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1 Openingitems
1.1 Moduleintroduction

This module discusses in depth a range of techniques which will enable you to evaluate a wide range of
integrals. Such a detailed treatment may not be relevant to your course of study, and you are therefore advised to
consult your tutor before working through the module. Y ou should be prepared to spend more time than for the
other FLAP modulesif you are advised to read all the material.

In Section 2 we discuss several ingenious tricks which you can combine with methods such as integration by
parts and integration by substitution in order to evaluate a very wide range of integrals. Some of these tricks
(partial fractions, completing the square and splitting the numerator) involve algebraic manipulation of the
integrand, while others make use of trigonometric identities to simplify integrals of powers of trigonometric
functions. We a so discuss some particularly useful substitutions involving hyperbolic functions.

Subsection 3.1 deals with certain types of improper integral O those with an infinite upper or lower limit.

We will explain there how to define and evaluate these. Subsection 3.2 discusses some integrals of this sort
known as Gaussian integrals, which arise very often in physics (in quantum mechanics and in the kinetic theory
of gases, for example). We show how these can all be evaluated in terms of the basic Gaussian integral

wexp(—xz)dx .
|

FLAP M55 Further Integration o 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



Finally, in Subsection 3.3, we introduce and explain the idea of aline integral O an integra of the form

My

I F(r) [dir . Integrals of this sort arise in calculating the work done by aforce, for example, or the electrostatic
la

potential difference between two pointsin aregion of space where thereis an electric field.

Y ou may occasionally find that your answersto the exercises differ from ours. This may be because your answer
isin a slightly different form; for example, you may have written loge +/X/(x —1) where we have written
$loge X — 3 10ge(x —1). If you cannot tell if your expression for an indefinite integral is the same as ours, you
can always check your answer by differentiating it.

Study comment  Having read the introduction you may feel that you are already familiar with the material covered by this

module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment  Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 4.1) and the Achievements listed in
Subsection 4.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 4.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

. . x-1 1
Find theintegrals (a) [ ————=dXx, (b) [ ———=0dx
“ ()[Jhx/4x2—1 ()4]«/1+8x—4x2
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Question F2

Evaluate the definite integral Xf% dx (R
(x+2)°(x+1)
0

Question F3
Evaluate the definite integral

ojoexp(—3x2 +4x)dx given that ofexp(—yZ)dy = 1.
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Study comment  Having seen the Fast track questions you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment

In order to study this module, you will need to be familiar with the following terms: completing the square, definite integral,
even function, hyperbolic function. improper integral, integrand, integration by parts, integration by substitution, inverse
hyperbolic function. limits of integration, scalar product and vector. If you are uncertain of any of these terms, you can

review them now by referring to the Glossary which will indicate where in FLAP they are developed. In addition, you will
n+1l
need to be familiar with standard integrals (such as Ix” dx = :](+1

ax
+C [ and Ieaxdx:e?+C), and know how to

evaluate definite and indefinite integrals by the method of substitution, or by integration by parts. Y ou will also need to be
familiar with trigonometric identities, and with the analogous identities involving hyperbolic functions. The following Ready
to study questions will allow you to establish whether you need to review some of these topics before embarking on this
module.
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Question R1

The expression + 2 can be written as asingle fraction by putting
x-1 x+2
1 + 2 _ X+2 + 2(x-1)
x=1 x+2 (xX-D(x+2) (x-D(x+2)
_(x+2)+2(x-1) _ 3x

(X=D(x+2) (X=D(x+2)
Use asimilar method to express the following as single fractions:

1 1 1 X 5 5 2
@ %3 2x+3 D 2-x T3 O ox-1 ox+2) 3Ax+2)

Question R2
Write the following quadratic functionsin completed square form: (a) 3x2 — 12x+16, (b) 3 —4x — 2x2
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Question R3

(a) If y =cos(2x), expresssin®x in terms of .
(b) If y = cosh (2x), express sinh* x in terms of y.

Question R4
Find the indefinite integrals:

1 1 1
@ Pt O Pagate @ pETa
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Question R5

Evaluate the definite integrals:

@ fxsin(3X)dX, (b) }xmdx_
0 0

Question R6

Define the hyperbolic functions coshx and sinhx, and use your definitions to prove the identity

cosn?x —sinh?x = 1.
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Question R7

(a) What are the derivatives of coshx and sinhx? Use these derivatives, and the guotient rule, to find the
derivative of tanh x.

(b) Find the integrals Icosh(Zx) dx and Isinh(x/3) dx.
Question R8

If r isthe vector xi +yj + zk, a is the vector 2i — k and b is the vector 2i — 2j + Kk, find an expression for
(a-b)(b-r)intermsof x, yand z.
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2 Further techniquesof integration

2.1 Partial fractions

1
(x+1)(x+2)
complicated function of x. Yet thisis not an integral that can immediately be related to a standard integral, nor
will integration by parts work (as you will find if you try!), nor isit easy to find a substitution that will simplify
theintegral.

However, thisintegral can in fact be found quite easily if we first split the integrand into its partial fractions.
L] Todo this, wewrite
1 __a b
(x+)(x+2) x+1 x+2

where a and b are constants that we will need to find. Adding together the two fractions on the right-hand side of
Equation 1 gives us

Suppose that we want to find the integral 4] dx. The integrand does not seem to be a particularly

@
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1 _(atb)x+2a+b
(X+(x+2) (X+(x+2)
from which we deducethat a+ b=0and 2a+ b =1, so that a = 1, b = —1. Thus we have the identity

1 _ 1 1
(x+D(x+2) x+1 x+2 _

It follows that
L =t dx-fi—tdx=log.(x+1) - log.(x+2) +C LI
(X +1)(x + 2) F|]x+1 F|]x+2 Je Je —
The method we have used here to find ;dx can be applied to a wide variety of integrals of
(x+D(x+2)

fractions whose denominators can be factorized. Here is a slightly more complicated example.
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Example 1

Find ] —— dx.
X2+X-6

Solution  Since the denominator is not already factorized, we must first find its factors, which are (x — 2) and

(x + 3). We now express X = X in partia fractions. We write
X2+Xx-6 (Xx—-2)(x+3)
X __a b _(a+b)x+3a-2b

(x-2)(x+3) x-2 x+3  (x-2)(x+3)
from whichwededucethata+b=1and3a-2b=0,i.e.a=2/5and b = 3/5.

FLAP M55 Further Integration o 0
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1

& @



X 2 3

Thus = +
X2+x-6 5(x—-2) 5(x+3)

so that
qjﬁdx =éq]rlzdx+§q]%dx:éloge(x—2)+gloge(x+3) +C
This example shows that using partia fractionsto evaluate integrals generally involves three steps:
Sepl Factorize the denominator of the integrand (if necessary).
Sep 2 Expresstheintegrand in terms of partial fractions.
Sep 3  Integrate each partia fraction.

Practise these steps by doing the following question.

Question T1

Find theintegra 1] dx. O o

9-4x2
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The three steps described above apply equally well if there is a repeated factor in the denominator of the
integrand. For example, consider the integral

1
————— X
Flj X3 = 2%2 + X
The denominator here is x3 — 2x2 + x = x(x2 — 2x + 1) = x(x — 1)2, which has a repeated factor (x —1).
We now write

Atermfor  Atermfor
(x-1) (x-1)?
—r— — 2
1 _a, b~ d _(atb)x*+(d-2a-b)x+a
x(x-1? x x-1 (x-1)? x(x—1)?

(and notice that we have included aterm for (x — 1) and aterm for (x — 1))

sothata+b=0,d-2a-b=0,anda=1,i.,ea=1,b=-1,d=1.

o 1 .11, 1 .
X3=2x2+x x x-1 (x-1)?2
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g

) 1

Find | —————dx
4jx3—2x2+x

Partial fractions can also often be used to integrate a fraction even if its denominator does not factorize
completely into real linear factors, asin the following example.

Example 2

Find theintegra _ X*3 X

(x=1(x% +1)
Solution  We cannot factorize the quadratic factor (X2 + 1). So, to express the integrand in terms of partial
fractions, we must first write it in the form

Two constants for
the quadratic factor

x+3 __a _ bx+d _(a+b)x*+(d-b)x+a-d
(x-1(x?+1) x-1 X% +1 (x=1)(x% +1)

(and notice that the term corresponding to the factor (x2 + 1) includes two unknown constants) from which it
followsthata+b=0,d-b=1anda-d=3,i.e a=2,b=-2,d=-1
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X*3 =2 ax - h 2 3)
(x=1D(x2 +1) x=1 X2 +1

The first integral on the right-hand side of Equation 3 is equal to 2log.(x — 1) + C. To evaluate the second

integral, we split it into two, and write it as 2X dx + ! dx. With the substitution u = x2 + 1, we
X2 +1 X2 +1
2X

~ . 1
] +ldx =log. (x2 +1) + C, while F|]

X2 +1
Substituting these results into Equation 3 gives us

quickly find that 4] dx isastandard integral, equal to arctanx + C.

