ‘sum of magnitudes of enclosed areas’ obviously differs from the quantity we defined to be the ‘area under
the graph between 0 and π’ (in part (c) of the last question).



FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T7

Find the sum of the magnitudes of the areas enclosed by the graph of y = bx5 and the x-axis, between x = −11m
and x = 11m, given that b = 21m−04.4❏

Throughout this subsection we have concentrated on the use of definite integrals to find areas under graphs, but
you should realize that the reverse process is also possible and important. If you are required to find the definite
integral, between a and b with a < b, of a function whose indefinite integral you are unable to determine, you can
estimate the definite integral by drawing the graph of the function and measuring the area under that graph
between the given limits. When doing so it is, of course, important to remember that the area should be
measured in the appropriate scale units, and that regions below the horizontal axis should be regarded as having
a negative area. ☞
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3 Integrals of simple functions
Integration, the process of analysing and evaluating definite and indefinite integrals, can be very challenging.
In practice everybody who uses integration regularly remembers the indefinite integrals of a variety of basic
functions (xn, sin1x, exp1(x), etc.) and knows where to look up the indefinite integrals of some slightly more
complicated functions. They also know various rules and techniques for finding the indefinite integrals of
combinations of those basic functions. This section introduces the standard integrals and the simplest rules for
combining them. Some of the more complicated techniques (integration by parts, integration by substitution and
the use of partial fractions) are explained elsewhere in FLAP. Physicists are increasingly making use of
algebraic computing packages to carry out the task of integration, but it is still necessary to appreciate the basic
results of the subject in order to understand the warnings and limitations that often attend computer evaluations.
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3.1 Some standard integrals
Tables 1a and 1b (next pages) list a number of functions with which you should already be familiar along with
their indefinite integrals. These may be classed as standard integrals. Each of the table entries can be checked
by differentiating the indefinite integral to show that it is equal to the integrand. If you are going to use calculus
frequently you will need to know these integrals or at least know where you can look them up quickly.
When using the tables it is important to remember the following points:

o n and k are (given) constants and C is an arbitrary constant.

o The functions in Table 1b are special cases of those in Table 1a, corresponding to k = 1.

o In each of the trigonometric functions, x must be an angle in radians or a dimensionless real variable.
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Table 14Some standard indefinite integrals.

(a) (b) ☞

f 1(x) f (x) dx∫ f 1(x) f (x) dx∫
k (a constant) kx + C 1 x + C

kxn,4n ≠ −1 k
xn +1

n + 1
+ C xn,4n ≠ −1 xn +1

n + 1
+ C

k
1

x
, x ≠ 0 k1loge1|1x1| + C

1

x
, x ≠ 0 loge1|1x1| + C

sin 1(kx) − 1

k
1cos1(kx) + C sin 1(x) −cos1(x) + C

cos1(kx)
1

k
1sin1(kx) + C cos1(x) sin 1(x) + C

tan1(kx)
1

k
1loge1|1sec1(kx)1| + C tan1(x) loge1|1sec1(x)1| + C
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Table 1 (continued)4Some standard indefinite integrals.

(a) (b)

cosec1(kx)
1

k
loge tan

kx

2




 + C cosec1(x) loge tan

x

2




 + C

sec1(kx)
1

k
1loge1|1sec1(kx) + tan1(kx)1| + C sec1(x) loge1|1sec1(x) + tan1(x)1| + C

cot1(kx)
1

k
1loge1|1sin1(kx)1| + C cot1(x) loge1|1sin1(x)1| + C

sec21(kx)
1

k
1tan1(kx) + C sec21(x) tan1(x) + C

ekx 1

k
ekx + C ex ex + C

loge1(kx) x1loge1(kx) − x + C loge1(x) x1loge1(x) − x + C



FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

If you are reasonably proficient at differentiation many of the entries in Table 1 should come as no surprise.
Indeed, we have used some of them earlier in the module on this assumption. The integrals of the reciprocal
trigonometric functions (cosec, sec and cot) may seem a bit strange, but they are rarely encountered in most
fields of physics so we will not dwell on them here. Far more common, and definitely worth dwelling on, is the
integral of 1/x. As you can see it has been listed as loge1|1x1| + C; the use of the modulus, |1x1|, should remind you
that the argument of the logarithmic function must be positive, but it also indicates that the result holds true even
when x itself is negative.

