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1 Openingitems

1.1 Moduleintroduction

Y ou probably know that the volume of a sphere of radiusr is 4 13, but do you know how to prove that thisis
the case? One way to proceed is to divide the sphere into a set of thin discs, to find an approximate expression
for the volume of each disc, then add all the approximations, and so estimate the volume of the sphere. As we
allow the discs to get thinner and thinner, the accuracy of the approximation improves and approaches alimiting
value—the limit of a sum—which isusually known as a definite integral.

This module discusses several physical and geometrical applications of integration, al based on the fact that a
definite integral isthe limit of an appropriate sum. Thisidea is probably already familiar to you, since you may
well have been introduced to definite integrals in the context of calculating areas under graphs, where such an
area is approximated by a set of thin rectangles. However, the module starts with a review of the relation
between a definite integral and an area, and discusses cases where the area actually corresponds to some physical
guantity. It goes on to show how definite integrals can be used to find more complicated areas 0 those enclosed
by two intersecting graphs. Then it discusses some examples of solids (solids of revolution) whose volumes and
surface areas can be written as definite integrals. (Here, you will find a derivation of the formulafor the volume
of asphere.) Finaly, it shows you how to express several other quantities I masses of objects whose density is
not constant, centres of mass and moments of inertia of solid objects, average values O as definite integrals.
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Study comment  Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment  Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1
Find the area of the region bounded by the graph of the functiony = x2 + 2 and the liney =5 - 2x.
Question F2

1
Given that the integral J’ V1 + u2du = 1.14779, find, to two decimal places, the area of the surface of revolution
0

generated by the graph of y = sinx asit is rotated about the x-axis over theinterval 0 < x < 172,
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Question F3

A circular disc hasradius a, mass M and thicknesst, and its density at any point is proportional to the distance of
that point from the axis of the disc (i.e. the line perpendicular to the plane of the disc and through its centre).
Find the moment of inertia of the disc about its axis. Express your answer in terms of M and a.

Study comment

Having seen the Fast track questions you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment  In order to study this module, you will need to be familiar with the following terms: centre of mass,
definite integral, improper integral, integrand, integration by parts, integration by substitution, limits of integration,
modulus, moment of inertia, range of integration. If you are uncertain of any of these terms, you can review them now by
referring to the Glossary which will indicate where in FLAP they are developed. In addition, you will need to be familiar
with various trigonometric identities, and you should know how to find standard integrals (such as the integrals of x", or eax)
and to evaluate definite integrals by the method of substitution, or by integration by parts. You will also need to be able to
sketch graphs of straight lines, quadratic and cubic polynomials, reciprocal functions circles and ellipses; and know how to
find the points of intersection of two graphs. The following Ready to study questions will allow you to establish whether you
need to review some of these topics before embarking on this module.
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Question R1
Evaluate the definite integrals

4 2
€) £(3XS -16x3)dx; (b) {\s’4—xdx; (© J’ P = dx.
Question R2
R o0

Find the integral J’ xe~ dx, where a and R are positive constants. Hence find the improper integral I xe~ & dx.
0

Question R3
Sketch the graphs of (a) y=x3 —4x, (b) (x—3)2+ (y+ 1)2=9.
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Question R4
Find the points of intersection of the line y = x — 3 with the graph of y = x2 — 5x + 4, and sketch these two

functions on the same axes.
Question R5

Two small objects, of masses 0.1kg and 0.2 kg, are 1 m apart. Find (a) the position of their centre of mass;
(b) their moment of inertia about an axis which passes through their centre of mass and is perpendicular to the

line joining them.

Question R6

In answering this question, you should make use only of trigonometric identities; you should not use your
calculator.

(a) If cosf = %, what are the possible values of sin 6?
(b) If sin6= 1, what is the value of cos(26)?
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2 Areas
2.1 Areaunder agraph

b
Y ou aready know that a definite integral J’ f(x)dx L] canberelated to an
a

‘area under the graph’ of the function f(x). If f(x) is a function that is
b

positive over the interval a < x < b, then the integral J’f(x) dx is equal to
a

the magnitude of the area enclosed by the graph of the function f(x), the
vertical lines x = a and x = b, and the x-axis (see Figure 1).
The area of this region is known as the ‘area under the graph’ of f(x) over

theinterval a< x < b. It isworth recalling here the argument that relates the
b

definite integral J’ f (x) dx to the area A shown in Figure 1, since we shall be
a

using the same line of reasoning in many different cases throughout this
module.

f(>) 4

a

b X

Figurel ‘Areaunder thegraph’ of
f(X) between x=aand x=b.
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O Find the area under the graph of f(x) =x3fromx=1tox=3.

(Note: In this subsection we assume that both x and f(X) are dimensionless quantities.)

Theideaisthat we can estimate a value for A by dividing the areaup into a
large number of thin rectangles. In Figure 2, the area under the graph of f(x)
between x; = a and x,,;1 = b has been divided into n strips (although we only
show six of them) which are then approximated by rectangles: the first is of
height f(x;) and width Ax;, the second is of height f(x,) and width Ax,, and

s0 on. The area of the ith rectangle, covering the interval [x;, X; + Ax;] is

f(x)Ax; and the sum of the areas of all these rectangles provides a good
approximation to A, in other words,

A=i:§lf(mm 0 @

As we alow the width of the rectangles to become smaller and smaller
(while, as a consequence, n gets larger) the sum on the right-hand side of
Equation 1 becomes an ever better approximation to A, and in the limit, the
sumis actually equal to A.

f)4 n strips
/—/%
A
A
a X[ b X
AXi

Figure2 An approximation to the
area under the graph of f(x).
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b
Thislimit of asum is defined to be the definite integral J’f(x) dx, so that we have
a

b
A= [ f(x)dx 2

The'areaunder agraph’ and the ‘magnitude of the area bounded by a graph’

In the above discussion we assumed that the function f(x) is positive between a and b, and we will need to make
aminor adjustment if f(x) is negative or changes sign in theinterval. In FLAP, we use the following definition:

The area under the graph of afunction f(x) between x = a and x = b is equal to the definite integral

b
If(x)dx.

This has the consequence that in a region where f(x) is always negative, the area under the graph of f(x) isa
negative quantity. We might, however, be interested instead in cal culating the magnitude of the area enclosed by
the graph of f(x), the vertical lines x = a and x = b, and the x-axis. Such a magnitude is, by definition, always
positive.
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You will find that some authors define ‘area under a graph’ in such away that it always gives the magnitude of
this area. However, we shall use the definition given above, and we will make it very clear if we want you to
calculate the magnitude of an enclosed area.

The essential point for you to note is this: when calculating ‘the area under a graph’, the areas of the regions
below the x-axis must be subtracted from the areas of the regions above the x-axis. On the other hand, when you
are asked to find ‘the magnitude of the area bounded by the graph’ you must ensure that all the contributions to
the area, from parts above or below the x-axis, are positive. This means that you have to consider separately the
regions in which f(x) is positive and those in which it is negative, as in the following example.

Example 1

Find the sum of the magnitudes of the areas enclosed by the graph of f(x) = x2 — 3x + 2 and the x-axis between
x=0and x=2.

Solution

Asit is not immediately obvious whether f(x) = x2 — 3x + 2 changes sign between x = 0 and x = 2, we will start
by sketching the function. This quadratic function factorizes: x2 — 3x+ 2= (x — 1)(x — 2).

So the graph crosses the x-axisat x=1and at x = 2. When x =0, f(X) = 2.
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This gives us enough information to produce the sketch shown in Figure 3. 94
We see that the region of interest is divided into two parts: one lying above
the x-axis (labelled A; in Figure 3) and another (A,) lying below. 2\
First we integrate f(x) between the limitsx = 0 and x = 1 to find an integral
I, corresponding to the region A,

1

Iy = [(x -3x+2)dx = [§x3-3x2 +2x] =4 -§+2=0.833
0
Now we integrate f(x) between x = 1 and x = 2 and find an integral

corresponding to the region A, A
2
I2:J’(x2—3x+2)dx:[%x3—%x2+2x]f NA 2 X
l I
= 3(8-1)-3(4-1)+2(2-1)=-0.167 Figure3 Thefunction
i.e. a negative answer, because f(x) is always negative in this region. f() = x2 = 3x + 2.

