
       
F L E X I B L E  L E A R N I N G  A P P R O A C H  T O  P H Y S I C S

FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Module M6.2 Solving first-order differential equations
1 Opening items

1.1 Module introduction

1.2 Fast track questions

1.3 Ready to study?

2 Methods of solution for various first-order differential 
equations

2.1 Equations of the form  dy/dx = f1(x); 
direct integration

2.2 Equations of the form  dy/dx = h(y); 
inversion and direct integration

2.3 Equations of the form  dy/dx = f1(x)h(y); 
separation of variables

2.4 Equations of the form  a(dy/dx) + by = f(x); 
integrating factors

2.5 Choosing the correct method; 
what to do if none of them work

3 Closing items

3.1 Module summary

3.2 Achievements

3.3 Exit test

Exit module



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1 Opening items

1.1 Module introduction
First-order differential equations such as

dN

dt
= −λN3and3

dI

dt
= − RC

L
e− Rt / L

arise in many physical contexts. The defining characteristic that is common to all such equations is that they
contain no derivatives higher than the first; apart from this basic requirement they are free to take any form.
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This module introduces methods that can be used to solve four different types of first-order differential equation,
namely:

1
dy

dx
= f ( x ) , which can be solved by direct integration;

2
dy

dx
= h( y) , which can be solved by inversion followed by direct integration;

3
dy

dx
= f ( x )h( y) , which can be solved by separation of variables;

4 a
dy

dx
+ by = f ( x ) (where a and b are constants), which can be solved by means of an integrating factor.

The discussion of these techniques occupies Subsections 2.1 to 2.4 of the module. The technique of changing
variables, which can sometimes be usefully applied to equations that are not of any of the forms listed above is
briefly considered in Subsection 2.5. Throughout the module physical examples are used to illustrate the various
types of equation, but it is the mathematical aspects of the solution that are the main focus of interest.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 3.1) and the Achievements  listed in
Subsection 3.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 3.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.
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Question F1

Find the general solution of the following differential equations:

(a)
dy

dx
= x

4 − x2
(where –2 < x < 2)

(b) 2 x1 2 y
dy

dx
= 1 (where x > 0)

(c)
dy

dx
 = 1 – y2 (where –1 < y < 1)
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Question F2

Explain what is meant by an integrating factor. Use the method of integrating factors to find the general solution
of the differential equation

2
dy

dx
 = x – 4y

and find the particular solution if y = 1/2 at x = 0.

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to understand the following terms: constant of integration,
dependent variable, derivative, general solution, independent variable, initial condition, inverse derivative (i.e. indefinite
integral), linear differential equation and particular solution. You will need to have a good knowledge of differentiation
(including the product and chain rules, and implicit differentiation), and of integration methods (including integration by
substitution, integration by parts and the use of partial fractions); you should be familiar with the idea of checking a solution
to a differential equation by substitution. If you are uncertain about any of these terms, you can review them by reference to
the Glossary, which will also indicate where in FLAP they are developed. You should note that throughout this module x
represents the positive square root of x. The following Ready to study questions will allow you to establish whether you need
to review some of these topics before embarking on this module.



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question R1

Use the product and chain rules to express the derivative
d

dx
( x3 loge y)

in terms of x, y and dy/dx. (This kind of differentiation is known as implicit differentiation.)

Question R2

Determine the inverse derivatives (i.e. the indefinite integrals) of the following functions of x: 
(a) xe−x,3(b) ex

1cos1x.
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Question R3

By making suitable substitutions, evaluate the following indefinite integrals:

(a) x exp
x2

2






dx
⌠
⌡

,3(b) sin x (cos x )6∫ dx ,3(c) 1 − x∫ dx .

Question R4

By using partial fractions, evaluate 
1

x ( x + 3)
⌠
⌡

dx .
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Question R5

Explain the difference between a general solution and a particular solution of a first-order differential equation.