✦ Using Table 1 find the following:

(a) dx∫ , (b) x4 dx∫ , (c) x4

0

2

∫ dx , (d) x4

−2

2

∫ dx ,

(e) t 4 dt∫ , (f) t 4

−2

2

∫ dt , (g) 
dx

x
1

2

⌠
⌡

.
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✦ By differentiating the given indefinite integrals, confirm the correctness of the table entries for 
(a) ekx and (b) loge1(kx).

Question T8

Using Table 1 find:

(a) 8x−1 dx∫ ,4(b) 8x−1 dx
1

3

∫ ,4(c) sec2 (4x) dx∫ ,4(d) sec2 (4x) dx
0

π 16

∫ .4❏

The following question illustrates how such calculations may arise in physics.
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✦ In Subsection 2.3 we discussed the expansion of a gas in a cylinder and we showed that W, the work done
by the gas as it expands, can be expressed in the form

W = P(V ) dV
Va

Vb

∫

The exact form of the function P(V) depends on the nature of the gas, but for a fixed quantity of ideal gas,
expanding at a fixed temperature

P(V ) = A

V
 for some constant A ☞

and hence W = A

VVa

Vb

∫ dV

Evaluate W for such a gas, in terms of Va and Vb.
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Note that in the final answer for W, the argument of the logarithmic function is dimensionless. This must always
be the case in any kind of physical calculation. After all, it makes sense to write loge1(6) but what sense could be
made of loge1(61m) or loge1(61kg)? It is worth noting in this context that the process of integration may sometimes
lead you to expressions of the kind loge1(x) + C, where x is a quantity that has dimensions. When this happens
you can recover a dimensionless argument by writing the constant of integration in the form −loge1D, for an
appropriate constant D, and then using the identity

loge1x − loge1D = loge1(x/D)

The argument is then dimensionless, providing x and D have the same dimensions.
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3.2 Combining integrals
Very seldom do we have functions to integrate which are exactly those listed in Table 1. The useful general
results which follow allow us much more flexibility.

Integrating the sum of two functions
Suppose that we wish to obtain an indefinite integral of the function

f1(x) = 40x3 + 2x

The function x 04 has a derivative 4x3, and the function x2 has a derivative 2x, so that the function x04 + x2 has a
derivative 4x3 + 2x. Hence

(4x3 + 2x) dx = x4 + x2 + C∫
Note the appearance of only one constant of integration. Also note that the integral of the sum is a sum of the
indefinite integrals of the terms in the sum. This is a particular case of a general rule:

the sum rule [g(x) + h(x)]dx = g(x) dx + h(x) dx∫∫∫ (14)

(With the proviso that only one constant of integration is needed on the right.)
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✦ Find the following integrals:

(a) (sin x + cos x) dx∫ ,4(b) (sin x + cos x) dx
0

π 2

∫

Integrating a constant multiple of a function

Another general rule for integrating combinations, albeit of a rather trivial sort, is given by the following
constant multiple rule:

the constant multiple rule k f (x) dx = k f (x) dx∫∫ (15)

This result has already been used in several places without comment.
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Integrating a linear combination of functions

A linear combination of two functions f 1( x ) and g(x) is a function of the form
kf1(x) + l g(x) where k and l are constants. We can find a general rule for integrating such combinations by
combining the last two results (given in Equations 14 and 15)

the sum rule [g(x) + h(x)]dx = g(x) dx + h(x) dx∫∫∫ (Eqn 14)

the constant multiple rule k f (x) dx = k f (x) dx∫∫ (Eqn 15)

[kf (x) + lg(x)]dx = k f (x) dx + l∫ g(x) dx∫∫ (16)

✦ Using Table 1 and Equation 16 evaluate the following:

(a) [6 cos(x) − 2sin (x)]dx∫ ,4(b) [6 cos(x) − 2sin (x)]dx
π 4

π 2

∫
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Question T9

Find the following integrals:

(a) x (x2 − 3) dx∫ 4(Hint: Expand the brackets.)

(b) 
5

t2 3
+ 2

t1 3




 dt⌠

⌡
(c) 

(x + 2)2

x
dx

1

3

⌠
⌡

(d) 
t2 − 6t + 1

t 4
dt⌠

⌡
(e) [−3cos(x) + 2sec2 (x)]dx∫

(f) tan2 (θ ) dθ
0

π 4

∫ 4(Hint: sec21(θ0) = tan21(θ0) + 1)4❏
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Question T10

Evaluate the integral

[sin(πx) + π loge (3x)]
1

2

∫ dx4❏
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3.3 Further standard integrals
The integrals listed in Table 1 may all be classed as standard integrals, that is to say they are well known results
that may be used in their own right or in the evaluation of other, more complicated, integrals. In this subsection
we extend the list of standard integrals by adding the more complicated cases covered in Table 2. (see later)
More extensive lists of standard integrals can be found in various reference works. Some of these contain
hundreds of pages of integrals!