The magnitude of the area required is therefore
I+ |1,]=0.833+|-0.167| = 0.833+0.167=1.000 ] O

In aquestion of thiskind it is absolutely essential to be able to determine where the function changes sign; it will
also help if you are able to sketch the graph of the function.
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Question T1

Find the sum of the magnitudes of the areas enclosed by the graph of f(X) = € — 2, the x-axis, and the linesx =0
and x = loge 3. (Y ou should start by sketching the graph.) O .

We can summarize the previous discussion very neatly in terms of the modulus of f(x):

The magnitude of the area bounded by the graph of y = f(x) between the pointsx = a and x = b is given by

b
the integral I|f(x)|dx.g
a

Since | f(X) | = f(X) when f(x) is positive, and |f(X) | = —f(X) when f(X) is negative, the modulus sign takes care of
b

any changesin sign that f(x) may undergo in the region of integration. The integral J'| f(x)|dx isnotin genera
a

b
equal to J’ f (x) dx; the two are only equal if f(x) = 0 throughout theinterval a< x< b.
a
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Although this description is quite neat, in practice we rarely try to integrate |f(x) | directly, and usually we
consider separately regions where the function is positive, and regions where the function is negative, as in
Question T1.

The physical significance of the definite integral

So far, we have simply interpreted f(x) geometrically, as the height of the graph y = f(x), in which case
b
J’ | f (x)|dx isindeed just the magnitude of the area bounded by the graph of y = f(x), measured in whatever scale
a

units are used on the graph’s axes. However, if f(X) represents some physical quantity, then the definite integral
will of course have a different physical significance. Here are two examples.
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Velocity—time graphs V()4
Figure 4 shows a graph of the velocity, v,(t) of an object moving along the
X-axis, against time t; note that v,(t) changes sign twice. If we want to
know the displacement s, of the object from its initial position (at t = 0)
after a given time T has elapsed, we can use the same reasoning that led

from Equation 1 to Equation 2. ] \
n
A:i:zlf(Xa)Axi (Eqn 1) Wa s
b
A= [f(X)d Egn 2
-!; (x) o (Ean2) Figure4 Velocity—time graph for an

object moving along the x-axis.
We divide thetime T into many short time intervals, each of duration At. During any one of these timeintervals,
v, (t) is approximately constant, so the corresponding displacement is approximately equal to v,(t) At; then the

total displacement is approximately equal to the sum > v,(t) At. In the limit as At tends to zero, we find that the
T

displacement is given by the integral J’ v, (t) dt, i.e. the areaunder the graph of v,(t) betweent=0andt=T.
0
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If, instead, we want to calculate the distance travelled by the object, we must recall that distance is the

magnitude of displacement. Thus the distance travelled in a short time interval At is equal to |v,(t) |At and,
T

reasoning as before, we find that the distance travelled after time T is given by the integral J’|vx(t)|dt.
0

So it is equal to the sum of the magnitudes of the areas enclosed by the graph of v,(t) and the t-axis, between

t=0andt=T.

O Anobject ismoving along the x-axis so that its velocity at timet is given by v,(t) = vy Sin(Tt/T) m s, where
Vo=5msland T=1s Whatisits displacement after 2s and what distance does it travel in the first 2 seconds?

Question T2

The graph shown in Figure 4 may be represented by the equation v, = at3 + bt2 + ¢, where a = 4ms™,
b=-13ms=3, ¢ =9ms Calculate (a) the displacement of the object, (b) the distance travelled by the object
betweent=0andt=4s. 0O
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Work

Suppose that an object is moving along the x-axis under the influence of a constant force F, in the x-direction.
The work done by the force in moving the object from x = ato x = b isW = F,s, where s, is the displacement of
the object, which in thiscaseisb — a.

If the force, F,(X) say, varies with x, then we can divide the interval a < x < b into many much smaller
subintervals, of width Ax, in each of which Fy(X) is approximately constant. The work done in moving the object
through the small subinterval between x and x + Ax is approximately F,(X) Ax.

The total work done is approximately given by adding all these small amounts of work, so that
total work done W =  F,(x) Ax

In the limit as Ax decreases towards zero (and the number of subintervals increases) this approximation to W
becomes increasingly accurate, and
b
W= J’ F(x) dx
a

It follows that we can interpret W to be the area under the graph of F,(x) between x =a and x = b.
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Question T3

A positively charged particleisfixed at the origin and a second positive charge moves away from it along the x-
axis. The force acting on the second chargeis A/x2 where the constant A = 7.3 x 10726 N m2. Calculate the work
done on the charge asit movesfromx=0.1mtox=10m. 0O
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2.2 Areabetween two graphs

Suppose that we want to find the area A enclosed by the graphs of the two
functions f(x) and g(x) shown in Figure 5. Proceeding as before, we
divide the region up into thin slices, each of thickness Ax, then
approximate each slice by a thin rectangle. The height of the rectangle
shown in Figure 5 is (f(x) — g(x)), and so its area is (f(X) — g(x))Ax.
We now sum the areas of all the rectangles, and let Ax tend to zero, so
that in the limit the sum becomes an integral and we have

b
A:I[f(x)—g(x)]dx ®)

where a and b are the x-coordinates of the points of intersection of the
two graphs. Notice that f(x) = g(X) in the interval a < x < b, which ensures
that f(x) — g(x) is positive, and therefore A is aso positive.

O

YA

Figure5 The areaenclosed between
two graphs.

Suppose f(xX) = -x2 + 4x — 2 and g(x) = X2 — 4x + 4. The graphs of these functionsintersect at x = 1 and x = 3.

Use Equation 3 to find the area A enclosed by these graphs.
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It is quite possible to find such an area without drawing the graphs (as the above
exercise shows), but if you are asked to calculate the area between the graphs of
f(x) and g(x), you will find it much easier if you begin by sketching the two
graphs on the same axes, and, of course, finding the points of intersection
(which you need in order to be able to put in the correct limitsin Equation 3).

b
A= [[ 109~ g(x)] dx (Eqn 3)

The following example shows you how to proceed.

Example2  Find the area between theliney = f(x) = —4x + 5 and the graph of
g(x) =I/x.
Solution The two graphs intersect where —4x +5 =1/x. Rearranging this

equation gives us a quadratic equation to solve for x namely 4x2 — 5x+ 1 =0,
which factorizesto give (x — 1)(4x— 1) = 0. So we see that the roots of this
equationarex=1and x =1/4.

f(x)1

Figure6 SeeExample2.

FLAP M54 Applications of integration
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

© ©

& @



We can now sketch the area enclosed by the two graphs, showing the points of
intersection (see Figure 6).

We now evaluate the area, using Equation 3:

b
A:I[f(x)—g(x)] dx (Eqn 3)

1
A= J’(—4x+5—]/x)dx :[—2x2 +5x —log, X :4
1/4

=-2(1-1/16) +5(1-1/4) - log, 1+ log, 14 =0.4887 [

Figure6 SeeExample?2.

Question T4
Find the area between the graphs of f(x) = 8+v/x and g(x) = x2. (Start by sketching the two graphs.) O
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In al the examples so far, the functions f(x) and g(x) have been chosen so that the graph of f(x) lies above the
graph of g(x). This ensuresthat the integrand in Equation 3

b
A:J'[f(x)—g(x)] dx (Eqn 3)

is positive, so that we obtain a positive answer for A. If we had chosen our two graphs the other way round, then
the height of the rectangle in Figure 5 would have been equal to (g(x) — f(x)), and it is this function that we
would have integrated. Thus, wherever f(x) > g(x), we integrate (f(X) — g(x)), to obtain the area; but in the case
that g(x) > f(x), we integrate (g(x) — f(x)). In both these cases, we can write down the area of the region— known
asthe area between the graphs of f(x) and g(x) —as

b
A= [11(x) - g(x)|dx 4

It isimportant to use Equation 4 (not Equation 3) if the two graphs intersect more than twice, so that (f(x) — g(x))

is sometimes positive and sometimes negative, asin the next example. [ )
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Example 3

Figure 7 shows the graph of f(x) = 4x3 — 6x2 + 2 and the line g(x) = 2x
+ 1. They have three points of intersection, at x = -1/2,
x=1-1/+2=0.293 and x =1+1/y/2 =1707. [ |

Find the total area enclosed by the two graphs.

