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1 Opening items

1.1 Module introduction
You probably know that the volume of a sphere of radius r is 4

3 πr3 , but do you know how to prove that this is
the case? One way to proceed is to divide the sphere into a set of thin discs, to find an approximate expression
for the volume of each disc, then add all the approximations, and so estimate the volume of the sphere. As we
allow the discs to get thinner and thinner, the accuracy of the approximation improves and approaches a limiting
value1—1the limit of a sum1—1which is usually known as a definite integral.

This module discusses several physical and geometrical applications of integration, all based on the fact that a
definite integral is the limit of an appropriate sum. This idea is probably already familiar to you, since you may
well have been introduced to definite integrals in the context of calculating areas under graphs, where such an
area is approximated by a set of thin rectangles. However, the module starts with a review of the relation
between a definite integral and an area, and discusses cases where the area actually corresponds to some physical
quantity. It goes on to show how definite integrals can be used to find more complicated areas   those enclosed
by two intersecting graphs. Then it discusses some examples of solids (solids of revolution) whose volumes and
surface areas can be written as definite integrals. (Here, you will find a derivation of the formula for the volume
of a sphere.) Finally, it shows you how to express several other quantities   masses of objects whose density is
not constant, centres of mass and moments of inertia of solid objects, average values   as definite integrals.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Find the area of the region bounded by the graph of the function y = x2 + 2 and the line y = 5 − 2x.

Question F2

Given that the integral

 

1 + u2

0

1

∫ du = 1.14779 , find, to two decimal places, the area of the surface of revolution

generated by the graph of y = sin1x as it is rotated about the x-axis over the interval 0 ≤ x ≤ π/2.
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Question F3

A circular disc has radius a, mass M and thickness t, and its density at any point is proportional to the distance of
that point from the axis of the disc (i.e. the line perpendicular to the plane of the disc and through its centre).
Find the moment of inertia of the disc about its axis. Express your answer in terms of M and a.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?
Study comment In order to study this module, you will need to be familiar with the following terms: centre of mass,
definite integral, improper integral, integrand, integration by parts, integration by substitution, limits of integration,
modulus, moment of inertia, range of integration. If you are uncertain of any of these terms, you can review them now by
referring to the Glossary which will indicate where in FLAP they are developed. In addition, you will need to be familiar
with various trigonometric identities, and you should know how to find standard integrals (such as the integrals of xn, or eax),
and to evaluate definite integrals by the method of substitution, or by integration by parts. You will also need to be able to
sketch graphs of straight lines, quadratic and cubic polynomials, reciprocal functions, circles and ellipses; and know how to
find the points of intersection of two graphs. The following Ready to study questions will allow you to establish whether you
need to review some of these topics before embarking on this module.
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Question R1

Evaluate the definite integrals

(a) 3x5 − 16 x3( )
2

4

∫ dx ;4(b) 4 − x
1

2

∫ dx ;4(c) 
1

a2 − x2
a / 2

a

∫ dx .

Question R2

Find the integral xe−ax

0

R

∫ dx , where a and R are positive constants. Hence find the improper integral xe−ax

0

∞

∫ dx .

Question R3
Sketch the graphs of (a) y = x3 − 4x, (b) (x − 3)2 + (y + 1)2 = 9.
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Question R4

Find the points of intersection of the line y = x − 3 with the graph of y = x2 − 5x + 4, and sketch these two
functions on the same axes.

Question R5

Two small objects, of masses 0.11kg and 0.21kg, are 11m apart. Find (a) the position of their centre of mass;
(b) their moment of inertia about an axis which passes through their centre of mass and is perpendicular to the
line joining them.

Question R6

In answering this question, you should make use only of trigonometric identities; you should not use your
calculator.

(a) If cosθ = 2
3 , what are the possible values of sin1θ?

(b) If sinθ = 1
3 , what is the value of cos1(2θ)?



FLAP M5.4 Applications of integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

a b x

f(x)

A

Figure 13‘Area under the graph’ of

f 0(x) between x = a and x = b.

2 Areas
2.1 Area under a graph

You already know that a definite integral f (x)
a

b

∫ dx   ☞ can be related to an

‘area under the graph’ of the function f0(x). If f0(x) is a function that is

positive over the interval a ≤ x ≤ b, then the integral f (x)
a

b

∫ dx  is equal to

the magnitude of the area enclosed by the graph of the function f0(x), the
vertical lines x  = a  and x  = b , and the x-axis (see Figure 1).
The area of this region is known as the ‘area under the graph’ of f0(x) over
the interval a ≤ x ≤ b. It is worth recalling here the argument that relates the

definite integral f (x)
a

b

∫ dx  to the area A shown in Figure 1, since we shall be

using the same line of reasoning in many different cases throughout this
module.
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✦ Find the area under the graph of f0(x) = x3 from x = 1 to x = 3. 
(Note: In this subsection we assume that both x and f0(x) are dimensionless quantities.)

∆xi

a x

f(x)

b

A

n strips

xi

Figure 23An approximation to the

area under the graph of f0(x).

The idea is that we can estimate a value for A by dividing the area up into a
large number of thin rectangles. In Figure 2, the area under the graph of f0(x)
between x1 = a and xn+1 = b has been divided into n strips (although we only
show six of them) which are then approximated by rectangles: the first is of
height f0(x1) and width ∆x1, the second is of height f0(x2) and width ∆x2, and

so on. The area of the ith rectangle, covering the interval [xi0, x 0i + ∆xi0] is

f0(xi)0∆xi and the sum of the areas of all these rectangles provides a good
approximation to A, in other words,

A ≈ f (xi )
i=1

n

∑ ∆xi ☞ (1)

As we allow the width of the rectangles to become smaller and smaller
(while, as a consequence, n gets larger) the sum on the right-hand side of
Equation 1 becomes an ever better approximation to A, and in the limit, the
sum is actually equal to A.
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This limit of a sum is defined to be the definite integral f (x)
a

b

∫ dx , so that we have

A = f (x)
a

b

∫ dx (2)

The ‘area under a graph’ and the ‘magnitude of the area bounded by a graph’
In the above discussion we assumed that the function f0(x) is positive between a and b, and we will need to make
a minor adjustment if f0(x) is negative or changes sign in the interval. In FLAP, we use the following definition:

The area under the graph of a function f0(x) between x  = a and x = b is equal to the definite integral

f (x)
a

b

∫ dx .

This has the consequence that in a region where f0(x) is always negative, the area under the graph of f0(x) is a
negative quantity. We might, however, be interested instead in calculating the magnitude of the area enclosed by
the graph of f0(x), the vertical lines x = a and x = b, and the x-axis. Such a magnitude is, by definition, always
positive.
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You will find that some authors define ‘area under a graph’ in such a way that it always gives the magnitude of
this area. However, we shall use the definition given above, and we will make it very clear if we want you to
calculate the magnitude of an enclosed area.

The essential point for you to note is this: when calculating ‘the area under a graph’, the areas of the regions
below the x-axis must be subtracted from the areas of the regions above the x-axis. On the other hand, when you
are asked to find ‘the magnitude of the area bounded by the graph’ you must ensure that all the contributions to
the area, from parts above or below the x-axis, are positive. This means that you have to consider separately the
regions in which f0(x) is positive and those in which it is negative, as in the following example.

Example 1

Find the sum of the magnitudes of the areas enclosed by the graph of f0(x) = x2 − 3x + 2 and the x-axis between
x = 0 and x = 2.

Solution

As it is not immediately obvious whether f0(x) = x2 − 3x + 2 changes sign between x = 0 and x = 2, we will start
by sketching the function. This quadratic function factorizes: x12 − 3x + 2 = (x − 1)(x − 2).

So the graph crosses the x-axis at x = 1 and at x = 2. When x = 0, f0(x) = 2.
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x

f(x)

1 2

A1

A2

2

Figure 33The function

f 0(x) = x2 − 3x + 2.