A note about inverse trigonometric functions and hyperbolic functions4The inverse trigonometric functions
arcsin1(x), arccos1(x) and arctan1(x) are the inverses of the functions sin1(x), cos1(x) and tan1(x), respectively, so
that, for example arcsin1(sin1(θ1)) = θ, provided −π/2 ≤ θ ≤ π/2. The alternative notations: sin−11(x), cos−11(x) and
tan−11(x) and asin1(x), acos1(x) and atan1(x) are also in common use.
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The hyperbolic functions are defined by

sinh (x) = e x − e− x

2
(pronounced ‘shine x’)

cosh (x) = e x + e− x

2
(pronounced ‘cosh x’)

tanh (x) = e x − e− x

e x + e− x
= sinh (x)

cosh (x)
(pronounced ‘than x’, ‘th’ as in ‘beneath’)

Their inverses arcsinh1(x), arccosh1(x) and arctanh1(x) are often written as sinh−11(x), cosh−11(x) and tanh−11(x).
 For further information see hyperbolic functions in the Glossary.4❏
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Table 24Some standard
indefinite integrals.    ☞

f 1(x) f (x) dx∫
1

ax + b

1

a
loge | ax + b | +C

1

b2 + a2 x2
 (a > 0) 1

ab
arctan

ax

b




 + C

1

a2 x2 − b2
 (a > 0) 1

2ab
loge

ax − b

ax + b
+ C

1

b2 + a2 x2
 (a > 0) 1

a
arcsinh

ax

b




 + C = 1

a
loge ax + a2 x2 + b2 + C

1

b2 − a2 x2
 (a > 0) 1

a
arcsin

ax

b




 + C

1

a2 x2 − b2
 (a > 0) 1

a
arccosh

ax

b




 + C = 1

a
loge ax + a2 x2 − b2 + C

x

b2 + a2 x2
b2

a2
+ x2





1

b2 + a2 x2
+ C = 1

a2
b2 + a2 x2 + C
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Table 2 (continued)4
Some standard indefinite
integrals.

x

b2 + a2 x2
b2

a2
+ x2





1

b2 + a2 x2
+ C = 1

a2
b2 + a2 x2 + C

x

b2 − a2 x2 − b2

a2
+ x2





1

b2 − a2 x2
+ C = − 1

a2
b2 − a2 x2 + C

x

a2 x2 − b2 − b2

a2
+ x2





1

a2 x2 − b2
+ C = 1

a2
a2 x2 − b2 + C

b2 + a2 x2 1

a

1

2
ax a2 x2 + b2


+ 1

2
b2 loge ax + a2 x2 + b2 


+ C

b2 − a2 x2  (a > 0) 1

a

1

2
ax b2 − a2 x2


+ 1

2
b2 arcsin

ax

b









+ C

a2 x2 − b2 1

a

1

2
ax a2 x2 − b2


− 1

2
b2 loge ax + a2 x2 − b2 


+ C

exp1(ax)1sin1(bx) exp (ax)

a2 + b2
[a1sin1(bx) − b1cos1(bx)] + C

exp1(ax)1cos1(bx) exp (ax)

a2 + b2
[a1cos1(bx) + b1sin1(bx)] + C
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It should be noted that several of the integrals given in Table 2 are subject to restrictions. For instance,
arcsin1(ax/b) is only defined for − b a ≤ x ≤ b a , and those expressions enclosed by square roots must be

positive for all relevant values of x. We will not spell all these restrictions out in full, though we will have more
to say on this topic in Subsection 4.3. However, it is important to keep your wits about you whenever you use
tabulated results of this kind or the equivalent results that might be supplied by a computer program.

✦

Using Table 2, evaluate 
1

1 + x2
dx

−1

1

∫ .
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Study comment Many of the results in Table 2 can be derived by considering inverse trigonometric functions, though the
derivations can be tricky and often involve the technique of implicit differentiation. We give an example of one of these
derivations below (in Example 2) and then ask you to perform another for yourself. However, if you are unfamiliar with
implicit differentiation you may wish to omit both and go directly to Question T11.
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Example 2

Confirm by differentiation that (as implied by Table 2) the indefinite integral of 
1

1 − x2
 is arcsin(x) + C.