Solution Over theregion —1/2 <x < 0.293, f(x) is greater than g(x).
Thusthe arealabelled A; in Figure 7 is given by integrating

(f(X) = g(x)) =43 —6x2 — 2x+ 1 from x =-1/2 to x=0.293.

0.293
A = £(4x3 - 6x% - 2x +1)dx =[x - 2x3 - x? + X]?.Ozzs
-0.5

=0.164 - (-0.438) = 0.602

Over theregion 0.293 < x < 1.707, f(X) islessthan g(x). Thusthe area
labelled A, in Figure 7 is given by integrating
[(FO) =909 | = 9(x) = f(X) = =4x3+ 6x* + 2x - 1

from x=0.293 to x = 1.707.

y fX)=4C-6x2+2

g(¥)=2x+1

>

|
0.293 1.707%

Figure7 SeeExample 3. Note that the
horizontal and vertical scales on the graph
have been made different for convenience
of drawing.
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1707

hs 029(3_4)(3 O+ 2x - 1) dx = _[X4 —2x3 - %2 + X]g.;(;;

=2.664 — (-0.164) = 2.828
So thetotal areais0.602 + 2.828 =3.430. O

O Figure 8 shows the graphs of two functions f(x) and g(x); their
points of intersection are given as x = 1.0, x = 2.5 and x = 4.0.
Write down the two integrals whose sum gives the total area enclosed

by the graphs.

Y A

Figure8 An areaenclosed by two
graphs between x = 1.0 and x = 4.0.
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Theareaof acircle

Finally in this subsection, it is worth noting that we can use Equation 4
b

A= [11(x)—g(x)|dx (Ean4)

to find the areas of shapes such as circles and ellipses. For example, let us
use it to prove that the area of acircle of radiusr is Ttr2. The equation of
acircle of radius r centred on the origin is x2 + y2 = rZ so, for a given
value of x (less than r), y can take the two values ++/r2 — x2 and
—+/r? = x2 . Thus we can regard the region inside the circle as the area
enclosed by the graphs of the two functions f(x) = ++/r2 — x2 and
g(x) = —+'r2 — x2 (see Figure 9). The points of intersection of these two

graphsare x =—r and x = +r. So Equation 4 gives, for the area A of the
circle,

A= .r[[\/rz - x2 —(—\/rz - xz)] dx = Zj(m) dx
et cr

e
AN

Figure9 Thecirclex? +y2=r2
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The definite integral can be evaluated by making the substitution x=r sinu.
Then /r2 — x2 = \/rz(l—sinz u) =r cosu, and dx =r cosudu.
Whenx=r,sin(u) =1,s0 u=17y2,

andwhenx =-r, u=-172;

thus the new limits of integration are /2 and — /2. So the integral becomes
/2
A= 2r2 J’c032 udu
-T/2

We can eva uate thisintegral by means of the trigonometric identity 2cos?u = 1 + cos (2u); substituting thisinto
theintegral, wefind

2 /2 1{ } 1 /2
A=2r2 fcosfudu=2r2 [ ={1+cos(2u) du:rzgﬁ—sin(Zu)
—!/2 —?[[/22 2 aT[/2
Ot 1 . g m. 1. N
=r2 +=sinmt— ——+=98n(-Tt = 1r?
B2 72 T2
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Question T5

Find the area enclosed by the éllipse x2/16 +y2/9=1. O
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3 Solids of revolution

3.1 Volume of revolution

Suppose that we want to find the volume of a cone, of height h and base
radius r. Such a cone is shown in Figure 10; we have drawn it so that its
vertex is at the origin and its axis of symmetry lies along the x-axis.
To find the volume we can approximate the cone by a set of thin discs,
each of thickness Ax. One of these discs, D, is shown in Figure 10.
The centre of the disc D has coordinates (x, 0). We calculate the volume
of each disc, and then obtain an estimate for the volume of the cone by
adding these volumes. We then allow Ax to tend to zero, and in the limit
the sum becomes a definite integral between the limits O and h, which
gives the exact value of the volume of the cone. In order to be able to
evaluate this integral, we must, of course, obtain an expression for the  Figure10 A cone of height h and
volume of atypical disc in terms of x. base radius .

To calculate the volume of atypical disc D, we need first to know its radius. Thisis equal to the y-coordinate of
the point A, and to express this in terms of x, we need to find the equation of the line OP in Figure 10.

This line passes through the origin and the point (h,r); its gradient is r/h and its intercept is zero.
So the equation of the lineisy = rx/h. Consequently, the radius of the disc D is rx/h.
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Hence

cross-sectional areaof D = T[DLE?XZ
ThO
and volume of D = area x thickness = TTD D2x2 AX

Hence the volume V of the coneis given by the integral
or ot ot o0

V= e x2dx:n— =11m?h
OhO ChO B %

an expression that you have probably seen before.

We will show shortly that we can generalize this strategy to find the volume of any solid which can be regarded,
to agood approximation, as a series of discs al centred on the x-axis. But we first introduce some terminology.
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Look at Figure 10; imagine rotating the triangle OPQ (which lies in the
(x,y) plane) about the x-axis. As you do so, the line OP will sweep out
the surface of the cone. We can say, therefore, that the cone is generated
by rotating the area OPQ about the x-axis. Thisis an example of a solid
of revolution [0 asolid which can be obtained by rotating the area under
a graph (or part of a graph) about some axis. The volume of a solid of
revolution is known as avolume of revolution.

0 Describe the solid of revolution obtained by rotating the area under
theliney = 3 between x = 2 and x = 6 about the x-axis.

y

Figure10 A cone of height h and

baseradiusr.

FLAP M54 Applications of integration
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

© ©

& @



Figure 12 shows an arbitrary solid of revolution, obtained by rotating the
area under the graph of the function f(x) between the points x = a and
x = b about the x-axis. As we did with the cone, we can approximate this
volume by a set of thin discs of thickness Ax; we show one such disc, D,
in Figure 12. Theradius of D is equal to the y-coordinate of the point A;
that is, it is equal to f(x). So the cross-sectional area of D is 1 f(x)]2, and
its volume is Ti[f(X)]2Ax. Summing over the volumes of all the discs,
and allowing Ax to tend to zero, we obtain a definite integral for the
volume V of the solid of revolution:

V= n}[f(x)]zdx (5)

Example4  Thesolid of revolution obtained by rotating the semicircle
f(X) = +/r2 — x2 about the x-axisis a sphere of radiusr. Use Equation 5

to show that the volume of a sphere of radiusr is 4 w3,

a solid disc D

Figure12 Solid of revolution obtained
by rotating the area under the graph of
f () about the x-axis.
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Solution  We first sketch the semicircle (see Figure 13); this shows us y
that the limits of integration are x = —r and x = + r. Then we substitute
these limitsand f(x) = +/r2 — x2 into Equation 5, %)
b
V= nf[f(x)]z dx (Eqn 5) / \
a >
to obtain T r X

= (- ) ax

Figure13 SeeExample4.
Evaluating the integral gives us
r
V= r[[r2x—%x3]_r = n{%r3 —(—%r3)} =3ms [

Question T6

Find the volume of revolution obtained by rotating the area under the graph of f(x) = 3/x2 between x = 1 and
x = 3 about the x-axis. [

FLAP M5.4 Applications of integration e 0 ‘ .
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3.2 Surface of revolution

Suppose now that we want to find, not the volume but the surface area of
the cone shown in Figure 10. By now, you may be thinking that you
know what is coming. Perhaps what we must do is to approximate the
cone by a set of thin discs (just as we did to calculate its volume), work
out the surface area of atypical disc, add up all these surface areas, and
let the thickness of the discs tend to zero, to obtain an integral giving the
surface area of the cone. This process does NOT work, and an example
should convince you that thisis the case.