+3
4]()(_;()()(2 +1) dx = 2|Oge(X—l) - |Oge(X2 +1) —arctanx+C [O Q
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Question T2

3x? +11

Findtheintegral j————
ind the integr #j(x—3)(2x2+1)

The technique of splitting the integrand into partial fractions will enable you to find many integrals of the form
4] % dx, where p(x) and q(x) are both polynomialsin x. However, it clearly will not be of any use unless g(x)
X

factorizes, at least partly. What can we do if q(x) does not factorize at all? This case is discussed in the next two
subsections.
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2.2 Completing the square

If you are asked to find the integral F|] dx, your response may now be to try writing the integrand in

2+4x+8
terms of partial fractions. If you try this, you will quickly find that the quadratic equation x2 + 4x + 8 = 0 has no

real roots, so that we cannot factorize the integrand, and partial fractions are of no use. U

To see how to proceed with an integral of this sort, recall that there are integrals similar to this which you do

know how to evaluate; for example, the integral q] 21+ 2 dx. This also has the property that its integrand does
X

not factorize. However it can be quickly evaluated by means of the substitution x = 2tanu. Then x2 + 4 = 4
sec? u, and dx = 2sec? u du, so that the integral becomes

J’%du =3u+C=}arctan(x/2) +C

We can make the integral ;dx look very much like the integral 1 dx by the trick known as
X2 +4x+8 X2 +4

completing the sguare, in which we write the denominator as the sum of two squared terms, one involving x and
the other a constant. In the case under consideration, it works as follows.
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Wenoticethat X2 + 4x = (X + 2)2 — 4, sothat X2 + 4x + 8 = (x + 2)2 + 4.

Thus we have ;dx = ;dx
x2+4+8 (x+2)2+4

We now make the change of variablesy = x + 2, so asto obtain

1 1
——dx=f1——d
F|]x2+4x+8 #y2+4 y
We have just evaluated the integral on the right-hand side here; it is equal to arctan(y/2)+C.
Replacing y by x + 2, we finally find that

1 _
q]mdx = 7arctan[(x + 2)/2] +C

Here is a slightly more complicated example, which we will set out as a series of steps; you can follow these
when you do similar problems.
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Example 3

1
—dx Ll
2X2+6x+5

Solution Sep 1l First, write the denominator in completed square form.
2x2 +6x +5= 202 +3%) +5= 2| (x + 32)° - 9/4] + 5= 2(x + 32)° + 12

Find theintegral | :qj

So I = 1 dx
2[x+(32)) +12
I 3 1
Sep2 Makethesubstitution y = x+ =, then | = j———
® Y7 4]2y2+(v2)dy
Sep3 Makethe substitution y = 3 tanu, then 2y? + 1 = 2sec? u and dy = 4 sec?udu. So
I:#ﬁdu:Ildu:u+C. Q
12

Sep 4 Finally, expresstheintegral in terms of x (using the fact that x + $ = $tanu),
I=u+C=arctan(2y) + C=arctan(2x+3) + C. 0O
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Question T3

1

Findtheintegral | = [ —————dx
= 4j3x2—6x+7

The technique of completing the square can also be used in conjunction with a substitution of the form

X =asinu, where a is a constant; this enables us to find integrals such as | = [}]%dx. To evaluate
v3-2Xx - X

this integral, we first write the quadratic expression appearing under the square root sign in completed square
form.

0 Write 3 —2x - x2 in completed square form.
So F{];dx ﬁ[];dx. We now make the substitution y = x + 1; then the integral

V3-2x-x2 T JA-(x+1)?

becomes [J[]%dy. Thisintegral can easily be found by the substitution y = 2sin u, so that dy = 2 cosu du,
NAT
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then

1 _ 1
5[3\4—y2 W_#V4—(29nu)2 (2cosudu)

1 .
= 2cosudu) = fldu=u+C=arcsin(y 2)+C
qucosu( )= (v 2)

Replacingy by x + 1, we finally have

+C

;dx = arcsinDXJrlD
V3-2x-x2 02 0

Here is another example, which again we will set out as a series of steps.
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Example 4
1

\B6X — X2

dx.

Find theintegral | :[J|]

Solution Stepl  Write 6x — x2in completed square form:
Bx—x2=-(x2-6x) =(x=3)? -9 =9 - (x-3)?

so | :#%dx
\;‘9—(X—3)
1

Sep2 Makethe substitutiony =x—3; then | = [Jljﬁdy
NITY
Sep 3 Make the substitution y = 3sinu; then /9 — y2 =3 cosu and
dy =3cosudu. So | =J’1du:u+C

Sep4  Express| interms of x:

_ e VO, ~ o DX =30
I —u+C—arcstaD+C—arcst 3 D+C O
FLAP M55 Further Integration
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Question T4

) . 1
Find theintegral | = ] —————dx.
eg [j[] V9 +8x —2x2

In this subsection, we have so far discussed only indefinite integrals. However the techniques presented here can
just as easily be used to evaluate definite integrals. You need only remember to transform the limits of
integration appropriately in each of Steps 2 and 3; if you do this, there will be no need for Step 4.

Question T5
[ 1

Evauae | ————dx. O
| X2 —6Xx + 25
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2.3 Splitting the numerator

In the previous subsection, you learnt how to find integrals where the integrand had a quadratic denominator that
did not factorize, and had a constant in the numerator. Suppose the integrand had an expression linear in x in the
2x+3

numerator, instead of a constant; for example, suppose you were required to integrate T —ax+ 10"
X2 = 4x

How would you proceed here?
To see what to do in such a case, notice that we in fact already encountered an integral of this sort in Example 2,
where we had to find the integral q] 2x+1

dx We evaluated it by writing it as the sum of the two integrals:

X2 +1
to the derivative of the denominator; thus the substitution y = x2 + 1 enabled usto find it. The second could also
be found, using the substitution x = tany.

F|] 2X dx and Flj N +ldx. The first of these integrals could be easily evaluated, since the numerator is equal
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. . + .
We can apply the same idea to an integral such as q] #xilo dx. We write the numerator as the sum of two

terms, one which is a multiple of the derivative of the denominator and the other a constant. In the present case,
thisis easy to do. The derivative of x2 — 4x + 10 is 2x — 4, and clearly the numerator of our integral, 2x + 3, is
equal to (2x — 4) + 7. So we write the integral as the sum of two integrals:

ﬂdx: &dx.k ;dx (%)
X% —4x+10 X? —4x+10 X% —4x+10
Thefirst integral on the right-hand side of Equation 4 can be found by means of the substitution y = x2 —4x + 10,
and since dy = (2x - 4) d x, the integral becomes [Jljldy =log.y+ C =loge(x2 —4x +10) + C.
y
The second integral on the right-hand side of Equation 4 is of the sort you learnt to evaluate in Subsection 2.2.

Thetrick of writing

numerator = multiple of derivative of denominator + constant

isknown as splitting the numer ator . It involves only very simple algebra, as the following example shows.
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Example5

2x+1

lit the numerator in theintegra | —————
> = F|]3x2+4x+2

Solution  The derivative of the denominator is %(3x2 +4x+2) =6x+4.Sowewrite2x + 1 =a(6x + 4) + b.

Equating the coefficients of x on both sideswe find 2 = 6a, i.e. a =1/3, then equating the constant terms we find
1=4a+b,sothatb=-1/3.

Thus de:l &dx—l ;dx
X2 +4x+2 3] 3x2+4x+2 3] 3x2+4x+2

O

Split the numerator in the integral _Amx dx.
X2 -x+3
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. " - 1-x
The technique of splitting the numerator can also be used to find integrals such as [ —————— dx where the
q splitting €g %] 5oy - x2
integrand has the sguare root of a quadratic function of x in the denominator, and a linear function of x in the
numerator. To find this integral, we again write the numerator as a multiple of the derivative of the quadratic

function in the denominator [in this case di(s - 2X — X?) = =2 — 2x], plus a constant; so that for this example
X

deria\éati\(e of

at quadratic

numerator cog{mt
we have 1-x =a(-2-2x)+ b

Equating the coefficient of x, and the constant terms, on each side of this equation, wefinda=1/2, b= 2.