Solution4Let y = arcsin(x) then sin(y) = x and, upon differentiating both sides of this equation with respect to x,
we obtain

cos(y)
dy

dx
= 1 ☞

But x = sin(y), so we can use the identity sin2 (y) + cos2 (y) = 1 to write

cos(y) = ± 1 − sin2 (y) = ± 1 − x2

The sign ambiguity (±) has arisen because x  represents a positive square root in this module.

We also know that 
dy

dx
= 1

cos(y)

so,
dy

dx
= ±1

1 − x2
(17)



FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

x

y = arcsin1x

1−1

π
2

−π
2

Figure 84The graph of arcsin1(x).

However, the arcsin function (see Figure 8) is conventionally defined in
such a way that its gradient (i.e. its first derivative) is positive
everywhere, so we must select the positive sign in Equation 17.

so,
dy

dx
= ±1

1 − x2
(Eqn 17)

Thus
d

dx
[arcsin (x)] = 1

1 − x2

It follows that

1

1 − x2
⌠
⌡

dx  = arcsin1(x) + C3as implied by Table 2.4❏

✦

Show that (as implied by Table 2) 
1

1 + x2
dx⌠

⌡
= arctan (x) + C
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Question T11

Find the following integrals:

(a) e3−2 x dx
0

2

∫ , (b) 
3x + 2
x + 4





 dx⌠

⌡
[Hint: Write 3x + 2 = 3(x + 4) − 10]

(c) 
1

5x2 + 20
2

4

⌠
⌡

dx , (d) 
3

(8 − 9x2 )1 2

0

1 3

⌠
⌡

dx4❏ ☞
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4 More about definite integrals
4.1 Properties of definite integrals
The definite integral has the following mathematical properties, each of which makes good sense if you interpret
it in terms of the (signed) area under a graph.

Properties of definite integrals:

1 f (x)
a

a

∫ dx = 0 (18)

2 f (x)
b

a

∫ dx = − f (x)
a

b

∫ dx (19)

3 f (x)
a

b

∫ dx = f (x)
a

c

∫ dx + f (x)
c

b

∫ dx 4where a ≤ c ≤ b (20)
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Properties of definite integrals: (continued)

4 [kf (x) + lg(x)]
a

b

∫ dx = k f (x)
a

b

∫ dx + l g(x)
a

b

∫ dx (21)

5 If f1(x) ≥ 0 for all x in the interval a ≤ x ≤ b then

f (x)
a

b

∫ dx ≥ 0 (22)

6 If m ≤ f1(x) ≤ M for all x in the interval a ≤ x ≤ b then

m(b − a) ≤ f (x)
a

b

∫ dx ≤ M(b − a) (23)
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Properties 1 to 3 are derived below using the fundamental theorem of calculus. Property 4 is the extension to
definite integrals of the rules for combining indefinite integrals that were introduced in Subsection 3.2, it too can
be derived using the fundamental theorem of calculus. Properties 5 and 6 follow from the definition of a definite
integral as the limit of a sum. They are not derived in this module, but they may be treated as tutorial exercises.

1 If b = a then f (x)
a

a

∫ dx = F(a) − F(a) = 0

2 f (x)
b

a

∫ dx = F(a) − F(b) = −(F(b) − F(a)) = − f (x)
a

b

∫ dx

3 f (x)
a

c

∫ dx + f (x)
c

b

∫ dx = F(c) − F(a) + F(b) − F(c) = F(b) − F(a) = f (x)
a

b

∫ dx

Property 6 can be useful in cases where it is impossible to calculate the integral exactly. In such cases it is often
desirable to obtain an estimate for the integral. The following example illustrates the method:
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✦

By considering the maximum and minimum values of x2 + 1 in the interval 1 ≤ x  ≤ 3, show that

2 2 ≤ x2 + 1
1

3

∫ dx ≤ 2 10 .

Question T12

If f1(x) ≥ g(x) for all x where a ≤ x ≤ b show that

f (x)
a

b

∫ dx ≥ g(x) dx
a

b

∫ 4

(Hint: Consider f1(x) − g(x).)4❏
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Question T13

A bullet of mass m is fired horizontally into a box full of sand. As the bullet travels through the sand its motion
is opposed by a resistive force of magnitude

F(x) = (a3 − b3x3 )3 m

where a  and b are positive constants, and x is the distance the bullet has travelled through the sand.
In a particular test, it is found that the bullet travels a distance L = a/b through the sand before being brought to
rest.