The disc D in Figure 10 has radius rx/h, its circumference is 2mrx/h,
and so its surface area (= circumference x thickness) is 2rirx/h Ax. Thus
the integral giving the total surface area of the discs as their thickness

tendsto zerois

h
r = —_— p—
ZHE‘([xdx 2T[ @ % = 1rh (6)

However, Equation 6 does not give the correct answer for the surface
area of the cone as we can easily verify!

Figure10 A cone of height h and

baseradiusr.
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We have another way of finding this surface area: we can imagine cutting
the cone along a straight line running from its base to its vertex and
spreading the cone out flat. This gives us the sector of a circle shown in
Figure 14; the radius of the circleis equal to the slant height | of the cone
(i.e. the length of the line OP in Figures 10 and 14), and the Iength of the
arc PR is equal to the circumference of the

base of the cone, 2mr. (If you do not believe

X
that this is the figure obtained, try doing the 0
experiment in reverse. Cut out a sector of a e |
circle; you will find that you can roll it up into
acone.) P R

The surface area of the cone is equal to the
area of the sector shown in Figure 14.

This sector isafraction 8/21 of the complete  Figure14 An Figure10 A cone of height h and
) ) . A unrolled cone. baseradiusr.
circle of radius I, where @is the angle POR

(measured in radians).

So its areamust be equal to (6/2m) x the area of thiscircle (1d?), i.e. to 4 612.

FLAP M5.4 Applications of integration e 0 ‘ .
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The angle B is equal to the length of the arc PR divided by the radius | of the circle, 0
6 =2mr/l , sowefind > |
102G, _
surface area Sof cone = SO01 = 1rl @) p R
0 NOT the same as the result obtained in Equation 6.
ﬂ Figure14 An
2T[ J-X dx = 21-[ % (Eqgn 6) unrolled cone.

The reason why Equation 6 gives the wrong answer is simply that, while the volume of athin slice of the coneis
well approximated by the volume of athin disc of the same thickness and with radius equal to the average radius
of the slice, the surface area of such a dlice is not equal, even approximately, to the surface area of the
corresponding disc. However, we can arrive at an integral giving the surface area of the cone if we consider
carefully what the surface area of athin dice of it actualy is.
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Figure 15a shows such a slice Q, whose thickness (equal to the length
AB) we will call As. We can think of this slice as being generated by
rotating the line segment AB about the x-axis; in which case we see that
the point B travels a total distance equal to 2t x BC. So if we imagine
cutting the slice along AB, and laying it flat, we will obtain the shape
shownin Figure 15b 0 part of aring. The area of thisregion is, to agood
approximation, given by the product of its thickness As and the length of
the outer arc bounding it, 21t x BC:

areaof slice Q =2 x BC x As (8

Before we can use Equation 8 to give us an integral equal to the surface
area of the cone, we must express all quantities in it in terms of x.
The length BC is equal to the y-coordinate of the point B, which is equal
to rx/h. We now need to relate Asto Ax, and this can be done using

Pythagoras' s theorem.

Figure15 (@) A dliceof acone. (b) The unwrapped sice Q.
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From Figure 15c, we see that
(A92 = (AX)2 + (Ay)2 = (AX)2 (1+ (Ly)?/(8x)?)

i.e. As=Ax\1+(Ay)?/(Ax)?

Theratio Ay/Ax issimply equa to the gradient of the line OP, which is r/h. So we

have

r2
As=AX,[1+—
h2

and substituting this, and BC = rx/h in Equation 8,

(c

A
/Al

Figure15 (c) Thelength
Asinterms of Ax and Ay.

areaof dlice Q =2t x BC x As (Egn 8)
we find
. rOf 20
areaof thesdlice Q =21 —x [3/1+— [AX
h g hpg
N——
BC
As
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We now add up all such areas, allow the thickness of the dlices to tend to zero, and so obtain a definite integral

for the surface area Sof the cone:

[ e (20 (2 h
S=2r1 dx = 2T[ ‘1+— X dx
? mh \‘ h2 D h\ .[
0 everything here
is constant

O Evaluate the above integral, to get an expression for S.

© ©

& @
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The answer you have found does not yet look quite the same as the answer
obtained in Equation 7, which was 1ir I. However, it is not hard to show that
it isin fact the same. Figure 16 shows that the slant height |, the height h
and the radius r of the cone are related by Pythagoras' s theorem: 12 = h2+r2
which can be rearranged to give | = hy/1+r2/h2 . So the right-hand sides of
Equation 9

X
s:2ni\/1+r—2 1 ot :Tlrh\/1+— (Eqn 9)
N RE R
and Equation 7 _ )
1o Figure16 Relation between dant
surface area S of cone = _D_Sz — (Eqn 7) height I, height h and radiusr of a
20| cone.

areidentical.

Now that we have seen how to write the surface area of a cone as an integral, we can generalize the method to
find the area of any surface of revolution [0 that is, any surface produced by rotating a graph about an axis.
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Figure 17a shows the graph of the function f(x) and its surface of revolution between the pointsx = a andx = b.
To find the surface of revolution S, we approximate the graph by a set of line segments of equal length As, as
shown in Figure 17b. When one of these is rotated about the x-axis, it generates a surface Q whose surface area
is approximately equal to that of a slice of the solid of revolution. The area of the surface Q is approximately
equal to its thickness As multiplied by the distance travelled by one end of the line segment asiit is rotated about
the x-axis, 2rtf(x). So we have

areaof Q = 2nf(x) As (20)

thesurface Q of the
edgeof thedisc

Figure17

(@) The surface of revolution produced
by the graph of f(x) between the points
x=aandx=h.

(b) An approximation to the graph of
f(X).

(0)
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Figure 17c shows that in this general case, we have the approximate relation

As= \[(Ax)? + (Ay)? = Axy1+ (Ay/Ax)? (11
This approximation will become better as Ax and As get smaller and smaller. We As
can also write by
AyzﬂAx i.e. Ay= f'(x)Ax (12
dx
© AX

and again, this approximation will improve as Ax tends to zero. Substituting
Equations 11 and 12 into Equation 10

areaof Q = 2mf(x) As (Egn 10)
gives

area of the thin strip Q = 27if (x) \;“‘1+[f'(x)]2 Ax
—

length of As
thestripQ  widith of the strip Q

Figurel17 (c) Approximation
for the length Asin terms of Ax
and Ay.

FLAP M54 Applications of integration
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

© © 2 B 4



and when we add up the area of all the slices, and allow Ax to tend to zero, we obtain an integral for the surface
Sof revolution:

b
S=2m f()y1+] f'(x)]° dx (13)

Example5

The solid of revolution obtained by rotating the semicircle y = vr2 — x2 about the x-axis is a sphere of radius
r. Use Equation 13 to show that the surface area of a sphere of radiusr is 42

Solution
With f(x) =12 =2, £/(x) = ————.
r<—xX
2 r2 2 r
So1+[F P =1+ = and A 1+[ (0] = ———.
[(0)] PR Rl S [f(0)] Nz
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Thus the integrand in Equation 13 y

b
S=2mf f(x)y/1+] f(x)]° dx (Eqn 13)

issimply equal to r. The limits of integration are —r and r (asin Example /\

4; see Figure 13). = r X

So the surface areaiis

Figure13 SeeExample4.
r
S=2mw [dx = 2mw[x], =4mw? [
-r

Question T7

Find the area of the surface of revolution obtained by rotating the graph of f(x) = x3 between x =1 and x = 3

about the x-axis. 0O
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4 Totalsand averages i :

Al |
4.1 Themassof an object of variable density A
Suppose that we want to find the mass of a rod of length L and uniform L
cross-sectional area A, whose density p(x) varies with distance x from one X

end of the rod (see Figure 18). We proceed by dividing the rod into thin , ,
dices of thickness Ax. The volume of one of these slicesis AAx, and since  Figure18 A rod of varying density.

the density within this dlice is approximately constant, and equal to p(x), the mass of the rod between x and
X + Ax is approximately p(x)AAx. The total mass M of the rod is approximately given by the sum of the masses

of al the thin dlices. In the limit as Ax tends to zero, this sum becomes a definite integral, exactly equal to the
mass of the rod:

M= AJL'p(x) dx (14)
0
O

Find the mass M of arod of length L and cross-sectional area A whose density is given by p(x) = Lz’j?xz

FLAP M5.4 Applications of integration e 0 ‘ .
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The method used to derive Equation 14
L

M= AJ'p(x) dx (Egn 14)
0

can be generalized to find the mass of some solids which are not in the
shape of rods. For example, suppose we want to find the total mass of a
disc, of radius R and depth h whose density p(r) varies with the distance r
from the axis of the disc (see Figure 19a). Since the density depends only
on r, and on neither the angular displacement round the disc nor the depth,
we can easily write down an approximate expression for the mass of athin
ring-shaped portion of the disc (shown in Figure 19b) if we know the
volume of such a portion. We therefore divide the disc into thin concentric
rings of radiusr and thickness Ar, calculate the mass of one such ring, and
add up the masses of al the rings; then, as usual, as we let Ar tend to zero,
the resulting integral gives us the mass of the disc.