This gives us enough information to produce the sketch shown in Figure 3.
We see that the region of interest is divided into two parts: one lying above
the x-axis (labelled A1 in Figure 3) and another (A2) lying below.
First we integrate f0(x) between the limits x = 0 and x = 1 to find an integral
I1 corresponding to the region A1

I1 = x2 − 3x + 2( )
0

1

∫ dx  = 1
3 x3 − 3

2 x2 + 2x[ ]0

1 = 1
3 − 3

2 + 2 = 0.833

Now we integrate f0(x) between x = 1 and x = 2 and find an integral
corresponding to the region A2

I2 = x2 − 3x + 2( )
1

2

∫ dx = 1
3 x3 − 3

2 x2 + 2x[ ]1
2

111111= 1
3 8 − 1( ) − 3

2 4 − 1( ) + 2 2 − 1( ) = −0.167

i.e. a negative answer, because f0(x) is always negative in this region.
The magnitude of the area required is therefore

I1 + |1I21| = 0.833 + |1−0.1671| = 0.833 + 0.167 = 1.000 ☞4❏

In a question of this kind it is absolutely essential to be able to determine where the function changes sign; it will
also help if you are able to sketch the graph of the function.
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Question T1

Find the sum of the magnitudes of the areas enclosed by the graph of f0(x) = ex − 2, the x-axis, and the lines x = 0
and x = loge13. (You should start by sketching the graph.)4❏

We can summarize the previous discussion very neatly in terms of the modulus of f0(x):

The magnitude of the area bounded by the graph of y = f0(x) between the points x = a and x = b is given by

the integral |
a

b

∫ f (x) |dx . ☞

Since |11f0(x)1| = f0(x) when f0(x) is positive, and |1f0(x)1| = − 0f0(x) when f0(x) is negative, the modulus sign takes care of

any changes in sign that f0(x) may undergo in the region of integration. The integral |
a

b

∫ f (x) |dx  is not in general

equal to f (x)
a

b

∫ dx ; the two are only equal if f0(x) ≥ 0 throughout the interval a ≤ x ≤ b.
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Although this description is quite neat, in practice we rarely try to integrate |1f0(x)1| directly, and usually we
consider separately regions where the function is positive, and regions where the function is negative, as in
Question T1.

The physical significance of the definite integral

So far, we have simply interpreted f 0(x) geometrically, as the height of the graph y = f0(x), in which case

|
a

b

∫ f (x) |dx  is indeed just the magnitude of the area bounded by the graph of y = f0(x), measured in whatever scale

units are used on the graph’s axes. However, if f0(x) represents some physical quantity, then the definite integral
will of course have a different physical significance. Here are two examples.
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t/s1 2 3

vx(t)

Figure 43Velocity–time graph for an
object moving along the x-axis.

Velocity–time graphs
Figure 4 shows a graph of the velocity, vx(t) of an object moving along the
x-axis, against time t; note that vx0(t) changes sign twice. If we want to
know the displacement sx of the object from its initial position (at t = 0)
after a given time T has elapsed, we can use the same reasoning that led
from Equation 1 to Equation 2.

A ≈ f (xi )
i=1

n

∑ ∆xi (Eqn 1)

A = f (x)
a

b

∫ dx (Eqn 2)

We divide the time T into many short time intervals, each of duration ∆t. During any one of these time intervals,
vx0(t) is approximately constant, so the corresponding displacement is approximately equal to vx(t)1∆t; then the

total displacement is approximately equal to the sum ∑vx(t)1∆t. In the limit as ∆t tends to zero, we find that the

displacement is given by the integral 
  

vx (t)
0

T

∫ dt , i.e. the area under the graph of vx(t) between t = 0 and t = T.
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If, instead, we want to calculate the distance travelled by the object, we must recall that distance is the
magnitude of displacement. Thus the distance travelled in a short time interval ∆t is equal to

 
|1vx(t)1|∆t and,

reasoning as before, we find that the distance travelled after time T  is given by the integral 
  

|vx (t) |dt
0

T

∫ .

So it is equal to the sum of the magnitudes of the areas enclosed by the graph of vx(t) and the t-axis, between
t = 0 and t = T.

✦ An object is moving along the x-axis so that its velocity at time t is given by vx(t) = v01sin(π0t/T0)1m1s−1, where
v0 = 51m1s−1 and T = 11s. What is its displacement after 21s and what distance does it travel in the first 2 seconds?

Question T2

The graph shown in Figure 4 may be represented by the equation vx = a 0t03 + b 0t2 + c , where a  = 41m1s−4,
b = −131m1s−3, c = 91m1s−1. Calculate (a) the displacement of the object, (b) the distance travelled by the object
between t = 0 and t = 41s.4❏
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Work
Suppose that an object is moving along the x-axis under the influence of a constant force Fx in the x-direction.
The work done by the force in moving the object from x = a to x = b is W = Fxsx where sx is the displacement of
the object, which in this case is b − a.

If the force, Fx(x) say, varies with x, then we can divide the interval a  ≤ x  ≤ b into many much smaller
subintervals, of width ∆x, in each of which Fx(x) is approximately constant. The work done in moving the object
through the small subinterval between x and x + ∆x is approximately Fx(x)1∆x.

The total work done is approximately given by adding all these small amounts of work, so that

total work done W < ∑Fx(x)1∆x

In the limit as ∆x decreases towards zero (and the number of subintervals increases) this approximation to W
becomes increasingly accurate, and

W = F(x)
a

b

∫ dx

It follows that we can interpret W to be the area under the graph of Fx(x) between x = a and x = b.
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Question T3

A positively charged particle is fixed at the origin and a second positive charge moves away from it along the x-
axis. The force acting on the second charge is A x2  where the constant A = 7.3 × 10−26

1N1m2. Calculate the work
done on the charge as it moves from x = 0.11m to x = 1.01m.4❏
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x
x
x

y

a b
+ ∆x

A

y = f(x)

y = g(x)

Figure 53The area enclosed between
two graphs.

2.2 Area between two graphs
Suppose that we want to find the area A enclosed by the graphs of the two
functions f0(x) and g(x) shown in Figure 5. Proceeding as before, we
divide the region up into thin slices, each of thickness ∆x, then
approximate each slice by a thin rectangle. The height of the rectangle
shown in Figure 5 is (1f0(x) − g(x)), and so its area is (1f0(x) − g(x))∆x.
We now sum the areas of all the rectangles, and let ∆x tend to zero, so
that in the limit the sum becomes an integral and we have

A = f (x) − g(x)[ ]
a

b

∫ dx (3)

where a and b are the x-coordinates of the points of intersection of the
two graphs. Notice that f0(x) ≥ g(x) in the interval a ≤ x ≤ b, which ensures
that f0(x) − g(x) is positive, and therefore A is also positive.

✦

Suppose f0(x) = −x2 + 4x − 2 and g(x) = x2 − 4x + 4. The graphs of these functions intersect at x = 1 and x = 3.
Use Equation 3 to find the area A enclosed by these graphs.
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x1 2 30.25

f(x)

4

5

y = 1/x

y = −4x + 5
3

2

1

Figure 63See Example 2.

It is quite possible to find such an area without drawing the graphs (as the above
exercise shows), but if you are asked to calculate the area between the graphs of
f0(x) and g(x), you will find it much easier if you begin by sketching the two
graphs on the same axes, and, of course, finding the points of intersection
(which you need in order to be able to put in the correct limits in Equation 3).

A = f (x) − g(x)[ ]
a

b

∫ dx (Eqn 3)

The following example shows you how to proceed.

Example 2 Find the area between the line y = f0(x) = −4x + 5 and the graph of

g(x) = 1 x .

Solution The two graphs intersect where −4x + 5 = 1 x . Rearranging this

equation gives us a quadratic equation to solve for x namely 4x2 − 5x + 1 = 0,
which factorizes to give (x − 1)(4x − 1) = 0. So we see that the roots of this
equation are x = 1 and x = 1 4 .
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y = 1/x

y = −4x + 5
3

2

1

Figure 63See Example 2.

We can now sketch the area enclosed by the two graphs, showing the points of
intersection (see Figure 6).

We now evaluate the area, using Equation 3:

A = f (x) − g(x)[ ]
a

b

∫ dx (Eqn 3)

A = −4x + 5 − 1 x( ) dx
1/ 4

1

∫ = −2x2 + 5x − loge x[ ]1/ 4

1

= −2 1 − 1 16( ) + 5 1 − 1 4( ) − loge 1 + loge 1 4 = 0.4887  4❏

Question T4

Find the area between the graphs of f (x) = 8 x  and g(x) = x2. (Start by sketching the two graphs.)4❏
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In all the examples so far, the functions f0(x) and g(x) have been chosen so that the graph of f0(x) lies above the
graph of g(x). This ensures that the integrand in Equation 3

A = f (x) − g(x)[ ]
a

b

∫ dx (Eqn 3)

is positive, so that we obtain a positive answer for A. If we had chosen our two graphs the other way round, then
the height of the rectangle in Figure 5 would have been equal to (g(x) − f0(x)), and it is this function that we
would have integrated. Thus, wherever f0(x) > g(x), we integrate (f0(x) − g(x)), to obtain the area; but in the case
that g(x) > f0(x), we integrate (g(x) − f0(x)). In both these cases, we can write down the area of the region1—1known
as the area between the graphs of f0(x) and g(x)1—1as

A = | f (x) − g(x) |dx
a

b

∫ (4)

It is important to use Equation 4 (not Equation 3) if the two graphs intersect more than twice, so that (f0(x) − g(x))

is sometimes positive and sometimes negative, as in the next example. ☞)
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x

y

−0.5 0.293 1.707

f1(x) = 4x3 − 6x2 + 2

A1

A2

g1(x) = 2x + 1

Figure 73See Example 3. Note that the
horizontal and vertical scales on the graph
have been made different for convenience
of drawing.