Using an appropriate limit of a sum, write down an expression for the work done in bringing the bullet to rest.
Rewrite your answer as a definite integral, but do not attempt to evaluate it. Given that the work done in bringing
the bullet to rest is equal to minus the initial kinetic energy of the bullet when it enters the sand, write down an
upper estimate of that initial kinetic energy, in terms of a, b, and m.

(Hint: The work done when a force constant force Fx moves its point of application through a displacement ∆x is
generally ∆W = Fx0∆x. In this case the force is variable, and only its magnitude is given, but the fact that it brings
the bullet to rest shows that it acts in the opposite direction to the displacement and therefore does a negative
amount of work.)4❏
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x0

f1(x)

(a) even

Figure 104(a) An even function.

4.2 Odd, even and periodic integrands

Odd and even functions

When looking at the graphs of functions it is easy to see that some
functions are symmetric about a vertical line through the origin and others
are not. Three examples of this are shown in Figure 10. Part (a) of the
figure shows a function f1(x) that is obviously symmetric about the
origin1—1the part of the graph drawn to the left of the origin is the mirror
image of the part to the right of the origin. Mathematically, such a
function is called an even function and is characterized by the property

f1(−x) = f1(x) for all x in the domain of f1(x) (even function)

Even functions are sometimes referred to as symmetric functions.
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x0

f1(x)

(b) odd

Figure 104(b) An odd function.

Figure 10b shows a different function. It certainly isn’t an even function
yet there is clearly some sort of relationship between the parts of the
function shown to the left of the origin and those to the right. Functions of
this sort are called odd functions and are characterized by the property

f1(−x) = −f1(x) for all x in the domain of f1(x) (odd function)

Odd functions are sometimes referred to as antisymmetric functions.
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x0

f1(x)

(c) mixed

Figure 104(c) A function of mixed
symmetry.

Figure 10c shows a function f1(x) which is neither odd nor even. There is

no simple relationship between f1(−x) and f1(x) for this function, though it
is interesting (and occasionally useful) to note that any function with a

symmetric domain, ☞ including this one, can be written as the sum of an

even function and an odd function. To see why this is so consider the
following identity which holds true for any function f1(x)

f1(x) = 1
2 [1f1(x) + f1(−x)] + 1

2 [1f1(x) − f1(−x)] (24)

The first term on the right-hand side of this identity, [f1(x) + f1(−x)]/2, is an
even function as you can see if you replace x by −x everywhere within it;
and, by the same argument, the second term, [1f1(x) − f1(−x)]/2, is an odd
function. Thus, an arbitrary function can indeed be written as a sum of
even and odd parts. Functions which are neither purely even nor purely
odd are sometimes referred to as functions of mixed symmetry.
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✦ Classify each of the following functions as even, odd or of mixed symmetry. 
(a) x3,4(b) 2x + 4x04 + 1,4(c) sin1(x),4(d) 21cos1(3x).

The examples we have just considered have been fairly straightforward. In more complicated cases involving the
products of two or more functions it is often useful to recall the following rules:

even function × even function = even function

odd function × odd function = even function

odd function × even function = odd function

These are similar to the rules for products of signs.
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Integrals of even and odd functions

If you think of a definite integral in terms of the area under a graph, then it should be clear from Figure 10 that

If f1(x) is an odd function, then f (x) dx = 0
−a

a

∫ (25)

If f1(x) is an even function, then f (x) dx = 2
−a

a

∫ f (x) dx
0

a

∫ (26)

Note that in both these integrals the range of integration (from −a to a) is symmetric about the origin.
Don’t expect these results to work in more general situations.

These two results can often be of help when evaluating definite integrals, especially the first result (Equation 25)
which sometimes removes the need to do any hard work at all.
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✦

Evaluate 4x2 sin3 (2x) dx
−π

π

∫

Odd and even functions arise in many fields of physics so you should always ask yourself if you can use
symmetry to simplify the process of definite integration. This is especially true in quantum physics where you
will often be asked to integrate functions of known symmetry. Another property of many of the functions that
have to be integrated in a course on quantum physics is periodicity.

Periodic functions and their integrals

A function f1(x) is said to be periodic if there exists a constant k (> 0) such that

f1(x) = f1(x + nk) for all x and for all integers (i.e. whole numbers) n

The smallest value of k for which this condition holds true is called the period of the function.
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2π 3π 4ππ−π−2π

(b)
−1

1

cos1x

(a)

2π 3π 4ππ−π−2π

−1

1

sin1x

x

x

Figure 114The graphs of the periodic functions (a) sin1(x), and (b) cos1(x).