- 5>

(b)

Figure19 (@) A disc of varying
density. (b) A thin ring-shaped portion
of thedisc.
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To find the mass of the ring, note that its volume is approximately equal to the product of itsinner circumference

21w, itsthickness Ar and its depth h. So that
volume of ring
mass of thering = 2 JL Ar, p(r)

circumference depth  thickness density
of ring of ring of ring

and the mass M of the whole disc is given by:

R
M = 2mhrp(r) dr (15)
0

Question T8

Use Equation 15 to find the mass of a disc of radius R = 4cm and height h = 1cm, whose density

p(r) = poy/1+12/R2 where py = 300kgm™3, [
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The same strategy can be used to find the mass of a sphere of radius R whose density p(r) depends only on the
distance r from the centre of the sphere. Here, we divide the sphere into thin spherical shells of thickness Ar,
concentric with the sphere. The volume of such a shell is approximately equal to the surface area of its inner
surface, 41r2, multiplied by its thickness Ar.

0 Write down an approximate expression for the mass of this spherical shell.

Question T9

Due to the effects of gravity, the density p(r) of a star varies with distance r from the centre of the star.
Assuming that the density of a spherical star of radius R is given by p(r) :po(l— r3/2R3) where pg is a
constant, use Equation 16

R
M = 4T[Ir2p(r)dr (Egn 16)
0

to calculate the mass of the star. O
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4.2 Centreof mass

If we have a set of particles of masses my; distributed at positions x; along the x-axis, the position x. of the
centre of mass of this set of particlesis given by

mei
= Zm

Suppose for example that we have three small spheres of lead of mass 0.1 kg, 0.15kg and 0.2kg, attached to a
thin rod, made of aluminium, at distances 5cm, 10cm and 75cm, respectively, from one end of the rod.
The centre of mass is the point about which the rod will balance, Q) and according to Equation 17 this point
will be approximately
5x0.1+10%x0.15+ 75x 0.2
0.1+0.15+0.2

from one end. We are ignoring the mass of the aluminium rod in this calculation since it is presumed to be small
in comparison to the other masses, [ |

Xe (17)

cm = 37.78cm

FLAP M5.4 Applications of integration e 0 ‘ .
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If we remove the lead weights then we can no longer ignore the mass of the rod, in which case we are dealing
with a mass distributed uniformly instead of a number of discrete masses. In the case of a uniform rod Q made
of aluminium say, it is clear that it will balance about its centre point, but generally we may need to use
integration to find the position of a centre of mass.

Suppose, for example, that we want to find the centre of mass of the non- | o ‘
uniform rod shown in Figure 18, of length L, cross-sectional area A and  ~_ >

density p(x) (which varies along the length of the rod). We divide the rod Ax
into slices of thickness Ax, and now we may treat it as a number of discrete L
masses and apply Equation 17 ~X
_z mX; Figure18 A rod of varying density.
Xe = - (Egn 17)

>m

to obtain an approximate expression for X.
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The mass of the dlice between x and x + Ax is approximately p(x) AAX; and now we multiply the mass of this
slice by its x-coordinate, sum over all slices, and divide this sum by the sum of the masses of the dlices:

X = 2 xp(x) AAx
Zp(x) AAX

As Ax tends to zero, thisratio of sums becomes aratio of integrals, and we obtain an exact value:

A} X p(x) dx
0

%o = (189

AJL' P(x) dx
0

Theintegral in the denominator here is (from Equation 14) equal to the mass M of the rod; so an aternative way
to write Equation 18ais

_AL
=4 J; Xp(x) dx (18b)
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L
Apr(x) dx
X = ———— (182a)

Aj’ P(x) dx
0

Use Equation 18ato find the position of the centre of mass of a rod with uniform cross section and of length L,
whose density p(x) at a point a distance x from one end is given by p(x) = C(x2 + L2), where C is a constant.
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4.3 Moment of inertia

When you try to push a heavy object, the difficulty increases with the object’s mass. On the other hand, if you
try to rotate an object about an axis, Ll the difficulty increases with a quantity known as its moment of inertia
about that axis. You may have seen pictures of someone having difficulty opening the massive doors of a bank
vault; thisis not usually because there is resistance in the hinges, but because the doors have a large moment of
inertia about the axis of the hinges (and once you get the door started it is just as difficult to stop it). The mass of
an object is simply one of itsintrinsic properties; but while the moment of inertiais related to an object’s mass,
it also depends crucially on the choice of axis. The moment of inertia of a telegraph pole about the axis of
circular symmetry of the poleisrelatively small, but its moment of inertia about an axis through one end of the
pole, and perpendicular to the pole, is quite considerable.

The moment of inertia | of aset of point masses m; about a given axisis defined as
N
=3 mr;? (19
i=1

where r; is the perpendicular distance of mass m; from the axisand N is the total number of masses.

Some objects are designed so as to have very large moments of inertia. For example a flywheel is constructed to
be as massive and with as large a diameter as is convenient, with most of its mass as far from the axis as
possible. We will see why such adesign is sensible shortly.

FLAP M5.4 Applications of integration e 0 ‘ .
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0 Two equal point masses of magnitude 5kg are fastened to the ends of a ‘light’ metre rule. What is the
approximate moment of inertia about an axis perpendicular to the rule (a) through its centre (b) through one end?

Finding the moment of inertia of a number of point masses is relatively easy. When the mass is distributed
throughout an object we generally need to employ integration, but not in the following case.

0 A flywheel is designed so that most of its mass M is distributed around the rim of the wheel, of radius R say.
If you are designing a flywheel to have the greatest possible moment of inertia, L isit better to double the mass

and keep the radius fixed or to double the radius and keep the mass fixed?

The following example is based on asimilar idea.
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Example6  Find the moment of inertia of athin-walled hollow cylinder of
radius R and mass M about its axis of circular symmetry (see Figure 20).

Solution We divide the cylinder up into thin vertical slices each of mass Am.

All points on such a dlice have perpendicular distance r from the axis so, from
Equation 19,

N
| = Zmriz (Eqn 19)
i=1

the moment of inertia | = z (AM)R2. Since R? is a congtant, it can be taken
outside the summation sign, so that | = R? z Am. But Z Amissimply equal
to the total mass M of the cylinder, so

The moment of inertia of a thin hollow cylinder about the axis of the
cylinder

| = MR2 (20)

Note that this result does not depend on the height of the cylinder. [0

axis of circular
symmetry

R
N

slice of
massAm

Figure20 See Example®6.
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The previous cases were easy because the object could be divided into a number of small masses which were
(approximately) the same distance from the axis; when the distance from the axis varies we will need to employ
amore sophisticated summation process, which will lead to adefinite integral. Here are some examples:

Thin rods
axis

Example7  Find the moment of inertia of athin uniform rod (i.e. of P
constant cross-sectional area and uniform density), about an axis PQ

perpendicular to the rod and passing through one end, in terms of its mass :
M and its length L (see Figure 21). ) A o -

Solution We divide the rod up into small slices of length Ax . (Note that AX
we have chosen the axis to be situated at the end x = 0 of the rod, which will
make it easy to write down the distance of each slice from the axis.) Asthe Q

rod is of uniform density and cross section, we can say that the mass per

unit length of therod is M/L, so that each thin slice has amass Figure21 SeeExample7.