B e >\ S WOND Y N Y

%jv'S—Zx—x2 2%]\/5—2x—x2 %jv'S—Zx—xz

The first integral on the right-hand side here can be found by the substitution y = 5 - 2x — x2, so that
dy = (-2 - 2x) dx, and we have

1 -2 - 2X 1( 1 —
" dx=Z=t—dy=.y+C=45-2x-x2 +C
2#\5—2x—x2 2[{]\/@ Yo X
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The second integral is one of those that you learnt to evaluate in Subsection 2.2. We complete the square in the
denominator, to obtain

! dx = ! dx
#\/S—ZX—XZ {6 - (x+1)2
and make the substitution y = x + 1, followed by the substitution y = /6 sinu to obtain [

%dX = aI'CSinQL:]-Q'FC
v5-2x - x? \6

. 1-x — IE 9w _ w2 . [Ox+1
So, finally, ?de—vs 2X =X +2arcsm§\/—6§+c

Question T6

r

——dr,wherea, b and c are constants, for thecasea=-1,b=4and c=3.
var?+br-c

Find the integral t = F}j

(Such integrals arise in physics when the motion of an object that is moving under an inverse square law of force
is considered. Its distancer from the centre of force will berelated to timet by such anintegral.) O
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2.4 Substitutionsinvolving hyperbolic functions
Y ou should know how to evaluate integrals of the form: (R

o1 o
o M ﬁ dx by means of the substitution x = sinu 0
o h—=1_ux by means of the substitution x =tanu  []
T x2+1
o M le_ 1 dx  using partial fractions. O

Looking at thislist, it may occur to you that there are two integrals which are missing from it, although they are
very similar to the integrals that do appear there: we have in mind the integrals

dx and #;dx

F] VX2 +1 vx2 -1

In this subsection, we will show how to find these integrals (and many more which are related to them).
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The integral []————dx is equal to arcsinx + C; and one way to prove this is to make the substitution

X = sinu. This substitution gets rid of the square root in the denominator, by virtue of the trigonometric identity
cos?u + sinfu =1; v1- x2 becomes v1-sinZu = cosu, and this gives us a clue as to how to proceed with the

integral []———— dx. We recal that the hyperbolic functions cosh and sinh satisfy an identity very similar to
il e y yvew

the one satisfied by cos and sin, but with a minus sign present, i.e. instead of cos?u + sin2u =1, we have
cosh? u —sinh2u =1. Thus we can get rid of the square root in +/1+ x2 if we make the substitution x = sinhu,

which gives 1+ x2 =+1+sinh2u = coshu. Since %(sinhu) = coshu, we also have dx = coshu du.

So, with the substitution x = sinhu, the integral [ ———— dx becomes ver , and specifically we have
sl Y ey, andspectiealy

1 0ol @O
———dx= coshudu=u+C
4]\,'1+ x2 [jljﬂcoshuD

If x = sinhu then u = arcsinhx. Thus finally we have the result
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%j—, 21+1dx:arcsinhx+c (5) [
VX

1 I dx . The identity can be

\ /X2
rewritten in the form sinhu = +/cosh? u — 1, which suggests that we make the substitution x = coshu.
O

We can also exploit the identity cosh? u — sinh? u = 1 to evaluate the integral 4]

dx become if we make the substitution x = cosh u?

What does the integral [J[j—
Vx2 -1

If x = cosh u then u = arccosh %, so that

=

,; dx = arccoshx + C (6)
Vx2 -1
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. . 1 1 N
Now that you know how to find the basic integrals [] ———— dx and []—— dx, you should not find it hard
Y = 4]\/1+x2 %]\/xz—l y
to adapt the method to find integrals involving similar square roots. Here is an example.

Example 6

1
——0X
N4+ 9x2

Find the integral q]

Solution  The experience that we gained in deriving Equation 5 suggests that we need to make a substitution of
the form x = asinhu, where a is a suitably chosen constant. We choose a so that the identity cosh?u - sinh2u=1
can be used to turn /4 + 9x2 into amultiple of coshu. If we substitute x = asinhuinto /4 + 9x2 , it becomes
V4 +9a2sinh? u which isequal to 2 coshu if we choose 9a2 = 4, i.e. a = 2/3. So the required substitution is

X = (2/3) sinhu. We then have dx = (2/3) coshu du, and the integral becomes

1 1
= — = —uy+
4] W F|] (2/3)coshudu 4]3du 3u C
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Since x = (2/3) sinh u we have u = arcsinh (3x/2) and so finally we obtain

%ﬁ;dx:}arcsinhmxm

— petie e
N4 +9x2 3 20

When you have to evaluate integrals of the form 4] dx where a and b are positive

1 1
va+bx? b or 4] vbx?2 -a
constants, you should start by asking yourself ‘What substitution will get rid of the square root in the
denominator when | use the identity cosh? u—sinh2u =17 If you make this your goal, you will be able to decide
whether you need to make a substitution of the form x = asinh u or of the form x=acoshu, and you will also be
able to determine the required value of the constant a. Use this approach in answering the following question.

Question T7

Find theintegrals: (a) 4] 1

2
—dx, (b —— dx O
Vax? -1 ®) [Jl:I\SXZ +3
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Y ou can, of course, combine substitutions involving hyperbolic functions with the techniques of completing the
square and splitting the numerator, in order to find even more integrals. For example, consider the integral

| = %dx
VAX + x?

0 Write the quadratic function 4x + x2 in completed square form.

0 What substitution should we make in order to evaluate ﬁ[j —dy?
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Question T8

Find theintegral q] __r dr.

V2 +2r-2 o
(Hint: This question requires you to split the numerator; this will leave you with two integrals, one to be found
by completing the square in the denominator and substituting a hyperbolic function.) [

We have seen that substitutions of hyperbolic functions enable us to find many integrals where the denominator
of the integrand is the square root of a quadratic function. They can also be used to integrate other functions
involving a square root of this sort, asin the following example.
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Example7

Find the integral I\/xz —-1dx.

Solution Wefirst try the substitution x = coshu. Then +/x2 -1 = sinhu and dx = sinhu du. So our integral
becomes I sinh? udu. This may not immediately seem like much of an improvement on the integral we started
with. However, there is an identity involving hyperbolic functions which will help us here: the identity
cosh(2u) =1+ 2sinh?u. D_Rearrangi ng this gives us sinh? u = $[cosh(2u) - 1], and substituting this into the
integral Isinhz udu gives

J’snhzudu—%fcosh(zu)du—%j ldu=1% smh(2u)—— +C []

We could put
u = arccoshxin here

We now need to express our answer in terms of x. Of course, we could simply put u = arccoshx everywhere in
the answer, but it isin fact possible to simplify the expression sinh (2 arccosh X) if we recall another identity,
sinh (2u) = 2coshu sinhu, and usetheresult sinhu =+/cosh?u—-1.
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Then we can write sinh(2u) = 2coshuy/cosh2u —1 = 2xy/x2 — 1, and so the final answer is
JVxZ-Ldx=3xvx? -1~ $arccoshx+C [

Study comment  The indefinite integral in Example 7 was quite hard, partly because of the work required to express the

final answer in terms of X. In the following question you are asked to evaluate a similar definite integral; if you transform the

limits of integration when you make the substitution, you will not need to obtain afinal answer in terms of x.