Example 3

Figure 7 shows the graph of f0(x) = 4x3 − 6x2 + 2 and the line g(x) = 2x
+ 1. They have three points of intersection, at x = −1 2 ,
x = 1 − 1 2 = 0.293  and x = 1 + 1 2 = 1.707. ☞ 
Find the total area enclosed by the two graphs.

Solution Over the region −1 2  < x < 0.293, f0(x) is greater than g(x).

Thus the area labelled A1 in Figure 7 is given by integrating

(1f0(x) − g(x)) = 4x3 − 6x2 − 2x + 1 from x = −1 2  to x = 0.293.

A1 = 4 x3 − 6 x2 − 2 x + 1( )
−0.5

0.293

∫ dx = x4 − 2 x3 − x2 + x[ ]−0.5

0.293

111111111= 0.164 − (−0.438) = 0.602

Over the region 0.293 < x < 1.707, f0(x) is less than g(x). Thus the area
labelled A2 in Figure 7 is given by integrating 
|1(1f0(x) − g(x))1| = g(x) − f0(x) = −4x3 + 6x2 + 2x − 1
from x = 0.293 to x = 1.707.
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x

y = f(x)

y = g(x)

y

1.0 2.5 4.0

Figure 83An area enclosed by two
graphs between x = 1.0 and x = 4.0.

A2 = −4x3 + 6x2 + 2x − 1( )
0.293

1.707

∫ dx = − x4 − 2x3 − x2 + x[ ]0.293

1.707

111111111= 2.664 − (−0.164) = 2.828

So the total area is 0.602 + 2.828 = 3.430.4❏

✦ Figure 8 shows the graphs of two functions f0(x) and g(x); their
points of intersection are given as x  = 1.0, x  = 2.5 and x  = 4.0.
Write down the two integrals whose sum gives the total area enclosed
by the graphs.
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x

y

(r, 0)(−r, 0)

y = − (r2 − x2)

y = + (r2 − x2)

Figure 93The circle x2 + y2 = r2.

The area of a circle

Finally in this subsection, it is worth noting that we can use Equation 4

A = | f (x) − g(x) |dx
a

b

∫ (Eqn 4)

to find the areas of shapes such as circles and ellipses. For example, let us
use it to prove that the area of a circle of radius r is π0r2. The equation of
a circle of radius r centred on the origin is x2 + y2 = r2; so, for a given

value of x (less than r), y can take the two values + r2 − x2  and

− r2 − x2 . Thus we can regard the region inside the circle as the area

enclosed by the graphs of the two functions f0(x) = + r2 − x2
 and

g(x) = − r2 − x2  (see Figure 9). The points of intersection of these two
graphs are x = − r and x = + r. So Equation 4 gives, for the area A of the
circle,

A = r2 − x2 − − r2 − x2( )[ ]
−r

r

∫ dx = 2 r2 − x2( )
−r

r

∫ dx
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The definite integral can be evaluated by making the substitution x = r1sin1u. 

Then r2 − x2  = r2 1 − sin2 u( )  = r1cos1u, and dx = r1cos1u1du.

When x = r, sin(u) = 1, so u = π 2 ,

and when x = −r, u = − π 2;

thus the new limits of integration are π 2  and − π 2 . So the integral becomes

A = 2r2 cos2 u du
−π / 2

π / 2

∫

We can evaluate this integral by means of the trigonometric identity  21cos2u = 1 + cos (2u); substituting this into
the integral, we find

A = 2r2 cos2 u du
−π /2

π /2

∫ = 2r2 1
2

1 + cos(2u){ }du
−π /2

π /2

∫ = r2 u + 1
2

sin(2u)



−π /2

π /2

111111 = r2 π
2

+ 1
2

sinπ − − π
2

+ 1
2

sin − π( )











= π r2
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Question T5

Find the area enclosed by the ellipse x2 16 + y2 9 = 1 .4❏
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Figure 103A cone of height h and
base radius r.

3 Solids of revolution
3.1 Volume of revolution
Suppose that we want to find the volume of a cone, of height h and base
radius r. Such a cone is shown in Figure 10; we have drawn it so that its
vertex is at the origin and its axis of symmetry lies along the x-axis.
To find the volume we can approximate the cone by a set of thin discs,
each of thickness ∆x. One of these discs, D, is shown in Figure 10.
The centre of the disc D has coordinates (x0,10). We calculate the volume
of each disc, and then obtain an estimate for the volume of the cone by
adding these volumes. We then allow ∆x to tend to zero, and in the limit
the sum becomes a definite integral between the limits 0 and h, which
gives the exact value of the volume of the cone. In order to be able to
evaluate this integral, we must, of course, obtain an expression for the
volume of a typical disc in terms of x.

To calculate the volume of a typical disc D, we need first to know its radius. This is equal to the y-coordinate of
the point A, and to express this in terms of x, we need to find the equation of the line OP in Figure 10.
This line passes through the origin and the point (h0,1r); its gradient is r h  and its intercept is zero.
So the equation of the line is y = rx h . Consequently, the radius of the disc D is rx h .
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Hence

cross-sectional area of D = π r

h






2

x2

and volume of D = area × thickness = π r

h






2

x2 ∆x

Hence the volume V of the cone is given by the integral

1111V = π r

h






2

x2

0

h

∫ dx = π r

h






2 1
3

x3



0

h

= 1
3 πr2h

an expression that you have probably seen before.

We will show shortly that we can generalize this strategy to find the volume of any solid which can be regarded,
to a good approximation, as a series of discs all centred on the x-axis. But we first introduce some terminology.
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Figure 103A cone of height h and
base radius r.

Look at Figure 10; imagine rotating the triangle OPQ (which lies in the
(x,1y) plane) about the x-axis. As you do so, the line OP will sweep out
the surface of the cone. We can say, therefore, that the cone is generated
by rotating the area OPQ about the x-axis. This is an example of a solid
of revolution   a solid which can be obtained by rotating the area under
a graph (or part of a graph) about some axis. The volume of a solid of
revolution is known as a volume of revolution.

✦ Describe the solid of revolution obtained by rotating the area under
the line y = 3 between x = 2 and x = 6 about the x-axis.
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Figure 123Solid of revolution obtained
by rotating the area under the graph of
f 0(x) about the x-axis.

Figure 12 shows an arbitrary solid of revolution, obtained by rotating the
area under the graph of the function f0(x) between the points x = a and
x = b about the x-axis. As we did with the cone, we can approximate this
volume by a set of thin discs of thickness ∆x; we show one such disc, D,
in Figure 12. The radius of D is equal to the y-coordinate of the point A;
that is, it is equal to f0(x). So the cross-sectional area of D is π[0f0(x)]2, and
its volume is π1[10f0(x)]2 1∆x. Summing over the volumes of all the discs,
and allowing ∆x to tend to zero, we obtain a definite integral for the
volume V of the solid of revolution:

V = π f (x)[ ]2

a

b

∫ dx (5)

Example 4 The solid of revolution obtained by rotating the semicircle

f0(x) = r2 − x2  about the x-axis is a sphere of radius r. Use Equation 5

to show that the volume of a sphere of radius r is 4
3 πr3.
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Figure 133See Example 4.

Solution We first sketch the semicircle (see Figure 13); this shows us
that the limits of integration are x = −r and x = + r. Then we substitute

these limits and f0(x) = r2 − x2  into Equation 5,

V = π f (x)[ ]2

a

b

∫ dx (Eqn 5)

to obtain

V = π r2 − x2( ) dx
−r

r

∫

Evaluating the integral gives us

V = π r2x − 1
3 x3[ ]−r

r = π 2
3 r3 − − 2

3 r3( ){ } = 4
3 πr34❏

Question T6

Find the volume of revolution obtained by rotating the area under the graph of f (x) = 3 x2  between x = 1 and

x = 3 about the x-axis.4❏
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Figure 103A cone of height h and
base radius r.

3.2 Surface of revolution
Suppose now that we want to find, not the volume but the surface area of
the cone shown in Figure 10. By now, you may be thinking that you
know what is coming. Perhaps what we must do is to approximate the
cone by a set of thin discs (just as we did to calculate its volume), work
out the surface area of a typical disc, add up all these surface areas, and
let the thickness of the discs tend to zero, to obtain an integral giving the
surface area of the cone. This process does NOT work, and an example
should convince you that this is the case.