The most obvious
examples of periodic
functions are the
trigonometric functions
sin1(x) and cos1(x), both
of which have period
2π, since 
sin1(x) = sin1(x + 2nπ)
and 
cos1(x) = cos1(x + 2nπ).
The graphs of all
periodic functions, like
the graphs of sin1(x) and
cos1(x) in Figure 11,
consist of regular
repetitions of a single
basic unit that covers
one period.
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As a consequence of their repetitive nature we can state the following:

If f1(x) is a periodic function of period k, then f (x) dx = f (x) dx
0

k

∫
a

a+k

∫ (27)

and, if n is any integer, then f (x) dx = n f (x) dx
0

k

∫
0

nk

∫ (28)

The essential point being made in Equations 27 and 28 is that when dealing with periodic functions we learn just
as much by integrating over one full period as we do by integrating over several full periods. Moreover, if we
are integrating over a full period, it doesn’t matter where that period begins, a general point a is just as good as
the origin x = 0.
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Question T14

Which of the following are equal to zero? Explain your answers. (This is an easy question, it should not require
any long calculations but you will need to think.)

(a) 3x
−5

5

∫ dx ,4(b) sin2 (x 2)
−π

π

∫ dx ,4(c) [3sin(3x) + sin3(x)]
3π

7π

∫ dx .4❏
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4.3 Improper and divergent integrals
In the study of physics it is not uncommon to encounter definite integrals that involve infinity. In this subsection
we consider two of the ways in which such integrals arise: integrals in which one or both of the limits tends
towards infinity, and integrals in which the integrand itself tends towards infinity at some point in the range of
integration. These are somewhat specialized topics that your tutor might advise you to omit at this stage.

Integration over an infinite range
Infinity (∞) is not a real number, so strictly speaking we cannot use it as one of the limits of integration that we
introduced earlier when discussing the limit of a sum. However, you will often see integrals with an infinite
upper or lower limit. Such usage is justified by the following definitions

f (x) dx =
−∞

b

∫
a→−∞
lim f (x) dx

a

b

∫






(29)

f (x) dx =
a

∞

∫
b→∞
lim f (x) dx

a

b

∫






(30)

The integrals on the left are called improper integrals. Although written as definite integrals they are not
properly defined by the usual process of taking the limit of a sum; rather one or more additional limits must be
taken (as indicated on the right).
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If the limits on the right exist and are finite the corresponding improper integral is said to be convergent.
If the relevant limit does not exist, or if it tends to ±∞, then the improper integral is said to be divergent.

It is easy to find divergent integrals, for example consider the following:

cos(x) dx =
0

∞

∫
b→∞
lim cos(x) dx

0

b

∫






=

b→∞
lim sin (x)[ ]0

b( ) =
b→∞
lim [sin (b)]

In this case the integral diverges because as b tends to infinity the value of sin1(b) oscillates between 1 and −1,
there is no unique limiting value, so the limit does not exist.

On the other hand, it is equally easy to find integrals that converge. For instance, if we ignore all forces other
than the Earth’s gravitational pull, the minimum launch speed v that will just allow an object of fixed mass m to
escape from the surface of the Earth to a point infinitely far away (i.e. the escape speed from the Earth) is given
by

  

1
2

mv2 = GmM

r2

R

∞
⌠
⌡

dr = − GmM

r




R

∞

= (0) − − GmM

R




 = GmM

R
so

  
v = 2GM

R

where G is the gravitational constant, M is the mass of the Earth and R is the radius of the Earth.
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In this case the improper integral converges, and, as is customary in such cases, we have omitted the formal step
of writing down the limits that are required to define properly that integral. In effect we have treated infinity as
though it were a very large real number.

Improper integrals must always be treated with care and generally require case by case consideration.
However, one general rule which it is useful to keep in mind is the following:

If I = f (x) dx
a

∞

∫  where f1(x) is continuous over the range of integration, and if, for large values of x,

f (x) = g(x)
xn

 where g(x) is finite and non-zero, and n > 1,

then the integral I is convergent.
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Integration with an infinite integrand

The expression 
1

1 − x2
 is well defined only if −1 < x < 1, yet it is not unusual to see integrals such as

I = 1

1 − x2
dx

0

1

∫ 4or4 I = 1

1 − x2
dx

−1

0

∫ 4or even4 I = 1

1 − x2
dx

−1

1

∫

What can such integrals mean when the integrand isn’t even defined at all points in the range of integration?
In fact, they are all improper integrals which can be interpreted as limits of properly defined definite integrals.
For example,