Question T9

The length of the section of the parabola y = x2 between the points (0, 0) and (1, 1) is given by the integral

1
J’\/l+ 4x2 dx.
0

Evaluate thisintegral, using the substitution x = 4sinhu and the identity cosh (2u) = 2cosh?u-1. O
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We could carry on almost indefinitely, and work through many examples of integrals which can be found using
the substitution of a hyperbolic function. (For example, the integral J‘\s’xz —4x +1dx can be found by the

method described in Example 7, but you need to complete the square first.) However, we do not have the space;
besides, it would become very tedious. Y ou should simply bear in mind that whenever you encounter an integral
that contains the square root of a quadratic function of x, a sinh or cosh substitution may well enable you to
simplify it, if you cannot think of anything else. Of course, there may be quicker ways to do an integral of that

sort!
O

What isthe quickest way to find the integral J’ XVx2 —1dx?
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2.5 Using trigonometric identities
Y ou should already know how to find integrals like Icosxsinz xdx, but we will explain how it is done for the
sake of completeness. Since cosx is the derivative of sinx, the substitution y = sin x can be used to simplify the
integral; and with this substitution, the integral becomes J’ y2dy =1y3 + C = 1sin®x + C. You may not yet have
encountered similar integrals involving hyperbolic functions, L] suchas I cosh xsinh? xdx, but the same sort
of approach will work with those: cosh x is the derivative of sinh x, so, with the substitution

y =sinhx
thisintegral similarly becomes

J’cosh xsinh2 x dx :Iyzdy =1y3+C=4sinh¥x+C
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How can we find the equally simple-looking integral Ico§ xdx?
If we use the trigonometric identity cos? x + sin? x =1, we can write thisintegral as the sum of two integrals that
can be found. We proceed as follows:
J'cos3xdx = Icosxcosz xdx = J'cosx(l—sin2 x) dx
—
1-sin? x
= [cosxdx —[cosxsin® xdx =sinx - 4sin®x+C

A similar approach will enable you to integrate any product of powers of cosx and sin x in which either cosx or
sinx (or both) israised to an odd power. Here is an example.
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Example 8
Find the integral J'sins X cos® x dXx.

Solution We write thisintegral as J’(si né x cos? x)cosxdx. | We then express cos?x in terms of sinx,
writing cos*x = (1 - sin?x)?, so the integral becomes J’si n® x(1 - sin? x)2 cosx dx. We now make the

substitution y = sinx, dy = cosx dx, to obtain the integral

1 2 1
6(1—v2)2dy = 6 —2v8 + vI0)dy = —v7 — 29 + 14 C
[y A-yA)rdy = [(y> —2y" +yP)dy =y = oy  + oy
So finally, J’sinexcos'Sxdx:%sin7x—§sin9x+lilsinﬂx+c O

Question T10
Evaluate the definite integrals:

Tt Tt
@ Isi n3xdx (b) Isi n3xcos? xdx [ 0
0 0
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A very similar method can be used to find integrals of odd powers of coshx or sinhx; you simply need to employ
the identity cosh? x — sinh?x = 1.

O
Find the integral Isi nh3 x dx.
Y ou now know how to integrate odd powers of cosx and sinx (or cosh x and sinhx); what about even powers?
How can we find, for example, J’cos2 xdx and J’si n? x dx ? Here we can make use of the identity
cos(2x) =2cos?x—1=1-2six
which can be rearranged to give two very useful relations:

cos? x = $[1+ cos(2x)] (79)

sin? x = $[1 - cos(2x)] (7b)
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cos? x = $[1+ cos(2x)] (74)

sin? x = 1[1 - cos(2x)] (7o)

We can use Equation 7ato find J’ cos? xdx. We write
J’coszx dx = 7J’[1+ cos(2x)] dx = %J’ldx + %Icos(Zx) dx

The first of these integrals is equal to 4x+C and the second is equal to Zsin(2x)+C,
soJ‘coszxdx:%x+%sin(2x)+C

0 UseEquation 7b to find the integral J’si n? xdx.

 Expresscos? (x/2) in terms of cosx.

FLAP M55 Further Integration o 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



O Find I cos? (x/2) dx

To evaluate higher even powers of cosx or sinx, we can simply use the identities in Equations 7a and 7b more
than once, as in the following example.

Example9 Find theintegral I cos* x dx.
Solution Using Equation 7a,

cos? x = $[1+ cos(2x)] (Egn 7a)
we have
J’cos4 xdx = %J’[l+ cos(2x)]2 dx = %J’ldx + %J’cos(Zx) dx + %Icos2 (2x) dx (8

We can easily integrate the first two terms here, and to deal with the last term we use Equation 7a again, with x
in that equation replaced by 2x, giving cos? (2x) = $[1+ cos(4x)].

Substituting this in Equation 8 gives us
J’cos4 xdx = gj’ldx + %Icos(Zx) dx + %J’cos(4x) dx =§x+4sin(2x)+4sin(4x)+C O
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With other integrals involving even powers of cosx and sinx, it may be necessary to use the identity
cos?x + sinx = 1, as well as the identities in Equations 7a and 7b. For example, consider the integral
J’ cos? xsinZ x dx. One way to evaluate this would be to replace sin?x by 1 — cos? x, thus turning the integral into

J’ cos? xdx — I cos* x dx . These are both integrals that have been covered in this module.

Another way to evaluate J‘cos2 xsinZ xdx isto make use of the identity
Sin(2x) = 2sinx cosx 9
Since the integrand is simply (sin xcosx)2, we can write the integral as %Isi N2 (2x) dx.
Y ou should also be familiar with this integral.
| dentities analogous to those in Equations 7a, 7b
cos? x = 3[1+ cos(2x)] (Egn 79)
sin? x = 4[1 - cos(2x)] (Egn 7b)
and Equation 9 hold for hyperbolic functions.
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cosh? x = $[1+ cosh(2x)] (10)
sinh? x = 3[cosh(2x) - 1] (12)

sinh (2x) = 2sinhx coshx (12

These may be used to evaluate integrals of even powers of cosh x and sinh x. We have already used Equation 11
to evaluate J’ sinh? xdx in Example 7. Y ou can practise using these identities by trying the following question.

Question T11

Find the integral Isinh“xdx. 0

Repeated use of the identities in Equations 7a, 7b and 9 to 12 can, however, become rather tedious in working
out integrals of high even powers of cosx and sinx (or cosh x and sinhx). In the next subsection, we show you an
alternative, less laborious, way of finding such integrals.
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2.6 Reduction formulae

We have just shown you one way of finding the integral I cos? xdx. This integral can also be found using
integration by parts, and the method is worth describing, as it will lead to an elegant means of finding integrals
of high powers of cosx and sinx.

We introduce the notation | = J’ cos? x dx. Applying the formulafor integration by parts

J’f(x)g(x) dx = F(x)g(x) —J’F(x)%dx where dr = f(x) (13)
dx dx
and taking f(x) = g(x) = cosx, so that F(x) = sinx and % = -sinx, wefind

I :J’cosxcosxdx:sinxcosx— sinx(—sinx)dx
COSX COSXOX =SNXCOoSX — [SNX
JOREIC) FOO a0 © FOO agiac
| =sinxcosx +J’sin2xdx = sinxcosx +‘[[1—cos2 x]dx = sinxcosx + [1dx - cos? x dx
theintegral |

Pay particular attention to the fact that the integral | has appeared on the right-hand side of the final expression.
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If we replace Ildx by x + C we can write the result of the above calculation in the form
| =sinxcosx+x+ C—|
we can see that by rearranging this equation we have
2l =sinxcosx+x+ C
so that the required integral is given by
| = [cos? xdx = Fsinxcosx +§x+C a4 L
Let us see what would happen if we applied the same method to the integral of some other power of cosx.
In fact, we will not specify the power; we will consider the general integral I, = J’cos“ xdx
(where nisapositive integer greater than 1). o
Wewritel,, as J’ (cosx)(cos"1) dx and apply Equation 13,

J’f(x)g(x) dx = F(x)g(x) —J’F(x)%dx where 3—§ = f(x) (Egn 13)

taking f (x) = cosx and g(x) = cos™ 1 x. Then F(x) = sinx, and % = —(n-1)cos"? xsinx.
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So Equation 13

J‘f(x)g(x) dx = F(x)g(x) —J’F(x)%dx where Z—i = f(x) (Egn 13)

givesthe result

ln =sinxcos™ x +(n-1fcos"2x sn?x dx ]

replaced by
1-cos? x

I =sinxcos" x+(n —1)‘[005”‘2 x(1- cos? x) dx
=sinxcos" t x+(n- 1)J’cos”‘2 xdx — (n—1) [ cos" x dx (15)
thisisl,
Again, the integral 1,, that we are interested in appears on the right-hand side; unfortunately so does the integral

J’ cos" 2 xdx. Thisisnot an integral that we can evaluate as it stands, but note that it is of the same form asthe

integral |,, that we are trying to find; we can cal it I,,. With this notation, if we take al the termsin I, to the
left-hand side of Equation 15, it then becomes
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nl,=sinxcos™1x + (n = I,

n

_ 1‘[cos”‘2 xdx (16)

. 1.
i.e J’cos“x dx = =sinxcos"1x +
n n

The reason why Equation 16 is useful is that if we have already evaluated Icos”‘2 xdx, it allows us to write
down J’ cos"x dx very quickly. In thisway, it is possible to build up a whole sequence of integrals of powers of
cosx. For example, we have already evaluated J’ cos? xdx (see Equation 14); and we can use this to find
J’cos:4 xdx. We put n =4 in Equation 16, to obtain
sinxcos3x+3$inxcosx+§+C u

4 8 8 -
Now that we know J’cos4 xdx, we can useit in Equation 16, settingn = 6, to find J’cos6 xdx, and so on.