The disc D in Figure 10 has radius rx h , its circumference is 2πrx h ,
and so its surface area (= circumference × thickness) is 2πrx h 1∆x. Thus
the integral giving the total surface area of the discs as their thickness
tends to zero is

2π r

h
x dx = 2π r

h0

h

∫
1
2

x2



0

h

= πrh (6)

However, Equation 6 does not give the correct answer for the surface
area of the cone as we can easily verify!
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P R

O

θ l

Figure 143An
unrolled cone.

We have another way of finding this surface area: we can imagine cutting
the cone along a straight line running from its base to its vertex and
spreading the cone out flat. This gives us the sector of a circle shown in
Figure 14; the radius of the circle is equal to the slant height l of the cone
(i.e. the length of the line OP in Figures 10 and 14), and the length of the
arc PR is equal to the circumference of the
base of the cone, 2π0r. (If you do not believe
that this is the figure obtained, try doing the
experiment in reverse. Cut out a sector of a
circle; you will find that you can roll it up into
a cone.)

The surface area of the cone is equal to the
area of the sector shown in Figure 14.
This sector is a fraction θ 2π  of the complete

circle of radius l, where θ is the angle PÔR
(measured in radians).

So its area must be equal to (θ 2π)  × the area of this circle (πl02), i.e. to 1
2 θl2 .
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Figure 143An
unrolled cone.

The angle θ is equal to the length of the arc PR divided by the radius l of the circle,
θ = 2πr l  , so we find

surface area S of cone = 1
2

2πr

l




 l2 = πrl (7)

  NOT the same as the result obtained in Equation 6.

2π r

h
x dx = 2π r

h0

h

∫
1
2

x2



0

h

= πrh (Eqn 6)

The reason why Equation 6 gives the wrong answer is simply that, while the volume of a thin slice of the cone is
well approximated by the volume of a thin disc of the same thickness and with radius equal to the average radius
of the slice, the surface area of such a slice is not equal, even approximately, to the surface area of the
corresponding disc. However, we can arrive at an integral giving the surface area of the cone if we consider
carefully what the surface area of a thin slice of it actually is.
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Figure 15a shows such a slice Ω, whose thickness (equal to the length
AB) we will call ∆s. We can think of this slice as being generated by
rotating the line segment AB about the x-axis; in which case we see that
the point B travels a total distance equal to 2π × BC. So if we imagine
cutting the slice along AB, and laying it flat, we will obtain the shape
shown in Figure 15b   part of a ring. The area of this region is, to a good
approximation, given by the product of its thickness ∆s and the length of
the outer arc bounding it, 2π × BC:

area of slice Ω = 2π × BC × ∆s (8)

Before we can use Equation 8 to give us an integral equal to the surface
area of the cone, we must express all quantities in it in terms of x.
The length BC is equal to the y-coordinate of the point B, which is equal
to rx h . We now need to relate ∆s to ∆x, and this can be done using
Pythagoras’s theorem.

Figure 153(a) A slice of a cone. (b) The unwrapped slice Ω.
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Figure 153(c) The length

∆s in terms of ∆x and ∆y.

From Figure 15c, we see that
(∆s)2 = (∆x)2 + (∆y)2 = (∆x)2 1 + (∆y)2 (∆x)2( )
i.e. ∆s = ∆x 1 + (∆y)2 (∆x)2

The ratio ∆y ∆x  is simply equal to the gradient of the line OP, which is r h . So we
have

∆s = ∆x 1 + r2

h2

and substituting this, and BC = rx h  in Equation 8,

area of slice Ω = 2π × BC × ∆s (Eqn 8)

we find

area of the slice Ω 

  

= 2π  
r

h
x 

BC
123

 1 + r2

h2









 ∆x

∆s
1 244 344
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We now add up all such areas, allow the thickness of the slices to tend to zero, and so obtain a definite integral
for the surface area S of the cone:

  

S = 2π r

h
x 1 + r2

h2









 dx

0

h

⌠

⌡


= 2π r

h
1 + r2

h2

everything here
    is constant

1 24 34

x dx
0

h

∫

✦ Evaluate the above integral, to get an expression for S.
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Figure 163Relation between slant
height l, height h and radius r of a
cone.

The answer you have found does not yet look quite the same as the answer
obtained in Equation 7, which was π0r0l. However, it is not hard to show that
it is in fact the same. Figure 16 shows that the slant height l, the height h
and the radius r of the cone are related by Pythagoras’s theorem: l02 = h2 + r02

which can be rearranged to give l = h 1 + r2 h2 . So the right-hand sides of

Equation 9

S = 2π r

h
1 + r2

h2

1
2

x2



0

h

= πrh 1 + r2

h2  22222(Eqn 9)

and Equation 7

surface area S of cone = 1
2

2πr

l




 l2 = πrl (Eqn 7)

are identical.

Now that we have seen how to write the surface area of a cone as an integral, we can generalize the method to
find the area of any surface of revolution   that is, any surface produced by rotating a graph about an axis.
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Figure 17a shows the graph of the function f0(x) and its surface of revolution between the points x = a and x = b.
To find the surface of revolution S, we approximate the graph by a set of line segments of equal length ∆s, as
shown in Figure 17b. When one of these is rotated about the x-axis, it generates a surface Ω whose surface area
is approximately equal to that of a slice of the solid of revolution. The area of the surface Ω is approximately
equal to its thickness ∆s multiplied by the distance travelled by one end of the line segment as it is rotated about
the x-axis, 2π1f0(x). So we have

area of Ω ≈ 2π1f0(x)1∆s (10)

x

y

a b

y = f(x)

x

y

(a) (b)

∆s

the surface Ω of the 
edge of the disc

Figure 173
(a) The surface of revolution produced
by the graph of f0(x) between the points
x = a and x = b. 
(b) An approximation to the graph of
f 0(x).
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Figure 173(c) Approximation

for the length ∆s in terms of ∆x

and ∆y.

Figure 17c shows that in this general case, we have the approximate relation

∆s ≈ (∆x)2 + (∆y)2 = ∆x 1 + (∆y ∆x)2 (11)

This approximation will become better as ∆x and ∆s get smaller and smaller. We
can also write

∆y ≈ dy

dx
∆x i. e. ∆y ≈ ′f (x) ∆x 4 (12)

and again, this approximation will improve as ∆x tends to zero. Substituting
Equations 11 and 12 into Equation 10

area of Ω ≈ 2π1f0(x)1∆s (Eqn 10)

gives

  

area of the thin strip Ω ≈ 2π f (x)
length of
the strip Ω

1234

  1 + ′f (x)[ ]2 ∆x

                ∆s
width of the strip Ω

1 244 344
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and when we add up the area of all the slices, and allow ∆x to tend to zero, we obtain an integral for the surface
S of revolution:

S = 2π f
a

b

∫ (x) 1 + ′f (x)[ ]2 dx  (13)

Example 5

The solid of revolution obtained by rotating the semicircle y = r2 − x2  about the x-axis is a sphere of radius
r. Use Equation 13 to show that the surface area of a sphere of radius r is 4πr02.

Solution

With f (x) = r2 − x2 ,   ′f (x) = − x

r2 − x2
.

So 1 + ′f (x)[ ]2 = 1 + x2

r2 − x2
= r2

r2 − x2
 and 1 + ′f (x)[ ]2 = r

r2 − x2
.
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Figure 133See Example 4.

Thus the integrand in Equation 13

S = 2π f
a

b

∫ (x) 1 + ′f (x)[ ]2 dx  (Eqn 13)

is simply equal to r. The limits of integration are −r and r (as in Example
4; see Figure 13).

So the surface area is

S = 2πr dx
−r

r

∫ = 2πr x[ ]−r
r = 4πr2 4❏

Question T7

Find the area of the surface of revolution obtained by rotating the graph of f0(x) = x3 between x = 1 and x = 3
about the x-axis.4❏
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Figure 183A rod of varying density.

4 Totals and averages

4.1 The mass of an object of variable density
Suppose that we want to find the mass of a rod of length L and uniform
cross-sectional area A, whose density ρ(x) varies with distance x from one
end of the rod (see Figure 18). We proceed by dividing the rod into thin
slices of thickness ∆x. The volume of one of these slices is A∆x, and since
the density within this slice is approximately constant, and equal to ρ(x), the mass of the rod between x and
x + ∆x is approximately ρ(x)A1∆x. The total mass M of the rod is approximately given by the sum of the masses
of all the thin slices. In the limit as ∆x tends to zero, this sum becomes a definite integral, exactly equal to the
mass of the rod:

M = A ρ(x)
0

L

∫ dx (14)

✦

Find the mass M  of a rod of length L and cross-sectional area A whose density is given by ρ(x) = ρ0

L2 + x2

where ρ00 is a constant.
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Figure 193(a) A disc of varying
density. (b) A thin ring-shaped portion
of the disc.