AM = MAX
L

Sincethe slice is presumed to be very thin, the perpendicular distance of all points within the dice from the axis
is approximately x. |
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We can now set up the integral we want to evaluate. The moment of inertia of each slice is approximately

M
— AX NG
L H—J

—_——
massof distance from
slice axis squared

so the total moment of inertia of the rod is approximately z %szx.

As Ax tends to zero, this sum becomes an integral giving the moment of inertial of the rod about the axis PQ:

L
I :MJ’xzdx
LO

Evaluating this integral, we find

Moment of inertia of a rod about an axis through one end

M ed 1,2
L@% MLD 0
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Question T10

Find the moment of inertia of athin uniform rod, of mass M and length L, about an axis perpendicular to the rod
and passing through the centre of the rod.
(Hint: Take the origin of coordinatesto be at the centre of therod.) O

This approach can easily be adapted to the case where the density of the P
thin rod is not constant, but varies along its length. Suppose that the rod in
Example 7 has density p(xX) at a distance x from one end, and constant
cross-sectional area A. JAmmmmmm oo EUGERRRREEEE -

0O What is the moment of inertia of athin slice of the rod of thickness Ax
about the axis PQ shown in Figure 217
°

Figure21l SeeExample?.

O

Now write down an integral giving the total moment of inertia of the rod about the axis PQ.
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Question T11

A thin rod of length 10 cm and constant cross-sectional area 1.0mm? has density p(x) = B + Cx, where
B = 250kgm=3 and C = 330kgm™. Calculate its moment of inertia about an axis perpendicular to the rod, and
passing through oneend. [

FLAP M5.4 Applications of integration e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Solid cylinders and discs Ar
Equation 20

| = MR2 (Egn 20) '

o
)

gives us the moment of inertia of a hollow cylinder about its axis of circular
symmetry. We can use this result to calculate the moment of inertia of a solid
cylinder of uniform density about its axis of circular symmetry (see Figure 22).
We simply divide the cylinder into a large number of concentric thin-walled

hollow cylinders, L] use Equation 20 to write down the moment of inertia of a

typical one of these, add up all such moments of inertia, and so arrive at an
integral.

We first need to calculate the mass of atypical cylindrical shell of thickness Ar,
and, since we are assuming that the density of the cylinder is uniform, this just |~
means finding the volume of the shell. Its volume is approximately equal to the
product of its circumference (2rtr), its thickness (Ar) and its height (h); so if the
cylinder has density p,

G
\

Figure22 A solid cylinder of radius R and height h. axis of circular
symmetry
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constant
height density

AM =the mass of atypical cylindrical shell = 21T h Ar p
circumference thickness

Itsradiusisr; so (replacingM by AM and R by r in Equation 20)

| = MR2 (Egn 20)
we find that the moment of inertia of this hollow cylinder is

2mrhp Ar xr2 =2mr3ph Ar

The total moment of inertia of the cylinder is therefore approximately given by z 21r3phAr .
As Ar tends to zero, the sum becomes an integral, giving the moment of inertial exactly:

R
I :2T[phJ'r3dr
0

We evaluate the integral, to find
| = 2mph[4 4] = § mohR? (22)
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It is usually more convenient to have an expression for | in terms of the mass M of the cylinder, rather than the
density p. We know that the volume of the cylinder is Ti(R?h so p = M/mR2h. Substituting for p in Equation 22

| = 2mph[4 r4] = } mohR? (Eqn 22)

gives

| =1mhR* xgm':'zhg:%MRz
[ —

The moment of inertia of a uniform solid cylinder about its axis
| =1 MR? (23)

Again, this result does not depend on the height of the cylinder (as in Equation 20),
| = MR2 (Egn 20)

and because of this, Equation 23 applies equally well to athin disc asto along cylinder.
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If the density p(r) of the cylinder varies with distance r from its axis, the moment of inertia about the axis can

also easily be written down as adefinite integral. It is:

R
| = 2T[hJ'r3p(r)dr
0

where R and h are the radius and height of the cylinder.

Question T12
Derive Equation 24. [

(24)

FLAP M54 Applications of integration
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

© ©

& @



a solid disc D

Solids of revolution
Since the height of the cylinder does not appear in Equation 23,

| =1 MR? (Eqn 23)

that formula applies equally well to athin disc asto along cylinder. This
means that we may use it to find the moment of inertia, about the x-axis,
of any solid of revolution. We simply approximate the solid of revolution
by a set of thin discs (as we did to find its volume), cal culate the moment
of inertia of one such disc using Equation 23, and, in the usual way,
arrive a an integral.

O Figure 12 shows an arbitrary solid of revolution, produced by
rotating the area under the graph y = f(x) over the interval a < x < b about
the x-axis. If the solid has uniform density p, find an expression for the ) _ )
moment of inertia of the disc D about the x-axis. Figure12 Solid of revolution obtained
by rotating the area under the graph of
s f(X) about the x-axis.
O

Write down an integral giving the moment of inertial about the x-axis of the solid of revolution in Figure 12.
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Example 8
diameter. (Give the answer in terms of M and R))

Find the moment of inertia of a uniform sphere of radius R, density p and mass M about a

Solution  We recall first that a sphere of radius R isthe solid of revolution obtained by rotating the semicircle

y = +/R2 = x2 about the x-axis (compare Example 4, and Figure 13).

Then the x-axis is adiameter of the sphere; so we may use Equation 25,

b
:%Trpj’[f(x)]“dx (Egn 25)

with f(x) =+ R? = x?, and limits of integration —Rand R.
This gives
R
=1imp J’(Rz—x) dx:%rqu(R4 R2x2+x)dx
Fhr
— 1ol RAx = 2 R2E + 155]° = 8 1oR®
ST R X=gRXT+5X7| =357

/\ «/(rz - X2)

=

Figure13 SeeExample4.

r

X
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volume 4§ TR®

To express the answer in terms of R and M, we write p = mass M

0 0
sothat | = 3Ex1—85T|R5:%MR2. 0

Question T13

Find the moment of inertia about the axis of symmetry of a cone of radius r, uniform density p, height h and

mass M. Give the answer in terms of M. (Hint: Y ou may like to refer back to the calculation of the volume of a
conein Subsection 3.1.) 0O
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4.4 Function averages
In everyday language the word ‘average’ is a much abused term. Of course, we know roughly what we mean by
saying ‘an average man’ or ‘an average day for the time of year’. We mean that the ‘man’ or ‘day’ isin some
way a good representative of all men or days. In this subsection and the next we will discuss two forms of
‘average’ that are quite distinct, the point being that our choice of meaning for the word ‘average’ depends on
the context. Our first illustration concerns average velocity.
Y ou are probably familiar with the definition of average velocity between two timest; and t, as

total displacement betweent =t andt =t,

total time (t, — t;)

In the case of an object travelling along the x-axis, we saw in Subsection 2.1 that if we know the velocity v,(t) as

t;

a function of time, we can find the total displacement between two times as an integral, fvx(t)dt.
f

So, if we introduce the notation v, for average velocity, then

tz
V() dt
A

V =
> -1
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O The velocity v,(t) of an object at time t is given by v,(t) = at2. What is the average value of the velocity

fromt=0tot=T"7

We can use the same method to calculate average P(t)
values of other functions. For example, consider the
electrical power used by a domestic appliance. Po

The power P supplied to a particular appliance by the
mains in the United Kingdom is designed so that it
varies with time according to the formula

P(t) = Py sin? (wt)

0 — TMw—> t
where Py is a constant depending on the power rating

of the particular appliance. Figure23 Sketch of P(t) = Py sin?(wt).