1.
J’cos4 xdx ==sin xcossx+§Icos2 xdx =
4 4
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O Substitute n = 3 in Equation 16,

1. n-1
J‘cos“xdx =Zginxcos"1x + —‘[cos”'2 X dx
n n

and hence find I cos3 x dx.

O

Find I cos® xdx (you may make use of Equation 17).

Icos3x dx = lsin xcos® ™t x + 3—_1'[0053'2 x dx
3 3

Wl

sin x cos? X+EIcosxdx :Essinxcos2 x+zsinx+C
3 3 3

(Egn 16)

(Eagn 17)
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Formulae such as Equation 16,

J‘cos”x dx = %sin xcos" 1 x + nT_l‘[cos”'2 xdx (Egn 16)

which relate an integral involving a power of some function (in the above case |,,) to asimilar integral involving
alower power of the same function (in the above case |, ,), are known as reduction formulae. They enable us
to build up awhole sequence of integrals, starting from an integral that is easy to evaluate. There is no need to
memorize reduction formulae, but you should be aware that they exist, and be able to look them up and use
them. We will present you here with two more examples of reduction formulae.

As you might expect, there also exists a reduction formula that enables us to find integrals of powers of sin x.
Hereitis:

J‘sin”xdx = —%cosxsin“‘lx+nT_1J'sin”‘2xdx (18)

The derivation of thisformulais very similar to the derivation of Equation 16, and we leave it for you to do in
the following question.
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Question T12
(a) Derive Equation 18.

J‘sin”xdx = —%cosxsin“‘1 X+ nT_lj'sin”‘2 xdx (Egn 18)

(Hint: Start by integrating 1, = Isi n" xdx by parts, taking f (x) = sinx and g(x) = sin"1x in Equation 13.)

J’f(x)g(x) dx = F(x)g(x) —J’F(x)%dx where 3—i = f(x) (Egn 13)

(b) Use Equation 18 to find J’sin3 xdx. 0O
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A third useful reduction formula deals with integrals of the form J’x“ e ¥ dx where a is a positive constant and

nisapositive integer. Again we use integration by parts to derive the reduction formula. In the integral, we take

f(x) = e&and g(x) = x", then F(x) = —ie‘ax and ? = nx""1 and substituting these expressions into
X

Equation 13,

J’f(x)g(x) dx = F(x)g(x) —J’F(x)%dx where 2—'):( = f(x) (Egn 13)

we obtain Iﬂl‘: dx = g_ée—axgxn) _ & %Xn—l%_ie—ax gdx
— | N

f(x) g(x)
F(x) g(x) dg/dx F(x)
1 n
sothat  [xmeT® dx = —x" = e + — [x"le"a dx a9 LI
a a

Equation 19 shows that we can express Ix” e & dx in terms of Ix”‘l e dx, an integral involving one less
power of X.
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Inthe simplest case, if n=1in Equation 19,
1 n
xNem& dx = —x" —e & + — [ xN~lg=ax gy Eqgn 19
| e (Eqn 19)
we can find Ixe‘axdx,andsoobtain
1

X 1 X
J’xe‘aX dx = ——e™& +—J’e‘ax dx=—-—e&-—_—eg&+C
a a a a2

O

Given that Ixe‘axdx = —ge‘ax —a—lze‘ax +C, find Ixz e axdx.
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2.7 Mixed examples

Aside Y ou may be aware of the existence of algebraic computing programs such as: Mathematica, Reduce, Maple, Mathcad
or Derive, which can find indefinite integrals, and evaluate definite integrals as functions of the parameters appearing in
them. If so, you may be wondering why you should bother to learn advanced integration techniques; why not just key in the
integral and let the program do the work? Such programs have their limitations. They may not give you the answer in the
form you are expecting, for instance, in Example 6 we found

1 _ Bx0,
4]f\/4+9x2 o= CsthZD

but using Derive you would obtain

1 1
#WdXZEIOQev(QXZ +4)+3x +C.

It is not immediately obvious that these two answers are the same.

In the case of improper but convergent integrals, the program may decide (incorrectly) that the integral cannot be evaluated,
and you may have to make a substitution in order to make the integral acceptable to the program. Such programs can be very
useful, and they certainly aleviate the tedious business of calculating unpleasant integrals, but you would be very unwise to
use them without understanding the basic principles of integration.
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How to tacklea general integral

You have learnt severa tricks that will enable you to find a wide variety of integrals. We do not intend to
summarize them here. First, their uses are so widespread that such a summary would be lengthy and boring;
second (and more important) we do not want you to feel that you must learn by heart a long list of different
types of integral and the methods that will work for them. Certainly you should have these methods as part of
your ‘mathematical furniture’, but you should think of them as techniques to be applied in a ‘trial and error’
way. It is not a disaster if the first method you try does not work; you simply have to try something else.
Y ou should bear in mind too, that many integrals can only be found by a combination of the techniques you have
learnt here; it may, for example, be necessary for you to use more than one substitution, and perhaps combine
substitutions with algebraic manipulation or use of identities. Asyou gain more experience with integration, you
will begin to see automatically what sort of approaches are likely to prove productive with a given integral.

The following two questions should serve as revision of the integration techniques we have discussed.
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Question T13

Find the following integrals: 0

(a Fl] 5 1 dx (Hint: Use partia fractions.)
X = 2X

(b) Icos7(2x)sin4(2x) dx (Hint: Use trigonometric identities.)

(C) i
Flj 1+ 4x +2x2
function substitution.)

2
(d) I (X2 —1)32dx (Hint: Substitute a hyperbolic function; use the answer to Question T11.) 0O
1

dx (Hint: Split the numerator; complete the square in the denominator; use a hyperbolic
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Question T14

Find the following integrals:

3X +2 w2
@ 4]()(2+2X+2)(X_1)dx, (b) ‘!)'Smﬁxdx,

X2
(© #] N dx.
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3 Somedefiniteintegrals

3.1 Integralswith an infinite upper or lower limit

Definite integrals in which one or both of the limits is infinite occur very often in physics. Here are some

examples:

\% :J' Q ax
) 4TiEoX?

J‘ m dx, where x and a are constants, and a > 0
Zoo - A0

D m /2 o
vO= 4n=—— v3exp (—-mv2/2KT) dv
oD [Veem/AT)

00

Ix” e ¥ dx, where nisanon-negative integer, and a > 0
0

(20)

(21)

(22)

(23)

0

[}

=

=
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Definite integrals over an infinite range of integration are known as improper_integrals. The way to evaluate
them isto replace the infinite limit by a very large (but finite) number, evaluate the integral in the usual way, and
then see what happens to your result as the large number becomes larger still. More formally, we think of an
improper integral as alimit:

o b
f =i f
:—[ (x) dx barr;}[ (x) dx

b b
and [ fOodx= lim [ f(x)dx 0

—o00

If you can find the indefinite integral F(x) + C = J’ f(x) dx, evaluating an improper definite integral of the form

I f(x)dx simply requires you to know how the function F(x) behaves when x becomes very large. Often thisis
a

obvious.
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For example, to evaluate the integral in Equation 20,

\% :} Q dx (Eagn 20)

4Tig X2
we think of it asthelimitasR — o of

R
Q 4.0 od_ Qo ., 0
4TiEGX? H_4T[£OXB 4TegR  ATEr

r

As R becomes very large, 1/R becomes smaller and smaller, so that as R — oo the first term tends to zero.
So we are |eft with

00

V= Q dx = Q
4TigpX? 4TiEr
r
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Sometimes it may not be immediately obvious what happens to F(xX) as x becomes very large.
For example, at the start of Subsection 2.1 we showed that

1 = -
?mdx = loge(x +1) = loge(x +2) + C

00

1

— = _dx. LI We can express this integral as
(x+D(x+2)

Suppose that we want to find the definite integral 4]
0

lim [Ioge(x +1) - loge(Xx + 2)]3; what happens to the difference between two logarithms when their arguments,
a— o

i.e. (x +1) and (x + 2) both become very large? We can see what happens if we write this difference of
logarithms as the logarithm of afraction:

Ox+10

Ox + 20

As x becomes very large, the fraction tends towards the value 1, and its logarithm tends to zero.

loge (x +1) —loge (x +2) = loge

0

1 oo
1 4x=0-log.,2tC= 0.6931
FI](x+1)(x+2) Y0

0
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O
2
3x +2x+59

What isthelimit asx — o of :
2x2 —4x -1

Another potentially tricky situation arises when we consider the integral in Equation 23, namely J’ XN e & dx.
0

We are already part of the way in evaluating the indefinite integral J’ x" e~ dx; we derived a reduction formula
for it in Subsection 2.6:

J’x"e‘a‘x dx = —x" le‘ax + ijn‘le‘ax dx (Eqn 19)
a a

We can easily convert Equation 19 into a reduction formula involving definite integrals between 0 and o, by
putting in the limits:

e - e 2 N e
_gx”eade_ a[x“e«'ﬂX]o+a£xn e~ dx (24)
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We now need to know what happens to the function x"e?x asx becomes very large. There is something of a
dilemma here: e becomes very small for large x (remember that a is positive), but X" becomes very large;
which one wins? Although we will not prove it here, therule is as follows:

XNe _, DasX —» o (25) 0

for any n and any positive constant a

Using thisrule to evaluate the term [xn e‘ax]°0° in Equation 24,
p n @-ax 1 ax]® L N -1a-
[xe dx = -=[x"e ] +— [ x0Tt dx (Eqn 24)
0 a as

we see that the function is zero at the upper limit; it is also zero at the lower limit (because of the factor x7).
So Equation 24 becomes

00 0

J’x” e dx = Djxn‘l e~ dx (26)
0 as
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O

Evaluate the integral I e & dx
0

O

Evaluate the integrals J’ xe & dx and I X? e~ dx, using Equation 26.
0 0

00 0

J’x” e & dx = gj‘x“‘l e & dx
0 0

(Eagn 26)
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Y ou may be able to see a pattern emerging. If we now use Equation 26

0

Ix” e & dx = DJ’x”‘l e~ dx (Egn 26)
0 a 0

00

to work out Ix3 e & dx, wefind
0

” 3x2x1

x3e ™ dx = Ax3x2x1
rene e

00
, J’x“e‘axdx:— and so on.
a5
0

The general result is

00

x"e"@ dx =
!

(27)

an+1

g

Evaluate the integral I X7 e2x dx.
0
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So far, we have considered improper integrals which could be evaluated without using a substitution. Of course,
if you want to evaluate an improper integral using a substitution, you will need to transform the infinite limit of
integration appropriately. Sometimes it will turn into afinite quantity, asin the next example.

Example 10

Evaluate the integral 4] dx appearing in Equation 21.

—o00

(X—X0)? +@a?

Solution Thisintegral can be found using the substitution x — X, = atanu. Then dx = asec? udu, and

(X = %)2 + a2 = a2 sec?u. When x is very large and positive, soisx — o= atanu. [

If atanuisvery large, thenuiscloseto 172, and as tan u tends to infinity, u tends to 1v2; so the upper limit of
integration becomes 17/2. Similarly, the lower limit of integration becomes —172. Thus

< /2
. dx=1 J’ 1u=" O
(X = Xg)2 + a2 a a

—o00
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It is usually quite straightforward to change infinite limits of integration on making a substitution of the form
u = g(x) or x = h(u); you need only ask yourself ‘What does u tend to as x gets very large? Of course, often you
will find that the infinite limit of integration is still infinite. Thisisthe case in the following question.

Question T15

Using the substitution u = v2, and Equation 27,

© |
[xneadx = n (Ean 27)
5 an+l

evauate the integral I v3 exp(—mv2/2KT) dv that appearsin Equation 22. O o
(o)
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3.2 Gaussian integrals

Integrals of the form J’xr exp(—ax2)dx, wherer is a positive integer or zero, and a is a positive constant, are
0

particularly common in physics. Y ou have already seen one example of this sort in Equation 22

/2 o
0 m
0= 4m=—— v3exp (-mv2/2KT) dv Egn 22
Dznkng p(-mv2/2KT) (Ean 22)
(and evaluated it in Question T15). Many others like this arise in the kinetic theory of gases, in quantum
mechanics, and also in probability theory (which you may find yourself using to analyse experimental data).

In the case where r is an odd integer, such integrals can easily be evaluated, using the same substitution that you
employed in Question T15. To make it clear that r is odd, we will writer = 2n + 1, where n is any positive

00 00

integer or zero, and consider the integral IX2”+1 exp(—ax?) dx which we write as J’x2” exp(—ax?)xdx.
0 0
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We now make the substitution y = x2. Then xdx = %dy, and x2" = (x3)" = y". So

Xt exp(-ax?) dx = lJ’y“ e ¥ dy
0 2 0

We know how to evaluate J’ y" e ¥ dy; from Equation 27,
0

00

n!
Ix” e &dx = (Ean 27)
an+l
0
. n!
itisequal to ——. Thus
an+1
J’x2”+1 exp(—ax2)dx = — (28)
zan+1
0
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g
Evaluate I x5 exp(—-3x2) dx.
0

Notice, too, that because we can relateI x2"*lexp(—ax?)dx to Iy” e % dy by the substitution y = x2, and we

can find the latter integral (for any given vaue of n) by applying Equation 19

1 n
na—ax = —yn —ax n-la-ax
J’x e &dx =-x ae +aJ’x e & dx (Egn 19)

as many times as is necessary, thereis no problem in finding the indefinite integral IXZ”” exp(—ax?)dx, should
we want to do so.
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The situation is very different for the indefinite integral Ixf exp(—ax?)dx wherer isan even integer. If you try

the substitution X2 = y, you will quickly find that it does not help at all O there is an awkward factor of ./y left
over in the integrand. In fact, such indefinite integrals cannot be evaluated in terms of familiar functions (such as
exp, loge, powers of x and so forth). The simplest of these integrals (withr = 0, a = 1) is J’exp(—xz)dx.

This integral is in fact used to define a new function of x, known as the error _function, erf(x); the precise
definitionis

= 2 fexp(oy?
o 09 = [P (-2 /2)dy

It is possible to evaluate this integral for different values of x by numerical techniques, and the results have been
tabulated and can be looked up in books (indeed, some calculators have an ‘erf’ button). If you study advanced
probability theory in future, you are bound to come across this function. However, here we will be concerned

just with the definite integral J’exp(—xz)dx, and definite integrals such as J’xr exp(—ax?)dx(where r is an
0 0

even integer) which can be related to it. Such integrals are called Gaussian integrals.

FLAP M55 Further Integration o 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



It is possible to evaluate J‘exp(—xz)dx exactly by methods that are more advanced than those discussed in

0
FLAP; we will present the answer here, and then show that a whole host of other Gaussian integrals can be
found in terms of thisintegral. The basic result is

(29)

;Eexp(—xz)dx :%\/ﬁ

We can use Equation 29 to find the integral Iexp(—axz)dx. We simply make the substitution y =+/ax
0

dy, and the limits of integration are still 0 and . So J’exp(—axz)dx = ﬁj‘exp(—y )dy,
0 0

1
Then dx = —
Ja
and from Equation 29,
J'exp( ax?)dx= 1 | (30)
2\a
: h i
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O

Evaluate J‘exp(—axz)dx.

We can now use integration by parts to derive a reduction formula relating Ix’ exp(—ax2)dx to
0

_|’xf‘2 exp(—ax?)dx. To makeit clear that r is an even integer, we write r = 2n, where n is any positive integer.
0

We can write the integral J'XZ” exp(-ax?)dx as J’xexp(—ax2) x2"-1dx, and apply Equation 13,
0 0

J’f(x)g(x) dx = F(x)g(x) —J’F(x)gdx where dF = f(x) (Egn 13)
dx dx

taking f(x) = xexp(-ax?) and g(x)=x2""1
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Then F(x) = —2—1aexp(—ax2) (asyou can easily check by differentiating), and % =(2n-1)x3"-2,

So [xenexp(-ax?)dx = oentep(-a) 20T [x21-2 exp(~ax?) d (32)
) H 2a % 2a §

Now from the rule in Equation 25,
XNe& , 0asX —» o« (Egn 25)

(for any n and any positive constant a), we know that x2"~1 e tends to zero as x tends to infinity; and since
exp (—ax?) is smaller than e when x is large, we can be sure that x2"~1 exp (—ax?) also tends to zero as x tends
to infinity.