The method used to derive Equation 14

M = A ρ(x)
0

L

∫ dx (Eqn 14)

can be generalized to find the mass of some solids which are not in the
shape of rods. For example, suppose we want to find the total mass of a
disc, of radius R and depth h whose density ρ(r) varies with the distance r
from the axis of the disc (see Figure 19a). Since the density depends only
on r, and on neither the angular displacement round the disc nor the depth,
we can easily write down an approximate expression for the mass of a thin
ring-shaped portion of the disc (shown in Figure 19b) if we know the
volume of such a portion. We therefore divide the disc into thin concentric
rings of radius r and thickness ∆r, calculate the mass of one such ring, and
add up the masses of all the rings; then, as usual, as we let ∆r tend to zero,
the resulting integral gives us the mass of the disc.
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To find the mass of the ring, note that its volume is approximately equal to the product of its inner circumference
2π0r, its thickness ∆r and its depth h. So that

mass of the ring < 

  

2πr
circumference
      of ring

{

   h  
depth
of ring

{

  ∆r 
 thickness
   of ring

{

volume of ring
6 74444 84444

 ρ(r)
density
{

and the mass M of the whole disc is given by:

M = 2πh rρ
0

R

∫ (r) dr (15)

Question T8

Use Equation 15 to find the mass of a disc of radius R  = 41cm and height h  = 11cm, whose density

ρ(r) = ρ0 1 + r2 R2  where ρ0 = 3001kg1m−3.4❏
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The same strategy can be used to find the mass of a sphere of radius R whose density ρ(r) depends only on the
distance r from the centre of the sphere. Here, we divide the sphere into thin spherical shells of thickness ∆r,
concentric with the sphere. The volume of such a shell is approximately equal to the surface area of its inner
surface, 4πr2, multiplied by its thickness ∆r.

✦ Write down an approximate expression for the mass of this spherical shell.

Question T9

Due to the effects of gravity, the density ρ(r) of a star varies with distance r from the centre of the star.

Assuming that the density of a spherical star of radius R  is given by ρ(r) = ρ0 1 − r3 2R3( ) where ρ 0 is a

constant, use Equation 16

M = 4π r2

0

R

∫ ρ(r)dr4 (Eqn 16)

to calculate the mass of the star.4❏
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4.2 Centre of mass

If we have a set of particles of masses mi distributed at positions x 0i along the x-axis, the position xc  of the
centre of mass of this set of particles is given by

xc =
mi xi

i
∑

mi
i

∑
(17)

Suppose for example that we have three small spheres of lead of mass 0.11kg, 0.151kg and 0.21kg, attached to a
thin rod, made of aluminium, at distances 5 1cm, 101cm and 751cm, respectively, from one end of the rod.
The centre of mass is the point about which the rod will balance, ☞) and according to Equation 17 this point
will be approximately

5 × 0.1 + 10 × 0.15 + 75 × 0. 2
0.1 + 0.15 + 0. 2

1cm < 37.781cm

from one end. We are ignoring the mass of the aluminium rod in this calculation since it is presumed to be small
in comparison to the other masses. ☞
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If we remove the lead weights then we can no longer ignore the mass of the rod, in which case we are dealing
with a mass distributed uniformly instead of a number of discrete masses. In the case of a uniform rod ☞, made
of aluminium say, it is clear that it will balance about its centre point, but generally we may need to use
integration to find the position of a centre of mass.

∆x
L

x

A

Figure 183A rod of varying density.

Suppose, for example, that we want to find the centre of mass of the non-
uniform rod shown in Figure 18, of length L, cross-sectional area A and
density ρ(x) (which varies along the length of the rod). We divide the rod
into slices of thickness ∆x, and now we may treat it as a number of discrete
masses and apply Equation 17

xc =
mi xi

i
∑

mi
i

∑
(Eqn 17)

to obtain an approximate expression for xc .
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The mass of the slice between x and x + ∆x is approximately ρ(x)1A1∆x; and now we multiply the mass of this
slice by its x-coordinate, sum over all slices, and divide this sum by the sum of the masses of the slices:

 xc ≈
x ρ(x) A ∆x∑
ρ(x) A ∆x∑

As ∆x tends to zero, this ratio of sums becomes a ratio of integrals, and we obtain an exact value:

xc =
A x ρ(x) dx

0

L

∫

A ρ(x) dx
0

L

∫
(18a)

The integral in the denominator here is (from Equation 14) equal to the mass M of the rod; so an alternative way
to write Equation 18a is

xc = A

M
xρ(x)

0

L

∫ dx (18b)
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✦

xc =
A x ρ(x) dx

0

L

∫

A ρ(x) dx
0

L

∫
(18a)

Use Equation 18a to find the position of the centre of mass of a rod with uniform cross section and of length L,
whose density ρ(x) at a point a distance x from one end is given by ρ0(x) = C(x2 + L2), where C is a constant.
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4.3 Moment of inertia
When you try to push a heavy object, the difficulty increases with the object’s mass. On the other hand, if you
try to rotate an object about an axis, ☞ the difficulty increases with a quantity known as its moment of inertia
about that axis. You may have seen pictures of someone having difficulty opening the massive doors of a bank
vault; this is not usually because there is resistance in the hinges, but because the doors have a large moment of
inertia about the axis of the hinges (and once you get the door started it is just as difficult to stop it). The mass of
an object is simply one of its intrinsic properties; but while the moment of inertia is related to an object’s mass,
it also depends crucially on the choice of axis. The moment of inertia of a telegraph pole about the axis of
circular symmetry of the pole is relatively small, but its moment of inertia about an axis through one end of the
pole, and perpendicular to the pole, is quite considerable.

The moment of inertia I of a set of point masses m0i about a given axis is defined as

I = miri
2

i=1

N

∑ 3 333(19)

where ri is the perpendicular distance of mass mi from the axis and N is the total number of masses.

Some objects are designed so as to have very large moments of inertia. For example a flywheel is constructed to
be as massive and with as large a diameter as is convenient, with most of its mass as far from the axis as
possible. We will see why such a design is sensible shortly.
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✦ Two equal point masses of magnitude 51kg are fastened to the ends of a ‘light’ metre rule. What is the
approximate moment of inertia about an axis perpendicular to the rule (a) through its centre (b) through one end?

Finding the moment of inertia of a number of point masses is relatively easy. When the mass is distributed
throughout an object we generally need to employ integration, but not in the following case.

✦ A flywheel is designed so that most of its mass M is distributed around the rim of the wheel, of radius R say.
If you are designing a flywheel to have the greatest possible moment of inertia, ☞ is it better to double the mass
and keep the radius fixed or to double the radius and keep the mass fixed?

The following example is based on a similar idea.
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Figure 203See Example 6.

Example 6 Find the moment of inertia of a thin-walled hollow cylinder of
radius R and mass M about its axis of circular symmetry (see Figure 20).

Solution We divide the cylinder up into thin vertical slices each of mass ∆m.

All points on such a slice have perpendicular distance r from the axis so, from
Equation 19,

I = miri
2

i=1

N

∑ 3 333(Eqn 19)

the moment of inertia I = (∆m)R2∑ . Since R2 is a constant, it can be taken

outside the summation sign, so that I = R2 ∆∑ m . But ∆m∑  is simply equal

to the total mass M of the cylinder, so

The moment of inertia of a thin hollow cylinder about the axis of the
cylinder

I = MR2
333(20)

Note that this result does not depend on the height of the cylinder.4❏
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The previous cases were easy because the object could be divided into a number of small masses which were
(approximately) the same distance from the axis; when the distance from the axis varies we will need to employ
a more sophisticated summation process, which will lead to a definite integral. Here are some examples:

Thin rods

∆x

L

x

axis 
P

Q

Figure 213See Example 7.

Example 7 Find the moment of inertia of a thin uniform rod (i.e. of
constant cross-sectional area and uniform density), about an axis PQ
perpendicular to the rod and passing through one end, in terms of its mass
M and its length L (see Figure 21).

Solution We divide the rod up into small slices of length ∆x . (Note that
we have chosen the axis to be situated at the end x = 0 of the rod, which will
make it easy to write down the distance of each slice from the axis.) As the
rod is of uniform density and cross section, we can say that the mass per
unit length of the rod is M L , so that each thin slice has a mass

∆M = M

L
∆x

Since the slice is presumed to be very thin, the perpendicular distance of all points within the slice from the axis
is approximately x. ☞
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We can now set up the integral we want to evaluate. The moment of inertia of each slice is approximately

  

M

L
∆x

mass of
  slice

123

       x2   

distance from
 axis squared

124 34

so the total moment of inertia of the rod is approximately 
M

L
∑ x2∆x .