A sketch of P against t is shown in Figure 23. The power rating quoted for any domestic appliance is actually
defined to be the average power consumed. We can find an expression for this average power P,, in terms of Py
by calculating the average over just one cycle, since the symmetry of the graph means that the average over
many cyclesisthe same as the average over one cycle.
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So we will calculate the average power consumed betweent = 0 and t = TYw, which is given by the integral of

P(t) between these times, divided by the time interval:
W w
I P(t) dt o
—_0

[3) :
Py = 2>——=— [Pysin?(wt)dt
av TE/(A)—O T[-!; 0 ( )

To evaluate the integral, we use the trigonometric identity
sin?(wt) = 4[1- cos(2wt)], so that

WP, ™Y WP, 1 . o
P, = 1-cos(2wt)|dt = - —sin(2wt
¥oonm ‘!;[ a )] 21 2w ( )%

and sincesin 2rt=sin0 =0, wefinally find
Pav = w_PO xE = &
2n w2
So the average power is half the peak power Py.
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So far in this subsection we have taken the integration variable to be time t, so
that the averages in question were time averages. However, the notion of the
average value of a function can be defined quite generally: for any function

f(x), the average valuef,, over theinterval a < x <bisdefined as

b
J’ f(x)dx
fa = abT (26)
Question T14

Figure 24 shows the cross section of a water surface between two glass plates.
The height h of the water surface at position x is given by h(x) = hy + bx2
for —a < x < a. Find the average height of the surface (i.e. the average value of
h(x) over theinterval -a<x<a). [0 .
JP

Figure24 SeeQuestion T14.
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45 Mean value of adistribution

The word ‘average’ is often used in a completely different sense to the one introduced in Subsection 4.4.
For example, if you sat three exams and scored 81% on the first, 52% on the second and 74% on the third, you

. % + 52% + 749 .
might say that your ‘average score’ on all three was 81% 523/0 % _ 69%. But it would be more correct to

call this your mean score. Generally speaking, the mean of N numbers is defined as the sum of the numbers,
dividedby N. L[]

There are several different ways of writing an expression for amean value. To illustrate the point, let us suppose
that we have several, say N, particles moving with different constant speeds and we want to know the mean
value (v) of their speeds. We measure the speed of each one, and find that N; of them have speed v;, N, have
speed v,, and so on up to N, having speed v,, (so that N; + N, + ... + N, = N). Instead of adding up the measured
values one by one to obtain the mean value of all our measurements, we can multiply each of the n values
obtained by the number of times it occurs, add the results, and divide by N. What we obtain is the mean value
of thedistribution:

(v)= % i NV 27)
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The fraction f; of times that the result v; occursissimply N;/N so we can rewrite Equation 27

(v)= % il Nivi (Egn 27)
intheform (v)= i fivi (28)
i=1

n
(Noticethat it followsthat  f; = 1becauseN; + Np+... + N, =N.)
=1

O Six particles have speeds 5ms™, 5ms?, 5ms?, 10ms™?, 10ms?® and 20ms™. Use Equation 28 to
calculate the value of (V).

If we are interested, not in the mean speed, but in the mean value of some other physical quantity x, then thisis
given by an equation just like Equation 28:

(X)=3 fix (29)
i=1

where f; is the fraction of particles possessing thevalue x; of x,andi =1,2,3, ... n.
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O The speeds of agroup of cars moving along a motorway are measured to the nearest 5ms1. 10% of the cars
have speed 30 ms™1, 40% have speed 35m s, 30% have speed 40m s and 20% have speed 45msL. What is
the mean speed of the cars?

Now suppose we are interested in finding the mean speed of molecules in agas There are so many molecules
that Equation 28, asit stands,

(v) = i fivi (Eqgn 28)
Ei

is not going to be very useful to us; only avery small fraction of molecules will have any given speed, and we
would have a very large number of speeds to sum over. Instead, what we do is divide up the range of all speeds
available to the molecules into small intervals Av, and concentrate, not on the fraction f; of molecules with a
particular speed v; but on the fraction of molecules with speeds lying within the small interval between v and
v + Av. We expect this fraction to be proportional to the size Av of the interval, and we write it asf(v) Av.
The function f(v) is known as a speed distribution function: it tells us what fraction of molecules have speed
closeto thevauev.
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We can then write Equation 28

n
(V)=% fiv (Eqn 28)
1=1
as (v)=3v f(v)av
—
fraction with
between
v and v+Av

and, as we have done so often before in this module, we allow Av to tend to zero, so that the sum becomes an

integral, and since there will be an upper bound, V say, to the speed of the molecules, we can write
\%

(v) = [vf(v)dv 30) LI
0

An integral of this sort is far easier to perform than a sum over many different speeds, particularly when we
know the specific form for the function f(v).

Remember that f(v) Av represents the fraction of molecules with speeds lying betweenv and v + Av, and all

these fractions must sum to 1, in other words
\%

f(v)dv=1
]
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The following function provides an appropriate mathematical model for  f(v) A
moleculesin agas, and is known asthe
Maxwell-Boltzmann speed distribution:

/2
om
f(v)=4m=——= V2 exp(—nmv2/2KT 31 L
(v) =4 = V2 exp(-v2/2KT) ey L
where mis the mass of one of the molecules, T is the temperature of the
gas, and k is Baltzmann's constant. v
This speed distribution is sketched in Figure 25.
Question T15 Figure25 The Maxwell-Boltzmann

speed distribution.

Use the MaxwelI-Boltzmann speed distribution in Equation 31 to calculate the mean speed (v) of molecules of
mass min agas at temperature T. (Hint: Y ou may find the substitution u = mv2/2KT helpful.) O
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In general, adistribution is a function which tells us what fraction of particles have values of a certain physica
quantity lying in a particular small range: if we call the physical quantity X, then the distribution f(x) is defined
so that

_ Sraction of particles with values of X
T(x) &x = En theinterval between x and x + Ax (32)

The mean value (x) of X isthen given by Equation 29
n
(x)=3 fix (Eqgn 29)
i=1

to be z xf (x) Ax, and, on allowing Ax to tend to zero, the sum becomes an integral:

b
(x) =Ixf(x) dx (33)

(where the limits of integration depend on the range of valuesthat it is possible for x to take).
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Example9
The fraction of electrons in ametal near absolute zero with energies between E and E + AE is given by

23;52 AE for 0< E < Er andiszero for E > Ei, where E¢ is a constant (known as the Fermi energy).
% 3JE
Verify that J’ =L dE =1 and find the mean energy of the electrons, in terms of Eg.

Solution  The information given tells us about the energy distribution f(E) of the electrons; from Equation 32,

_ Sraction of particles with values of X
T(x) &x = En theinterval between x and x + Ax (Ean 32)

we see that

HE) = 3VE

2E'§/2
forO<sE<Erandf(E) =0for E> E¢
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Er
3VE 3 REO_,
I2E3/2 2E3’2 I*/—dE 2E,§’2 B_%

then substituting for f(E) into Equation 33
b

First

(x) =Ixf(x) dx (Eqn 33)
a
gives
Er q3/2 Er 5/2
3E 3 3 [RESY2(f° _ 3E
dE = E¥2dE = == 0
I2E3’2 2E¥? { 2e?’H 5 H ~ 5
Question T16

The fraction of electrons in a metal near absolute zero with magnitude of momentum between p and p +Ap

2
is given by 3pp Ap for 0 < p < pg, and is zero for p > pr, where pe is a constant. Verify that I 3p dp 1and
F

find the mean magnitude of momentum ( p) of the electrons, intermsof p.. O
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Mean values also arise in guantum mechanics. Consider the case of a particle that can move along the x-axis.
Unlike classical mechanics, quantum mechanics does not alow us to calculate the position x(t) of this particle as
afunction of time. Instead, all it can tell usis the probability P(X)Ax of finding a particle on a small interval of
the x-axis, between x and x + Ax, at a given time. The function P(x) is known as a probability density.
b
Such functions must also have the property that I P(x) dx =1, since the probabilities must sumto 1.
a

If we know the probability density, we can use it to find the mean value (x) of the position of the particle,

which isdefined as
b
(x) = I xP(x) dx (34)

where the limits of integration a and b depend on the region of the x-axis over which the particle is free to move.