Since n = 1, x2-1exp(-ax?) = 0 when x = 0. So the first term on the right-hand side of Equation 32 is zero,
leaving us with the reduction formula

[ X" exp(-ax) dx = 2n-1 [X2"2 exp(-ax?) dx (33)
0 2a 0
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We can now use this reduction formula,
2n-1°7

J’xZ“ exp(-ax?)dx = —J’xz”’2 exp(—ax?) dx (Eqgn 33)
0 2a 0
and Equation 30,
Iexp(—axz)dx - E (Eqgn 30)
! 2Va

o

to work out values of J’x2“ exp(—ax?)dx for successively higher values of n.
0

O

Evaluate Ixz exp(—ax?)dx.
0

Gaussian integrals may sometimes appear in a disguised form. In the following question you have to make a
substitution before it becomes clear that you are dealing with a Gaussian integral.
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Question T16

Evaluate the integral I x3/2 g=5x dx . (Start by making the substitution x=y2) 0O
0

Finaly, integrals of the form Iexp(—axz + bx)dx can be easily related to the integral appearing in

Equation 31, J’exp(—axz)dx,

Cexp(-ax) dx = 2 exp(-ax?) dx = .| T
__[oexp( ax)dx—2‘([exp( ax)dx—\“‘a (Egn 31)

by the trick of completing the square in the exponent. The following example shows you how to proceed.
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Example 11
Evaluate the integral J‘exp(—2x2 + 4x) dx

Solution We write —2x2 + 4x in completed square form:
“22+4x=-2(x2 =29 =-2[(x-1)2 - 1] =-2(x-1)2+ 2

00

Thustheintegral can be written as J’exp[—2(x -1)?] €? dx. We now make the substitutiony = x — 1, dy = dx.

The limits of integration are still —e and «; s0, taking the constant €2 outside the integral sign, we have

}exp[—Z(x -1)?]e’ dx = €° }exp(—Zyz)dy
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Substituting a = 2 in Equation 31,
J’exp(—axz)dx = 2J’exp(—ax2)dx =
Zoo 0

we find that J’exp(—2y2)dx =\/1—2T; S0

[exp(-2x2 + 4x)dx = €2 \E ~0261 O

Question T17

Evaluate the integral J’exp(—%x2 -3x)dx O

(Egn 31)

© ©

& @

FLAP M55 Further Integration
THE OPEN UNIVERSITY

COPYRIGHT © 1998

S570 V11



3.3 Lineintegrals

This subsection discusses a type of definite integral that is known as a line integral. Line integrals can be used
(among other applications) to evaluate the work done by aforce, and we will introduce them in that context.

Suppose that an object moves along the x-axis under the influence of a constant force F, in the x-direction.

The work done by the force in moving the object from x = ato x =b isW = s,F,, where s, is the displacement of

the object. If the force is not constant, but instead varies with x, F,(x) say, then you may already know that the
b

work done in moving the object from x = a to x = b is given by the definite integral IFX(x)dx.
a

To derive this result, we divide the interval a < x < binto many small subintervals: we introduce n + 1 values of
x such that a = X; < X, < ... <X, < Xp+1 = b, and we define Ax = x;.1 — X;, where i is any integer in the range
1 <i<nandlet |Ax| be the largest of these subintervals. We can then say that over any one of these small

intervals, the force is approximately constant, so that the work done by the force in moving the object from x; to
X;+1 IS @pproximately equal to Fy(x)Ax;. Then the total work done by the force is approximately given by the sum

3 Fu(%) % (39
=1
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As we increase the number n of subintervals, and let the size of each one become smaller and smaller,
Equation 34

3 Fa(%) % (Ean 34)
i=1

becomes a better and better approximation to the actual work done. In the limit as n tends to infinity and
| Ax| tends to zero, we have

n

b
W = IAI)ilnjO iZlFX(xi)Axi =£Fx(x) dx (35)
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Let us now generalize these ideas to the case where the object is not
constrained to move aong the x-axis, but can move along a path in the
(%, y) plane, and where the force is not in the same direction as the
displacement of the object. First, we need to know the work done if a
constant force F acts on the object so asto move it along aline that is not
necessarily paralel to F, asin Figure 1. You may know that the work
done is given by the scalar product of F and the displacement s of the
object:

W=F s (36) a

If we resolve both F and s into their components along the x and y axes,
so that

F=(F.Fy) and s=(s,s)

we have the alternative expression for W

X

Figurel A constant force F moving
an object along a straight line.

W=F,s +Fys (37
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O A force of 20N acting in the y-direction moves an object along a straight line. The initial position of the
objectisx =2m, y=3m, and itsfinal positionisx =4m, y = 6m. What is the work done by the force?

Now consider the general case, where the object is constrained to move along a given curved path, and where
the components of F may be functions of x and y. To show that the components of F are functions of x and y, we
will write the vector F as

F(r) = (Fdx ), Fy(x, y))
To derive an expression for W, we proceed much as we did in deriving Equation 35.

W— I|m ZF (x)Ax = J’F (x) dx (Egn 35)

Essentialy the procedure isto divide the curved path into alarge number of straight sections, find the work done
moving along each of these sections, then add together all these small contributions to find an estimate for the
total work done.
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We define an arbitrary position of the object by the vector r = (x,y), Y4
then suppose the initial position vector of the object is r,, and its final

position vector is ry, (see Figure 2). We divide the path of the object
into n small subintervals. The position vector of the object at the start of
the ith subinterval is I'j_1, and at the end of it, the position vector is r;,

where ry = r, and r, = r,. We define Ar; = r;,, — r;, and denote the
components of Ar; by Ax; and Ay, so that Ar; = (AX;, Ay;). We then let
| Ar | denote the size of the largest subinterval Ar;. As before, over any

one of these small intervals, the force is approximately constant, so we
may use either Equation 36

X
W=F-s (Egn 36)
: Figure2 An object moving under the
or Equation 37 action of avariable force F(r).
W=Fs+F Eqgn 37
ySy

to derive an approximate expression for the work W; done by the force in moving the object from r; to r;,:
W, = F(r;) -Ar; (38)
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W, = F(r;) -Ar; (38)
which can be rewritten in the form
Wi = F(Xi, ¥i) AX; + Fy(%;, Vi) Ay (39)

The total work done in moving the object from r, to ry, is given, to a good approximation, by the sum of all the
W.. As we allow the size of the largest subinterval, |Ar|, to tend to zero (so that n tends to infinity), the
approximation becomes more and more accurate, while the sums become integrals. We have two ways of
writing the integral that results; using Equation 38, we have

n My
W= lim F(r)[dr, = (F(r) [dr 40
Aim, 3 F(r) _[ (r) (40)

while using Equation 39 gives us

n My
W= lim SRy 8 + Fy Oy By ] = [[Faxy)dx+ Fy(xy)dy]  (4)

|Ar|-.0i:l

Equation 40 gives a very concise way of writing down the integral that determines W, but, as you will see, in
practice we use Equation 41 to evaluate the integral.
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Anintegral of theform

[FOLdr = [[F.ocydx+ Fy(x y) dy]

Fa Fa

isknown asalineintegral.

Study comment  Many students have difficulties coming to grips with line integrals, and the source of the problemsis often
amatter of understanding. It isimportant to remember that alineintegral is alimit of asum—that is the definition, (and on
the face of it, this haslittle to do with inverting the process of differentiation). Evaluating aline integral is a separate issue; it
isamatter of turning the integral into aform that we recognize, and which we can calculate.

The path along which the object movesis crucial. If we know that the object’s path is determined by an equation
y =f(x), then we can express both F, and F, as functions of x only; we can also express dy in Equation 41

W:I I|m [F (x,yi)0x +F (x,,yI)Ayl] = })[Fx(x,y)dx+ Fy(x,y)dy] (Egn 41)

in terms of dx. This means that the line integral becomes an ordinary definite integral — something that we know
how to evaluate. A particular example should make the point clear.
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Example 12

A force F = 2yi +2xj L[| moves an object from the point (0, 0) to the point (1, 1) along the path y = x?
What is the work done on the object by the force? What is the work done if the same force moves the object
along the path y = x2?
Solution We use Equation 41,
n My
W= lim S [F06 ) 8% +Fy(x,y) Ay | = [[Fa(xy)dx+ Fy(xy)dy]  (Ean4d)
ra

|ar|-0 &

My

substituting F,(x, y) = 2y and Fy(x, y) = 2x. This gives J’(2ydx +2xdy), wherer,=O0andrp,=i+j. [

We need to evaluate thisintegral along two different paths
(a) Along the path y = x, we have dy = dx. So we substitute y = x and dy = dx into Equation 41

W = I[F (X, y) dx + Fy (, y)dy] f( 2y dx+ 2x dy) _f( 2y dx+2x dy )= f(2xdx+2xdx)

ra F (X y) F (X y) ra Iety X Ietdy dx ra
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On the right-hand side we now have a definite integral over X, and the limits of integration are the values of x at
thepointsr =r, and r = ry,, namely 0 and 1.