I = 1

1 − x2
dx

0

1

∫ = lim
ε →0

1

1 − x2
dx

0

1−ε

∫







where ε →0
lim  indicates that we are considering the limit as the positive quantity ε tends to zero, i.e. as b, the upper

limit, tends to 1 from below.
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With this understanding, the integrand is one of the standard integrands listed in Table 2, so we can use the
corresponding indefinite integral given in that table to write

I = 1

1 − x2
dx

0

1

∫ = lim
ε →0

arcsin x[ ]0
1−ε( )

= lim
ε →0

[arcsin(1 − ε )] − (arcsin 0) = arcsin(1) = π
2

In this case the improper integral is convergent and gives a sensible answer that can, as usual, be interpreted as
(the limit of) an area under a graph, even though the graph itself cannot be drawn at x = 1.

✦ Without using the formal notation of limits, evaluate the following improper integrals:

(a) I = 1

1 − x2
dx

−1

0

∫ 4and4(b) I = 1

1 − x2
dx

−1

1

∫
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Although we have just considered a convergent integral it is easy to find divergent cases. 

For example 
1
x

dx
0

1

∫  is divergent because

1
x

dx
0

1

∫ =
ε →0
lim loge | x |[ ]ε

1( ) =
ε →0
lim (0 − loge ε ) ☞

and log1ε has no finite limit as ε tends to zero. Similarly the integral 
1

(1 − x)2
0

2

∫ dx  is divergent because of the

behaviour of the integrand as x tends to 1. As a general rule:

If I = f (x) dx
a

∞

∫  where f1(x) can be written as f (x) = g(x)
(x − p)n

 with g(x) finite over the range of integration

and non-zero at x = p, then there is said to be a singularity (or an infinity) of order n  at x = p and the
integral I is convergent if the order of that singularity is less than 1 (i.e. n < 1).
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One final warning about integrals that involve a singularity, remember that even if they are written to look like
ordinary definite integrals they are still improper and should be considered (at least in the back of your mind) as
limits of proper integrals. Forget this and you may make the following kind of mistake

1
x2

−1

1

∫ dx = − 1
x





−1

1

= (−1) − (1) = −2 (WRONG)

It looks plausible, but there is a singularity in the middle of the range of integration. By considering the separate
limits as x tends to zero from above and below it is easy to see that the integral is actually divergent.

Question T15 

 

Rewrite the improper integral 
1
x−1

1

∫ dx  as the sum of the limits of two properly defined definite

integrals. Will it be convergent? If so, what is its value?4❏
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5 Closing items
5.1 Module summary
1 A function f is a rule that assigns a single value f1(x) to each value of x in a set called the domain.

2 If f1(x) is a given function and F(x) is any function such that

dF

dx
= f (x) then we write F(x) = f (x) dx∫

and we call F(x) an indefinite integral of f1(x).

3 If F1(x) and F2(x) are both indefinite integrals of the same function f1(x), then there exists a constant K such
that F1(x) = F2(x) + K.

4 The definite integral of a function f1(x) from x = a to x = b is defined by the limit of a sum and may be
written as

f (x) dx
a

b

∫ = lim
∆x→0

f (xi ) ∆xi
i=1

n

∑






where ∆xi = xi + 1 − xi with x1 = a and xn + 1 = b, and ∆x is the largest of the ∆xi.
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5 According to the fundamental theorem of calculus, if F(x) is any indefinite integral of a given function f1(x),

such that f (x) dx = F(x)∫ , then

f (x)
a

b

∫ dx = F(b) − F(a) (Eqn 13)

6 The (signed) area under the graph of a function f1(x) between x = a and x = b is equal to the corresponding

definite integral, f (x)
a

b

∫ dx  = F(b) − F(a). When calculating the area under a graph between a and b, with a

< b, any regions that are below the horizontal axis should be regarded as having negative areas.
7 Several (indefinite) standard integrals are listed in Tables 1 and 2.