Question R6

Show by substitution that

I = 
E

R
 + Ce−Rt/L

where C is an arbitrary constant, is a solution of the differential equation

L
dI

dt
 + RI = E, where L, R and E are given constants.

Find the value of the arbitrary constant C in terms of E and R, given I = 0 at t = 0.
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2 Methods of solution for various first-order differential equations

Notation3When a general type of differential equation is discussed in this module the independent variable
will be denoted by x and the dependent variable by y. However, many of the examples given in this module are
drawn from problems in physics, where the context suggests more appropriate symbols for the independent and
dependent variables. Other examples involve purely ‘abstract’ differential equations and may also use a different
notation. Bear in mind that the quantity being differentiated will always be the dependent variable.

For each of the four methods described in Subsections 2.1 to 2.4, a particular example from physics is used as an
illustration.
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2.1 Equations of the form dy/dx = f1(x); direct integration
There is a whole class of first-order differential equations that you can already solve. In general, these equations
are of the form:

dy

dx
 = f1(x) (1)

where the derivative of the dependent variable is equal to a given function of the independent variable. A typical
example of this type of differential equation is dy/dx = cos1x. If the derivative of y is equal to f1(x), then, by
definition, y is the inverse derivative of f1(x), or, in other words, the indefinite integral of f1(x). Thus the solution
to Equation 1 can be written simply as an integral:

y = f ( x ) dx∫ (2)

In the particular case dy/dx = cos1x we have f1(x) = cos1x and therefore

y = cos x dx∫ = sin x + C3(where C is an arbitrary constant ☞).
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In general, when we evaluate the indefinite integral in Equation 2,

y = f ( x ) dx∫ (Eqn 2)

we will introduce an arbitrary constant of integration; hence Equation 2 gives us the general solution of
Equation 1.

dy

dx
 = f1(x) (Eqn 1)

The following differential equation can be solved by this method, which is known as the method of
direct integration:

Example 1 Find the general solution of the differential equation
dy

dx
= e2 x

Solution The general solution is

y = e2 x dx∫
that is y = 1

2 e2 x + C (3)3❏
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Question T1

Can the direct integration method be applied to the following differential equations? 
Find the general solution of the equation in those cases where the method can be applied.

(a) 
dy

dx
= x sin x3(b) 

dy

dx
= y sin y3❏

Very often the solution of such a problem in physics requires a particular rather than a general solution, which
means that we need an extra piece of information in order to assign an appropriate value to the arbitrary
constant. This extra piece of information is often provided in the form of an initial condition. For example,
suppose that in Example 1 we are told that y = 2 when x = 0. Substituting these values into Equation 3, we obtain

2 = e0

2
+ C , i.e. C = 3/2. Thus the particular solution, satisfying both the differential equation and the initial

condition, is y = e2 x

2
+ 3

2
.
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Resisted motion under gravity

Problems involving the motion of objects often give rise to differential equations that can be solved by direct
integration, and in such cases the initial condition arises in a very natural fashion. For example, we might know
the velocity vx(t) of an object as a function of time t, and want to calculate its position coordinate x as a function
of time. ☞  Since vx = dx/dt, this immediately presents us with a first-order differential equation, the general
solution of which can be found simply by integrating vx with respect to t. If we are given a value of x at some
particular time t, this will allow us to assign a specific value to the general solution’s arbitrary constant, and thus
solve the problem completely. The following question is an example of this sort of problem.
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Question T2

At time t = 0 a stone of mass m is thrown vertically upwards with initial velocity ux  ☞ (in this case we take the

vertically upwards direction to be the direction of increasing x values). The upward motion of the stone is
opposed by the (downward) force of gravity, –mg, and by a resistive force –mkvx (where k is a positive
constant). The height x of the stone above its point of projection at time t (> 0) can be shown to be given by the
solution of the differential equation

dx

dt
= ux + g

k




 e−kt − g

k

(a) Find the general solution of the differential equation.