As ∆x tends to zero, this sum becomes an integral giving the moment of inertia I of the rod about the axis PQ:

 I = M

L
x2 dx

0

L

∫
Evaluating this integral, we find

Moment of inertia of a rod about an axis through one end

I = M

L

1
3

x3



0

L

= 1
3

ML2  ☞4❏
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Question T10

Find the moment of inertia of a thin uniform rod, of mass M and length L, about an axis perpendicular to the rod
and passing through the centre of the rod. 
(Hint: Take the origin of coordinates to be at the centre of the rod.)4❏

∆x

L

x

axis 
P

Q

Figure 213See Example 7.

This approach can easily be adapted to the case where the density of the
thin rod is not constant, but varies along its length. Suppose that the rod in
Example 7 has density ρ(x) at a distance x from one end, and constant
cross-sectional area A.

✦ What is the moment of inertia of a thin slice of the rod of thickness ∆x
about the axis PQ shown in Figure 21?

✦

Now write down an integral giving the total moment of inertia of the rod about the axis PQ.
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Question T11

A thin rod of length 101cm and constant cross-sectional area 1.01mm2 has density ρ(x ) = B + Cx, where
B = 2501kg1m−3 and C = 3301kg1m−4. Calculate its moment of inertia about an axis perpendicular to the rod, and
passing through one end.4❏
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R

h

r

∆r

axis of circular
symmetry

Solid cylinders and discs

Equation 20

I = MR2
333(Eqn 20)

gives us the moment of inertia of a hollow cylinder about its axis of circular
symmetry. We can use this result to calculate the moment of inertia of a solid
cylinder of uniform density about its axis of circular symmetry (see Figure 22).
We simply divide the cylinder into a large number of concentric thin-walled

hollow cylinders, ☞ use Equation 20 to write down the moment of inertia of a

typical one of these, add up all such moments of inertia, and so arrive at an
integral.

We first need to calculate the mass of a typical cylindrical shell of thickness ∆r,
and, since we are assuming that the density of the cylinder is uniform, this just
means finding the volume of the shell. Its volume is approximately equal to the
product of its circumference (2π0r), its thickness (∆r) and its height (h); so if the
cylinder has density ρ,

Figure 223A solid cylinder of radius R and height h.
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∆M = the mass of a typical cylindrical shell = 
  

  2πr  
circumference

123

  h  
height
}

 ∆r  
thickness
{

  ρ  

constant
density
}

Its radius is r; so (replacing M by ∆M and R by r in Equation 20)

I = MR2
333(Eqn 20)

we find that the moment of inertia of this hollow cylinder is

2π0r0hρ 001∆0r × r02 = 2π0r3ρ00h01∆r

The total moment of inertia of the cylinder is therefore approximately given by 2πr3∑ ρh ∆r .

As ∆r tends to zero, the sum becomes an integral, giving the moment of inertia I exactly:

I = 2πρh r3 dr
0

R

∫

We evaluate the integral, to find

I = 2πρh 1
4 r4[ ]0

R = 1
2 πρhR4 (22)
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It is usually more convenient to have an expression for I in terms of the mass M of the cylinder, rather than the
density ρ. We know that the volume of the cylinder is πR2h so ρ = M πR2h . Substituting for ρ in Equation 22

I = 2πρh 1
4 r4[ ]0

R = 1
2 πρhR4 (Eqn 22)

gives

  

I = 1
2 πhR4 × M

πR2h






density ρ
124 34

= 1
2 MR2

The moment of inertia of a uniform solid cylinder about its axis

I = 1
2 MR2

3 3331(23)

Again, this result does not depend on the height of the cylinder (as in Equation 20),

I = MR2
333(Eqn 20)

and because of this, Equation 23 applies equally well to a thin disc as to a long cylinder.
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If the density ρ(r) of the cylinder varies with distance r from its axis, the moment of inertia about the axis can
also easily be written down as a definite integral. It is:

I = 2πh r3

0

R

∫ ρ(r) dr (24)

where R and h are the radius and height of the cylinder.

Question T12

Derive Equation 24.4❏
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x

y

a b

A

∆x

y = f(x)

a solid disc D

Figure 123Solid of revolution obtained
by rotating the area under the graph of
f 0(x) about the x-axis.

Solids of revolution
Since the height of the cylinder does not appear in Equation 23,

I = 1
2 MR2

3 3331(Eqn 23)

that formula applies equally well to a thin disc as to a long cylinder. This
means that we may use it to find the moment of inertia, about the x-axis,
of any solid of revolution. We simply approximate the solid of revolution
by a set of thin discs (as we did to find its volume), calculate the moment
of inertia of one such disc using Equation 23, and, in the usual way,
arrive at an integral.

✦ Figure 12 shows an arbitrary solid of revolution, produced by
rotating the area under the graph y = f0(x) over the interval a ≤ x ≤ b about
the x-axis. If the solid has uniform density ρ, find an expression for the
moment of inertia of the disc D about the x-axis.

✦

Write down an integral giving the moment of inertia I about the x-axis of the solid of revolution in Figure 12.
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Example 8 Find the moment of inertia of a uniform sphere of radius R, density ρ and mass M about a
diameter. (Give the answer in terms of M and R.)

Solution We recall first that a sphere of radius R is the solid of revolution obtained by rotating the semicircle

y = R2 − x2  about the x-axis (compare Example 4, and Figure 13).

x

y

r−r

(r2 − x2)

Figure 133See Example 4.

Then the x-axis is a diameter of the sphere; so we may use Equation 25,

I = 1
2 πρ f (x)[ ]4

a

b

∫ dx   4 (Eqn 25)

with f (x) = R2 − x2 , and limits of integration −R and R.

This gives

  

I = 1
2 πρ R2 − x2( )2

f ( x )[ ]4
1 24 34− R

R

∫ dx = 1
2 πρ R4 − 2R2 x2 + x4( )

− R

R

∫ dx

= 1
2 πρ R4 x − 2

3 R2 x3 + 1
5 x5[ ]− R

R
= 8

15 πρR5
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To express the answer in terms of R and M, we write ρ = mass
volume

= M
4
3 πR3

,

so that 

  

I = M
4
3 πR3







density ρ
1 24 34

× 8
15 πR5 = 2

5 MR2 .4❏

Question T13

Find the moment of inertia about the axis of symmetry of a cone of radius r, uniform density ρ, height h and
mass M. Give the answer in terms of M. (Hint: You may like to refer back to the calculation of the volume of a
cone in Subsection 3.1.)4❏
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4.4 Function averages
In everyday language the word ‘average’ is a much abused term. Of course, we know roughly what we mean by
saying ‘an average man’ or ‘an average day for the time of year’. We mean that the ‘man’ or ‘day’ is in some
way a good representative of all men or days. In this subsection and the next we will discuss two forms of
‘average’ that are quite distinct, the point being that our choice of meaning for the word ‘average’ depends on
the context. Our first illustration concerns average velocity.

You are probably familiar with the definition of average velocity between two times t1 and t2 as
total displacement between t = t1 and t = t2

total time (t2 − t1)

In the case of an object travelling along the x-axis, we saw in Subsection 2.1 that if we know the velocity vx(t) as

a function of time, we can find the total displacement between two times as an integral, 
  

vx (t)
t1

t2
∫ dt .

So, if we introduce the notation vav for average velocity, then

  
vav =

vx (t)
t1

t2

∫ dt

t2 − t1
 ☞
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✦ The velocity vx(t) of an object at time t is given by vx(t) = a0t2. What is the average value of the velocity
from t = 0 to t = T0?

0

P0

P(t)

π/ω t

Figure 233Sketch of P(t) = P01sin21(ω0t).

We can use the same method to calculate average
values of other functions. For example, consider the
electrical power used by a domestic appliance.
The power P supplied to a particular appliance by the
mains in the United Kingdom is designed so that it
varies with time according to the formula

P(t) = P0 sin21(ω0t)

where P0 is a constant depending on the power rating
of the particular appliance.