1 1
Thus W= J’(2x dx + 2xdx) = I4xdx = [ZXZ]; =

0 0

(b) Along the path y = x2 wehavedy: 2xdx, sointhis case
W= I[F (X, y) dx + Fy (, y)dy] I( 2y dx+ 2x dy) ‘f( 2y dx+2x dy )—I(Zx dx + 4x2 dx)
Fa Fy(XY) F (X y) Fa Iety <2 letdy=2xdx  Ta

Again the expression on the right-hand sideis just an ordinary integral, and once more the limits of integration
are0and 1. So

1 1
W:£(2x2dx+4x2dx):J;6x2dx:[2x3];:2 0 N
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Question T18
Find the work done when aforce F = 2xyi — 3yJ moves an object from the point (1, 2) to the point (2, 4) along

theliney=2x. O

We will finish with two comments.

First, although we have discussed line integrals only for paths that lie in the (X, y) plane, they can of course be
"o

written down for paths in three dimensions. In that case, J’ F(r) [dr can bewritten as
ra

]P[Fx(x, y,z)dx + Fy(x,y,2)dy + F,(X,Y,2) dz]

Fa
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To specify the path, we would need to know both y and z as functions of x; this knowledge would alow us to
turn the lineintegral into a definite integral over x, aswe did in Example 12.

M
Second, for some choices of the force F(r), the line integral J‘F(r) [dr is actually independent of the path

chosen to evaluate the integral; it depends only on the coordi nates of the endpoints of the path. (Thisis true of
the force in Example 12.) Forces of this sort are known as conservative forces. It is possible to specify necessary
and sufficient conditions that the components of the force F must satisfy if F is to be conservative.
Thisis beyond the scope of FLAP, but you are certain to meet them if you carry your study of physics further.
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4 Closingitems

4.1 Modulesummary
1 Integrals of the form #%dx, where p(x) and g(x) are polynomials in x, may often be converted into

sums of simpler integrals by writing the integrand in terms of its partial fractions.

2 If the method of partial fractions is to be useful, the denominator q(x) must factorize, at least partialy.
If q(x) is a quadratic function of x which does not factorize, the technique of writing q(x) in completed
square form and making a substitution of the form x = tanu allows usto find the integral .

3 Completing the sguare in the denominator, and making a substitution of the form x = sinu, allows usto find

integrals of the form _t dx, wherec> 0.
va+ bx —cx?
4 By splitting the numerator, we can write integrals of the form [}jpx—i dx and (in the case where
va+bx —cx?

px+q

the denominator does not factorize) dx as sums of two simpler integrals.
ax? +bx +c
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5 Two standard integrals, which can be found by substitution of the hyperbolic functions x = sinhu and
X = coshu, respectively, are

1 .
————dx =arcsinhx+ C and
#\/Xz‘l‘l [}]

[y2

1 . . .
N dx = arccosh x + C, where C is aconstant of integration.
\ X —

dx, where a, b are positive constants, can be found

1 1
Integrals of the form [ ——— —_—_—
* [Jlj Na+bx? Vbx? —a

by the substitution x = dsinh u or x = d cosh u, where d is a suitably chosen constant.

6  Substitutions of hyperbolic functions may also be used to find many other integrals involving square roots
of quadratic functions of x, especially when combined with the techniques of completing the square or
splitting the numerator.

7 Trigonometric identities may be used to find integrals of products of powers of cosx and sinx
(and the analogous identities for hyperbolic functions can similarly be used to find integrals of products of
powers of cosh x and sinhx).

dx andq]
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Reduction formulae are equations that relate an integral involving a power of x or some function of x to an
integral of the same form but involving alower power of x or the function of x. Two examples are

1. n-1
J’cos“x dx = =sinxcos"1x + —Icos”‘zx dx
n n

. 1 . n-1_.
and J’sm”xdx = —-=cosxsin"1lx+ —J’sm“‘Zxdx
n n

These are useful in finding integrals of high powers of cosx and sinx.

Definite integrals in which one or both of the limits of integration is infinite are known as improper
integrals. They are to be found by treating the infinite limit as a very large number and allowing it to tend to
infinity; formally, we have

) b b b
{f(x)dx = t!er;-!f(x)dx and _J'mf(x)dx = alln_1m£ f(x) dx
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10 Using therulethat x"e™@x _, 0asx — oo, for any n and any positive constant a, and a reduction formula for
the indefinite integral J’x” e & dx, we can derive ageneral result

00

J’x” e & dx = (Egn 27)
0

an+l
0

Definite integrals of the form J’x2“+l exp(—ax?)dx can be simply related to Ix” e~ dx, alowing usto
0 0

derive the genera result

00

J’X2n+1 exp(—axz) dx =
0

o (Egn 28)
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11 Gaussian integrals are definite integrals of theformJ’x2n exp(—ax?)dx. They may al be evauated in terms
0

o

of the basic Gaussian integral, J’exp(—xz) dx = %\/ﬁ using the reduction formula
0

” 2n-1

J’xz" exp(—ax2)dx = —J’XZ”‘2 exp(—ax?) dx (Egn 33)
0 2a 0

My
12 A line integral of the form J’F(r)[ﬂr is defined as a limit of a sum along a particular path. It may be
ra

evaluated by using the equation of the path to convert the line integral into an ordinary definite integral.
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4.2 Achievements

Having completed this module, you should be able to:
A1l Define the termsthat are emboldened and flagged in the margins of the module.
A2 Use algebraic techniques such as partial fractions, completing the square in the denominator, or splitting the

numerator to find integrals of the form 4] ZE ; dx, where p(x) and g(x) are polynomiasin x.

A3 Find integrals which involve square roots of quadratic functions of x using the substitution of an appropriate
hyperbolic function or trigonometric function.

A4 Use either trigonometric identities or reduction formulae to find integrals of products of powers of sinx and
cosx (and use identities to find integrals of products of powers of sinh x and coshXx).

A5 Choosg, for agiven integral, a method or combination of methods that will enable you to evaluate it 0 and
be prepared to try another approach if your first one does not work.

A6 Evauate definite integralsin which one or both of the limitsisinfinite.

00

A7 Use formulae such as Ix” -

7 to evaluate definite integrals

of these types.
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A8 Recognize Gaussian integrals, and integrals which can be related to these by means of a substitution or by
completing the square in the exponent; and evaluate these using Equations 30 and 33.

A9 Evauate alineintegral along a specified path in the (x, y) plane.
Study comment You may now wish to take the Exit test for this module which tests these Achievements.

If you prefer to study the module further before taking this test then return to the Module contents to review some of the
topics.
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4.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1
(A2) Findtheintegrals
o . 4x -3
@) 4] m dx, wherepisaconstant, (b) FIJ 4x2 —4X+5

Question E2

. . 1
A3) Findtheintegral []———dx.
A3 & F}jm
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Question E3

(A4) Findtheintegrals: (8) [cos®(2x)sin*(2x)dx, (b) }cos8 Xadx.
0

Question E4
(A5) Findtheintegras:

X+2
5 2 _
@ [}]\13_6)(_3)(2 , (b) [xcosh? xdx
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Question E5

(A3 and A6) By substituting an appropriate hyperbolic function, evaluate the definite integral

o

#m dx. (Hint: Y ou may find the answers to Questions R6 and R7 useful here.)
0

Question E6

(A7,A8) The Laplace transform [| of afunction f(X) is defined as the integral J’ f(x)e s dx, where s> 0.
0

Find the Laplace transforms of the functions (a) x3, (b) VX.
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Question E7

(A3 and A9) A particle moves along the path y =+/x2 — 4. It is acted upon by a force F = (-yi + xj)N.
What is the work done by the force in moving the object from the point (2, 0) to the point (3, /5)?

Study comment  Thisisthe final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questionsif you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it

here.
e
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