(b) Use the initial condition x = 0 at t = 0 to find an expression for the height x of the stone at time t.3❏
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2.2 Equations of the form dy/dx = h(y); inversion and direct integration
Another common sort of differential equation is one where the derivative is a function of the dependent variable
only; such equations have the general form:

dy

dx
= h( y) (4)

The differential equation dy/dx = y3 is a typical example of this type of equation. Such equations can be
converted into a more convenient form using a relationship called the inversion rule:

dx

dy
= 1

dy dx
(5)
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A mathematical aside Since you may not be familiar with Equation 5,
dx

dy
= 1

dy dx
(Eqn 5)

we will give a quick proof of it. Suppose that y is some function of x so

y = f1(x) (6)

Differentiating both sides with respect to y, we obtain

1 = df1/dy (7)

To express df1/dy in an alternative way, think of f as a function of a function: f is a function of x, but Equation 6
defines x as the inverse function f1−1(1y). So, using the chain rule we obtain

df

dy
= df

dx
× dx

dy

but df1/dx is just the same as dy/dx, so Equation 7 gives us

1 = dy

dx
× dx

dy
, i.e. 

dx

dy
= 1

dy dx

as claimed in Equation 5.
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An example should make the matter clear. If y = x2 then we may differentiate with respect to x and obtain

dy/dx = 2x. On the other hand, if y = x2 then x = y = y1/ 2  and therefore 
dx

dy
= y−1/ 2

2
= 1

2 y
= 1

2 x
,

and therefore we have 
dx

dy
= 1

dy dx
. The following question reinforces this idea.3❏

Question T3

Calculate dy/dx and dx/dy, and show that they satisfy the inversion rule, in each of the following cases:

(a) y = x3
3(which has x = y1/3 as its inverse function);

(b) y = ex
3(which has x = loge1y as its inverse function).3❏
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Returning to Equation 4
dy

dx
= h( y) (Eqn 4)

this can be rewritten, using the inversion rule, as
dx

dy
= 1

h( y)
(8)

which is now in the right form to be solved by direct integration; so we have

x = 1
h( y)

⌠
⌡

dy

Provided that we can evaluate this indefinite integral, we can obtain x as a function of y. Ideally we should like
to represent y explicitly as a function of x but this may not always be possible, and we may have to be satisfied
with an equation that determines y as an implicit function of x.

✦ Find the general solution of the differential equation
dy

dx
= 1

5y4 + 1
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The radioactive decay equation

As a further example of this method, let us solve Equation 9, the equation of radioactive decay
dN

dt
= −λN (9)

where N is the number of radioactive nuclei present at time t and λ is a constant characteristic of the decaying
substance and is known as the decay constant.

Inversion of Equation 9 gives us
dt

dN
= − 1

λN

and direct integration gives

t = − 1
λN

⌠
⌡

dN = − 1
λ

1
N

⌠
⌡

dN = − 1
λ

loge N + C

so that the general solution of the differential equation is t + 1
λ

loge N = C .

However, it may be possible to write this equation in a neater form, so let us try to make the dependent variable,
N, the subject of the equation.
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If we rearrange the general solution we find

C − t = 1
λ

loge N3i.e.3loge1N = λ(C − t)

Using the fact that loge and exp are inverse functions, we can exponentiate both sides, to obtain

exp1(loge1N) = exp1(λC − λt)3so that3N = eλC e–λt

This is a perfectly valid form of the general solution to Equation 9,
dN

dt
= −λN (Eqn 9)

but it is convenient and conventional to write it in a slightly different way. Since λ  is a given constant and C is
an arbitrary constant, exp1(λC) is just another arbitrary constant, which we can call A. The general solution to
Equation 9 can therefore be written as

N = Ae–λt (10)

Having found a general solution to a differential equation, it is always a good idea to check that it is indeed a
solution, by substituting it back into the original equation.