A sketch of P against t is shown in Figure 23. The power rating quoted for any domestic appliance is actually
defined to be the average power consumed. We can find an expression for this average power Pav in terms of P0

by calculating the average over just one cycle, since the symmetry of the graph means that the average over
many cycles is the same as the average over one cycle.
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So we will calculate the average power consumed between t = 0 and t = π ω , which is given by the integral of
P(t) between these times, divided by the time interval:

Pav =
P(t) dt

0

π /ω

∫
π ω − 0

= ω
π

P0 sin2

0

π /ω

∫ (ω t) dt

To evaluate the integral, we use the trigonometric identity

sin2 (ω t) = 1
2 1 − cos(2ω t)[ ], so that

Pav = ω P0

2π
1 − cos(2ω t)[ ]

0

π /ω

∫ dt = ω P0

2π
t − 1

2ω
sin(2ω t)



0

π /ω

and since sin12π = sin10 = 0, we finally find

 Pav = ω P0

2π
× π

ω
= P0

2

So the average power is half the peak power P0.
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h

xO

h0

a a

Figure 243See Question T14.

So far in this subsection we have taken the integration variable to be time t, so
that the averages in question were time averages. However, the notion of the
average value of a function can be defined quite generally: for any function

f0(x), the average value fav over the interval a ≤ x ≤ b is defined as

f av =
f

a

b

∫ (x) dx

b − a
(26)

Question T14

Figure 24 shows the cross section of a water surface between two glass plates.
The height h of the water surface at position x is given by h(x) = h0 + bx2

for −a ≤ x ≤ a. Find the average height of the surface (i.e. the average value of
h(x) over the interval −a ≤ x ≤ a).4❏



FLAP M5.4 Applications of integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4.5 Mean value of a distribution
The word ‘average’ is often used in a completely different sense to the one introduced in Subsection 4.4.
For example, if you sat three exams and scored 81% on the first, 52% on the second and 74% on the third, you

might say that your ‘average score’ on all three was 
81% + 52% + 74%

3
= 69%. But it would be more correct to

call this your mean score. Generally speaking, the mean of N numbers is defined as the sum of the numbers,

divided by N. ☞

There are several different ways of writing an expression for a mean value. To illustrate the point, let us suppose
that we have several, say N, particles moving with different constant speeds and we want to know the mean
value   v  of their speeds. We measure the speed of each one, and find that N1 of them have speed v1, N2 have
speed v2, and so on up to Nn having speed vn (so that N1 + N2 + … + Nn = N). Instead of adding up the measured
values one by one to obtain the mean value of all our measurements, we can multiply each of the n values
obtained by the number of times it occurs, add the results, and divide by N. What we obtain is the mean value
of the distribution:

    
v =

1
N

Nivi
i=1

n

∑  (27)
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The fraction fi of times that the result vi occurs is simply Ni N  so we can rewrite Equation 27

    
v =

1
N

Nivi
i=1

n

∑  (Eqn 27)

in the form
    
v = f ivi

i=1

n

∑ (28)

(Notice that it follows that f i
i=1

n

∑  = 1 because N1 + N2 + … + Nn = N.)

✦ Six particles have speeds 51m1s−1, 51m1s−1, 51m1s−1, 101m1s−1, 101m1s−1  and 201m1s−1. Use Equation 28 to
calculate the value of   v .

If we are interested, not in the mean speed, but in the mean value of some other physical quantity x, then this is
given by an equation just like Equation 28:

  
x = f ixi

i=1

n

∑ (29)

where fi is the fraction of particles possessing the value xi of x, and i = 1, 2, 3, … n.
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✦ The speeds of a group of cars moving along a motorway are measured to the nearest 51m1s−1. 10% of the cars
have speed 301m1s−1, 40% have speed 351m1s−1, 30% have speed 401m1s−1 and 20% have speed 451m1s−1. What is
the mean speed of the cars?

Now suppose we are interested in finding the mean speed of molecules in a gas. There are so many molecules
that Equation 28, as it stands,

    
v = f ivi

i=1

n

∑ (Eqn 28)

is not going to be very useful to us; only a very small fraction of molecules will have any given speed, and we
would have a very large number of speeds to sum over. Instead, what we do is divide up the range of all speeds
available to the molecules into small intervals ∆v, and concentrate, not on the fraction fi of molecules with a
particular speed vi but on the fraction of molecules with speeds lying within the small interval between v and
v + ∆v. We expect this fraction to be proportional to the size ∆v of the interval, and we write it as f0(v)1∆v.
The function f0(v) is known as a speed distribution function: it tells us what fraction of molecules have speed
close to the value v.
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We can then write Equation 28

    
v = f ivi

i=1

n

∑ (Eqn 28)

as

      

v = v f (v)∆v
fraction with 
speed between 
v  and v+∆v

124 34

∑

and, as we have done so often before in this module, we allow ∆v to tend to zero, so that the sum becomes an
integral, and since there will be an upper bound, V say, to the speed of the molecules, we can write

    
v = v

0

V

∫ f (v) dv (30) ☞

An integral of this sort is far easier to perform than a sum over many different speeds, particularly when we
know the specific form for the function f0(v).
Remember that f 0(v)1∆v represents the fraction of molecules with speeds lying between v and v + ∆v , and all
these fractions must sum to 1, in other words

  
f (v) dv

0

V

∫ = 1
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f(v)

v

Figure 253The Maxwell–Boltzmann
speed distribution.

The following function provides an appropriate mathematical model for
molecules in a gas, and is known as the 
Maxwell–Boltzmann speed distribution:

  
f (v) = 4π m

2πkT






3/2

v2 exp(−mv2 2kT ) (31) ☞

where m is the mass of one of the molecules, T is the temperature of the
gas, and k is Boltzmann’s constant.
This speed distribution is sketched in Figure 25.

Question T15

Use the Maxwell–Boltzmann speed distribution in Equation 31 to calculate the mean speed   v  of molecules of

mass m in a gas at temperature T. (Hint: You may find the substitution   u = mv2 2kT  helpful.)4❏
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In general, a distribution is a function which tells us what fraction of particles have values of a certain physical
quantity lying in a particular small range: if we call the physical quantity X, then the distribution f0(x) is defined
so that

f0(x)1∆x = fraction of particles with values of X
in the interval between x and x + ∆x





(32)

The mean value x  of X is then given by Equation 29

  
x = f ixi

i=1

n

∑ (Eqn 29)

to be xf (x)∑ ∆x , and, on allowing ∆x to tend to zero, the sum becomes an integral:

x = xf (x)
a

b

∫ dx  (33)

(where the limits of integration depend on the range of values that it is possible for x to take).
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Example 9
The fraction of electrons in a metal near absolute zero with energies between E and E + ∆E is given by
3 E

2 EF
3/ 2

∆E  for 0 ≤ E ≤ EF and is zero for E > EF0, where EF is a constant (known as the Fermi energy).

Verify that 
3 E

2 EF
3/ 2

0

EF

∫ dE  = 1 and find the mean energy of the electrons, in terms of EF.

Solution The information given tells us about the energy distribution f0(E) of the electrons; from Equation 32,

f0(x)1∆x = fraction of particles with values of X
in the interval between x and x + ∆x





(Eqn 32)

we see that

f (E) = 3 E

2EF
3/2

for 0 ≤ E ≤ EF and f0(E) = 0 for E > EF

Mike Tinker


Mike Tinker


Mike Tinker


Mike Tinker
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First 
3 E

2EF
3/2

0

EF

∫ dE = 3
2EF

3/2
E

0

EF

∫ dE = 3
2EF

3/2

2E3 2

3




0

EF

= 1

then substituting for f0(E) into Equation 33

x = xf (x)
a

b

∫ dx  (Eqn 33)

gives

E = 3E3/ 2

2 EF
3/ 2

0

EF

∫ dE = 3
2 EF

3/ 2
E3/ 2

0

EF

∫ dE = 3
2 EF

3/ 2

2 E5/ 2

5




0

EF

= 3EF

5
4❏

Question T16

The fraction of electrons in a metal near absolute zero with magnitude of momentum between p and p + ∆p

is given by 
3 p2

pF
3

∆p for 0 ≤ p ≤ pF0, and is zero for p > pF, where pF is a constant. Verify that 
3 p2

pF
3

0

PF

∫ dp = 1 and

find the mean magnitude of momentum p  of the electrons, in terms of pF.4❏
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Mean values also arise in quantum mechanics. Consider the case of a particle that can move along the x-axis.
Unlike classical mechanics, quantum mechanics does not allow us to calculate the position x(t) of this particle as
a function of time. Instead, all it can tell us is the probability P(x)∆x of finding a particle on a small interval of
the x-axis, between x and x  + ∆x, at a given time. The function P(x) is known as a probability density.

Such functions must also have the property that P(x)
a

b

∫ dx = 1, since the probabilities must sum to 1.