FLAP M5.4 Applications of integration e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Example 10 Consider aparticle confined to move parallél to the x-axis between two ‘infinitely high walls' at
x=0and x = L. (Thus, however much kinetic energy the particle has, it can never escape from thisregion.)
When the energy of this particle has the lowest value that is allowed by guantum mechanics, its probability

densityis  P(x) = %sinzg%ngor 0<x< L and P(x) = 0for x| > L. First verify that this function is indeed

suitable as a probability density, and then find the mean value of the particle’ s position.

Solution
L
. 2
First we evaluate the integral J’P(x) dx = FI[] 3 sin?
0
0
0 < x < L thelimits of integration are 0 and L. Using the trigonometric substitution sin?y = %(1— cosZy) with
y replaced by 1x/L, we obtain
L

X

0oL Ddx note that, since the particle is confined to the region

L
2[1 e, _ 10 L memxrd
P(x)dx=—H= cos— X= — X - —8Sn—— =1
J;() Lﬁ[jzé 0L LH "2n 0L O
0
which means that the function P(X) is suitable as a probability density. o
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We now substitute the given probability density into Equation 34,

b
(x) = IxP(x) dx (Eqn 34)

O[]

i Ddx. To evaluate the integral, we again use the trigonometric identity

L
to obtain (x) = EJ’xsin2
LO

sin?y = (1- cos2y), which gives

L L
1 1

-1 Px 1 1 (2T
(x) = Lg] % cos [de L5 3 [J[jxcosD ] X (35)
0

0

We evaluate the remaining integral using integration by parts.
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Wefind

L L
20 erx L [ . RO DZT[X[IZ'F ,oLfo el

#xcos dx &Tsnm 1 [H) 2H[Jljsm — dx— [H) o) g:os [H) (36)

0

0
Since sin(2m) = sin0 = 0 and cos(2m) = cosO0 = 1, the integral on the left-hand side of Equation 36 isin fact

equal to zero. So, returning to Equation 35,
2 Ddx (Egn 35)

L
-1 e, 10,0 1 X
(X) Lf]lj é cos [%dx ki L[J[jxcosD 0
0 0
wefind

=tBxB-2 o

|—||—\

© © 2 B 4

FLAP M54 Applications of integration
THE OPEN UNIVERSITY S570 V1.1

COPYRIGHT © 1998



Question T17

When an electron in a hydrogen atom is in its state of lowest energy, the probability of finding it at a distance
between r and r + Ar from the nucleus is (4/a8)r2 exp(-2r/ay) Ar, where ag is a constant known as the
Bohr radius; r may take any value between 0 and . Verify that the function P(r) = (4/a8)r? exp(-2r/ag)

is suitable as a probability density, then use Equation 34
b
(x)= IXP(X) dx (Egn 34)
a

to find the mean value (r) of r. [
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5 Closingitems

5.1 Module summary
1 The area under the graph of f(x) between x = a and x = b is defined as being equal to the definite integra

b
J’ f(x) dx. This definition has the consequence that in any region where f(x) is always negative, so is the
a

area under its graph. Sometimes we may be interested in the total size of the area enclosed by the graph of
b

f(X) and the x-axis, between x = a and x = b (where a < b); thisis given by the integral J’l f(x)]dx.
a

2 If the graphs of two functions f(x) and g(x) intersect at the points x = a and x = b (where a < b), then the
area between the graphs is defined as
b
1T = 9(x)|dx
a
This includes the case where other points of intersection lie between x =a and x = b.
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A solid of revolution is a solid which can be obtained by rotating the area under a graph (or part of a graph)
about some axis. If the solid is obtained by rotating the area under the graph of f(x) betweenx =aand x = b
about the x-axis, then its volume (known as a volume of revolution) is given by the definite integral

b
TrJ' [ f (x)]2 dx, and the area of its surface (known as a surface of revolution) is given by the definite integral
a

b
2 £ (yL+] f'(x)]° dx (Eqn 13)

Integration may be used to find the mass M of a solid whose density p varies with position. In the case of a

rod of constant cross-sectional area A and length L, lying along the x-axis between 0 and L,
L

M= AJ’ p(x)dx. For adisc of height h and radius R, whose density po(r) depends only on distance r from
0

R
the axis, M = 2T1hJ'rp(r) dr. For a sphere of radius R, whose density p(r) depends only on distancer from
0

R
the centre, M = 4nJ’r2p(r)dr.
0
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The position of the centre of mass of a solid object may also be found by integration; for example, for arod

of constant cross-sectional area A and length L, lying along the x-axis between 0 and L, the x-coordinate of
L

the centre of massis x; = ﬁj’xp(x) dx.
0

Moments of inertia of thin rods, solid cylinders, and solids of revolution can also be written as definite
integrals.
Theintegral giving the moment of inertia | about thex-axis of the solid of revolution is

| = %npji[ f(x)]* dx (Egn 25)
The average \jal ue of a function f(x) over theinterval a < x<b isdefined as
ji f(x) dx
fa = abT (Egn 26)
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A distribution is a function specifying the fraction of particles which have values of a certain physical

quantity lying in a particular small range between x and x + Ax; the distribution f(x) is defined so that this
b

fraction is equal to f(x) Ax where J’ f(x)dx =1 and the mean of the distribution, (x), is given by a definite
a

b
integral: (x) = Ixf (x) dx, where a and b are the largest and smallest allowed values of x, respectively.
a

FLAP M5.4 Applications of integration e 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



5.2 Achievements

Having completed this module, you should be able to:
Al Definethetermsthat are emboldened and flagged in the margins of the module.

A2 Interpret the definite integral of a given function between given limits in terms of the area under the graph
of that function between those limits; and (paying due attention to signs) calculate the magnitude of the
total area enclosed by the graph of the function and the horizontal axis.

A3 Calculate the area enclosed between two intersecting graphs.

A4  Write down definite integrals giving the volume and surface area of a solid of revolution.

A5 Write down definite integrals giving the mass of arod, disc or sphere whose density is not uniform.
A6 Expressthe position of the centre of mass of a solid as adefinite integral.

A7 Find the moments of inertia of thin rods, cylinders, and solids of revolution as definite integrals.
A8 Calculate the average vaue of a given function over agiven interval.

A9 Find the mean value of adistribution.

A10 Usetheidea of adefinite integral asthe limit of a sum in order to set up an integral that gives the value of
some required physical quantity.
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Study comment You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.
Question E1

(A2) Calculate the area under the graph of f(x) = x2 — 8x + 12 between x = 0 and x = 6. Calculate also the sum
of the magnitudes of the areas enclosed by the graph and the x-axis between x = 0 and X = 6.
(You should start by sketching the graph.)

Question E2
(A3) Find the area between the graphs of f(x) =x2 — 2 and g(X) = 6 — X2.
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Question E3
(A4) Find the volume and surface area of the solid of revolution obtained by rotating the area under the graph
of f(x)=2+/x between x = 2 and x = 4 about the x-axis.

Question E4

(A5and A7) Thering shown in Figure 26 hasinner radius 2R/3, outer radius R
and height h. Its density at any point at a perpendicular distance r from the axis

PQis p(r)— po =y , Where p, is a constant. Find expressions for

(@) itsmass M (| n terms of pg, Rand h), and
(b) its moment of inertia about the axis PQ (in terms of M and R).

Figure26 See Question E4.
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Question E5

(A6 and A10) The cone shown in Figure 16 is the solid of revolution
obtained by rotating the line y = rx/h about the x-axis between x = 0 and
x = h. It isof uniform density. Find the position of its centre of mass.

Figure16 Relation between dant
height I, height h and radiusr of a
cone.
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Question E6

(A8) Thetemperature T in arod of length L is given by the equation T(x) = TLLXexp(—xz/ L2), where x isthe
distance from one end of the rod and Ty is a constant. What is the average temperature of the rod?

Question E7

(A9) The fraction of molecules in a gas with energies between E and E + AE is W\,’Ee—aw AE,

where T is the temperature of the gas, k is Boltzmann's constant and E may take any positive value.

Given that the ; I JEe E/KT dE =1, find the mean energy of a molecule.
T(KT)¥2 )

(Hint: Use integration by parts.)

FLAP M5.4 Applications of integration e 0 ‘ .

COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V11



Study comment  Thisisthe fina Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questionsif you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.

- ~
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