8 Integrals (both definite and indefinite) may be combined using the following rules:

the sum rule [g(x) + h(x)]dx = g(x) dx + h(x) dx∫∫∫ (Eqn 14)

the constant multiple rule k f (x) dx = k f (x) dx∫∫ (Eqn 15)

Mike Tinker


Mike Tinker
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9 Definite integrals have the following six properties:

1 f (x)
a

a

∫ dx = 0 (Eqn 18)

2 f (x)
b

a

∫ dx = − f (x)
a

b

∫ dx (Eqn 19)

3 f (x)
a

b

∫ dx = f (x)
a

c

∫ dx + f (x)
c

b

∫ dx 4where a ≤ c ≤ b (Eqn 20)

4 [kf (x) + lg(x)]
a

b

∫ dx = k f (x)
a

b

∫ dx + l g(x)
a

b

∫ dx where k and l are constants (Eqn 21)

5 If f1(x) ≥ 0 for all x in the interval a ≤ x ≤ b then f (x)
a

b

∫ dx ≥ 0 (Eqn 22)

6 If m ≤ f1(x) ≤ M for all x in the interval a ≤ x ≤ b then

m(b − a) ≤ f (x)
a

b

∫ dx ≤ M(b − a) (Eqn 23)



FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

10 If f1(x) is an odd function so that f1(−x) = −f1(x), then

f (x) dx = 0
−a

a

∫ (Eqn 25)

If f1(x) is an even function so that f1(−x) = f1(x), then

f (x) dx = 2
−a

a

∫ f (x) dx
0

a

∫ (Eqn 26)

If f1(x) is a periodic function of period k, so that f1(x) = f1(x + nk), where n is any integer, then

f (x) dx = f (x) dx
0

k

∫
a

a+k

∫ (Eqn 27)

and f (x) dx = n f (x) dx
0

k

∫
0

nk

∫ (Eqn 28)

11 Improper integrals may have infinite upper or lower limits and/or singularities in their integrands. Such
integrals should be interpreted as appropriate limits of (proper) definite integrals, and may be convergent or
divergent. They should be treated with care.
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Define an indefinite integral of a given function in terms of a process that reverses the effect of
differentiation, explain the significance of the constant of integration introduced by that process, and
determine a variety of indefinite integrals.

A3 Define the definite integral of a given function between given limits in terms of the limit of a sum, state the
fundamental theorem of calculus that relates definite and indefinite integrals, and use it to evaluate a variety
of definite integrals.

A4 Interpret the definite integral of a given function between given limits in terms of the area under the graph
of that function between those limits (with due regard to signs).

A5 Use tables of standard integrals to determine definite and indefinite integrals of the tabulated functions and
of linear combinations of those functions. Also, use the techniques of differentiation to justify the entries in
such tables.

A6 Recognize, write down and use the general mathematical properties of definite integrals.
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A7 Recognize, write down and use the general mathematical properties of definite integrals with integrands that
are even, odd or periodic.

A8 Recognize improper integrals, determine whether or not they converge in simple cases, and evaluate those
that do.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A3 and A4)4(a) What is the meaning of each of the symbols in the expression f (x) dx
a

b

∫ ?

(b) How may we use an indefinite integral of f1(x) to evaluate the integral?

(c) Give a geometrical interpretation of the integral if f1(x) > 0 for all x such that a ≤ x ≤ b.
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Question E2

(A2 and A3)4Find the following integrals:

(a) x2 + 1
x2





 dx⌠

⌡
,4(b) 

1
x

dx

2

1

⌠
⌡

,4(c) 8cos
x

2






π 6

π 2

⌠
⌡

dx ,4(d) 1
2 loge

1
2 x( ) dx

1

2

∫ .
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Question E3

(A2, A3 and A4)4Find the area under the graph and the sum of the magnitudes of the enclosed areas between
the graph y = f1(x), the x-axis and the lines x = a and x = b for each of the following:

(a) f1(x) = e−x, a = 0, b = 4

(b) f1(x) = x − x2, a = 0, b = 2

(c) f (x) = 1
x

, a = −2, b = −1.
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Question E4

(A5)4Using Tables 1 and 2 where appropriate, determine the following integrals:

(a)
4y

6 − 2y2







dy

⌠

⌡


(b)
12t2 − 21

4t2 − 9






⌠
⌡

dt (Hint: Rewrite the numerator.)

(c)
2x + 3

4x2 − 9






⌠
⌡

dx (Hint: Rewrite the denominator.)



FLAP M5.2 Basic Integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question E5

(A6 and A7)4Without performing any integrals, determine which of the following statements are true and
explain your reasoning:

(a) loge x
1

2

∫ dx = loge x
3

2

∫ dx + loge x
1

3

∫ dx , (b) f (x)
a

b

∫ dx > f (x)
a

b

∫ dx

(c) (x3 + sin2 x)
−π 2

π 2

∫ dx = 0
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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