If we know the probability density, we can use it to find the mean value x  of the position of the particle,
which is defined as

x = xP(x)
a

b

∫ dx (34)

where the limits of integration a and b depend on the region of the x-axis over which the particle is free to move.
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Example 10 Consider a particle confined to move parallel to the x-axis between two ‘infinitely high walls’ at
x = 0 and x = L. (Thus, however much kinetic energy the particle has, it can never escape from this region.)
When the energy of this particle has the lowest value that is allowed by quantum mechanics, its probability

density is P(x) = 2
L

sin2 πx

L




  for 0 ≤ x ≤ L and P(x) = 0 for |1x1| > L. First verify that this function is indeed

suitable as a probability density, and then find the mean value of the particle’s position.

Solution

First we evaluate the integral P(x)
0

L

∫ dx = 2
L

sin2 πx

L






0

L

⌠
⌡

dx ; note that, since the particle is confined to the region

0 ≤ x ≤ L the limits of integration are 0 and L. Using the trigonometric substitution sin2 y = 1
2 1 − cos 2y( ) with

y replaced by πx L , we obtain

P(x)
0

L

∫ dx = 2
L

1
2

1 − cos
2πx

L












0

L

⌠
⌡

dx = 
1
L

x − L

2π
sin

2πx

L










0

L

= 1

which means that the function P(x) is suitable as a probability density. ☞
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We now substitute the given probability density into Equation 34,

x = xP(x)
a

b

∫ dx (Eqn 34)

to obtain x = 2
L

x sin2

0

L

∫
πx

L




 dx . To evaluate the integral, we again use the trigonometric identity

sin2 y = 1
2 1 − cos 2y( ), which gives

x = 1
L

x 1 − cos
2πx

L












0

L

⌠
⌡

dx = 1
L

1
2

x2



0

L

− 1
L

x cos
2πx

L






0

L

⌠
⌡

dx (35)

We evaluate the remaining integral using integration by parts.
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We find

x cos
2πx

L




 dx

0

L

⌠
⌡

= xL

2π
sin

2πx

L










0

L

− L

2π
sin

2πx

L






0

L

⌠
⌡

dx = xL

2π
sin

2πx

L










0

L

+ L

2π






2

cos
2πx

L










0

L

(36)

Since sin1(2π) = sin10 = 0 and cos1(2π) = cos10 = 1, the integral on the left-hand side of Equation 36 is in fact
equal to zero. So, returning to Equation 35,

x = 1
L

x 1 − cos
2πx

L












0

L

⌠
⌡

dx = 1
L

1
2

x2



0

L

− 1
L

x cos
2πx

L






0

L

⌠
⌡

dx (Eqn 35)

we find

x = 1
L

1
2

x2



0

L

= L

2
4❏
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Question T17

When an electron in a hydrogen atom is in its state of lowest energy, the probability of finding it at a distance
between r and r + ∆r from the nucleus is (4 a0

3)r2 exp(−2r a0 ) ∆r , where a0 is a constant known as the

Bohr radius; r may take any value between 0 and ∞. Verify that the function P(r) = (4 a0
3)r2 exp(−2r a0 )

is suitable as a probability density, then use Equation 34

x = xP(x)
a

b

∫ dx (Eqn 34)

to find the mean value r  of r.4❏
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5 Closing items

5.1 Module summary
1 The area under the graph of f0(x) between x = a and x = b is defined as being equal to the definite integral

f (x)
a

b

∫ dx . This definition has the consequence that in any region where f0(x) is always negative, so is the

area under its graph. Sometimes we may be interested in the total size of the area enclosed by the graph of

f0(x) and the x-axis, between x = a and x = b (where a < b); this is given by the integral | f (x) |dx
a

b

∫ .

2 If the graphs of two functions f0(x) and g(x) intersect at the points x = a and x = b (where a < b), then the
area between the graphs is defined as

| f (x) − g(x) |dx
a

b

∫
This includes the case where other points of intersection lie between x = a and x = b.
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3 A solid of revolution is a solid which can be obtained by rotating the area under a graph (or part of a graph)

about some axis. If the solid is obtained by rotating the area under the graph of f0(x) between x = a and x = b
about the x-axis, then its volume (known as a volume of revolution) is given by the definite integral

π f (x)[ ]2

a

b

∫ dx , and the area of its surface (known as a surface of revolution) is given by the definite integral

2π f (x)
a

b

∫ 1 + ′f (x)[ ]2 dx (Eqn 13)

4 Integration may be used to find the mass M of a solid whose density ρ varies with position. In the case of a
rod of constant cross-sectional area A  and length L, lying along the x-axis between 0 and L,

M = A ρ(x) dx
0

L

∫ . For a disc of height h and radius R, whose density ρ(r) depends only on distance r from

the axis, M = 2πh rρ(r) dr
0

R

∫ . For a sphere of radius R, whose density ρ(r) depends only on distance r from

the centre, M = 4π r2ρ(r) dr
0

R

∫ .
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5 The position of the centre of mass of a solid object may also be found by integration; for example, for a rod
of constant cross-sectional area A and length L, lying along the x-axis between 0 and L, the x-coordinate of

the centre of mass is xc = A

M
xρ(x)

0

L

∫ dx .

6 Moments of inertia of thin rods, solid cylinders, and solids of revolution can also be written as definite
integrals.

The integral giving the moment of inertia I about the x-axis of the solid of revolution is

I = 1
2 πρ f (x)[ ]4

a

b

∫ dx  (Eqn 25)

7 The average value of a function f0(x) over the interval a ≤ x ≤ b is defined as

f av =
f (x) dx

a

b

∫
b − a

(Eqn 26)
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8 A distribution is a function specifying the fraction of particles which have values of a certain physical

quantity lying in a particular small range between x and x + ∆x; the distribution f0(x) is defined so that this

fraction is equal to f0(x)1∆x where f (x) dx
a

b

∫ = 1 and the mean of the distribution, x , is given by a definite

integral: x = xf (x) dx
a

b

∫ , where a and b are the largest and smallest allowed values of x, respectively.
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Interpret the definite integral of a given function between given limits in terms of the area under the graph
of that function between those limits; and (paying due attention to signs) calculate the magnitude of the
total area enclosed by the graph of the function and the horizontal axis.

A3 Calculate the area enclosed between two intersecting graphs.

A4 Write down definite integrals giving the volume and surface area of a solid of revolution.

A5 Write down definite integrals giving the mass of a rod, disc or sphere whose density is not uniform.

A6 Express the position of the centre of mass of a solid as a definite integral.

A7 Find the moments of inertia of thin rods, cylinders, and solids of revolution as definite integrals.

A8 Calculate the average value of a given function over a given interval.

A9 Find the mean value of a distribution.

A10 Use the idea of a definite integral as the limit of a sum in order to set up an integral that gives the value of
some required physical quantity.



FLAP M5.4 Applications of integration
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2)3Calculate the area under the graph of f0(x) = x2 − 8x + 12 between x = 0 and x = 6. Calculate also the sum
of the magnitudes of the areas enclosed by the graph and the x-axis between x = 0 and x = 6. 
(You should start by sketching the graph.)

Question E2

(A3)3Find the area between the graphs of f0(x) = x2 − 2 and g(x) = 6 − x2.
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Question E3

(A4)3Find the volume and surface area of the solid of revolution obtained by rotating the area under the graph

of f (x) = 2 x  between x = 2 and x = 4 about the x-axis.

R

h

axis 

2R/3

P

Q

Figure 263See Question E4.

Question E4

(A5 and A7)3The ring shown in Figure 26 has inner radius 2R 3 , outer radius R
and height h. Its density at any point at a perpendicular distance r from the axis

PQ is ρ(r) = ρ0R2

r2 + R2
, where ρ0 is a constant. Find expressions for 

(a) its mass M (in terms of ρ0, R and h), and 
(b) its moment of inertia about the axis PQ (in terms of M and R).
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x

y

r
l

h

Figure 163Relation between slant
height l, height h and radius r of a
cone.

Question E5

(A6 and A10)3The cone shown in Figure 16 is the solid of revolution
obtained by rotating the line y = rx h  about the x-axis between x = 0 and
x = h. It is of uniform density. Find the position of its centre of mass.
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Question E6

(A8)3The temperature T in a rod of length L is given by the equation T(x) = T0x

L
exp(−x2 L2 ) , where x is the

distance from one end of the rod and T0 is a constant. What is the average temperature of the rod?

Question E7

(A9)3The fraction of molecules in a gas with energies between E and E + ∆E  is 
2

π (kT )3/2
Ee−E /kT ∆E ,

where T  is the temperature of the gas, k  is Boltzmann’s constant and E  may take any positive value.

Given that the 
2

π (kT )3/2
Ee−E /kT

0

∞

∫ dE = 1, find the mean energy of a molecule.

(Hint: Use integration by parts.)
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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