✦ Check that Equation 10 is a general solution to Equation 9.
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You may find it useful to think of the technique of inversion and direct integration in four steps:

Inversion and direct integration

1 Invert 
dy

dx
= h( y)  to obtain 

dx

dy
= 1

h( y)
.

2 Integrate to obtain x = 1
h( y)

⌠
⌡

dy .

3 Manipulate this equation to make the dependent variable y the subject.

4 Check your general solution by substitution.

There may often be one further step — the use of an initial condition to obtain a value for the arbitrary constant
appearing in the general solution. You can practise these various steps by answering the following question.
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Figure 13See Question T4.

Question T4

When water flows out of a hole in a bottle of constant cross-sectional area
(see Figure 1), the height y  of the water above the hole varies with time t
according to the differential equation

dy

dt
= −k y

where k is a positive constant. Find (a) the general solution of this differential
equation, and (b) the particular solution corresponding to the initial condition
y = y0 (where y0 > 0) at t = 0.3❏

We have now seen how to solve a first-order differential equation if the
derivative of y is equal either to a function of x alone, or to a function of y
alone.

In the next two subsections, we will consider some cases where the derivative
is equal to a function of both x and y.
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2.3 Equations of the form dy/dx = f1(x)h(y); separation of variables
To illustrate the mathematics discussed here we will begin this subsection by presenting you with three
differential equations, drawn from completely different branches of physics, and will then show you that they
are all of the same type. After explaining the general method of solving such differential equations, we will
apply the method to two of these equations, and leave you to solve the third.

Volume and pressure in a gas

The first example concerns the way in which the pressure P of a gas varies with its volume V if the gas is
compressed or expanded in such a way that, though the temperature may change, no heat is allowed to enter or
leave the gas. ☞ The differential equation determining P as a function of V is

dP

dV
= − γ P

V
(11)

where γ is a positive constant that depends on the nature of the gas.



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

A space probe

For the second example, consider the case of a space probe launched vertically upwards from the Earth’s
surface. When the probe is at a distance r from the centre of the Earth, its outward velocity vr satisfies the
differential equation

  

dvr

dr
= − µ

vrr2
3(for r > R and vr > 0) (12)

where R is the radius of the Earth and µ is a positive constant.
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B

A
x

P

Q
θ

mass

Figure 23A flexible beam clamped at end B
with a mass suspended at end A. The line PQ is a
tangent to the beam at point P.

A flexible beam

Finally, Equation 13 describes the shape taken up by a thin
flexible beam of length a which is caused to bend when a mass is
suspended at one end, while it is clamped at the other end
(see Figure 2):

cos θ dθ
dx

= k (a − x ) (13)

where the variables x and θ are defined in Figure 2, and k is a
positive constant.
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Equations 11 to 13 have a common property.

dP

dV
= − γ P

V
(Eqn 11)

  

dvr

dr
= − µ

vrr2
3(for r > R and vr > 0) (Eqn 12)

cos θ dθ
dx

= k (a − x ) (Eqn 13)

They may all be written in such a way that the derivative is equal to a function of the independent variable
multiplied by a function of the dependent variable. Equations 11 and 12 are already in this form, but Equation 13
requires a little rewriting to make it of this type; if we divide both sides by cos1θ, we obtain

dθ
dx

= k(a − x)
cosθ



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Table 1 clarifies this common structure.

dP

dV
= − γ P

V
(Eqn 11)

  

dvr

dr
= − µ

vrr2
3(for r > R and vr > 0) (Eqn 12)

dθ
dx

= k(a − x)
cosθ

(Eqn 13)

Table 13Common features of Equations 11 to 13.

derivative function of dependent
variable

function of
independent variable

gas dP

dV
= P × − γ

V

space probe

  

dvr

dr
=

  
− µ

vr

× 1
r2

flexible beam dθ
dx

= 1
cos θ

× k (a − x )
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All these differential equations are, therefore, examples of the general form

dy

dx
= f ( x )h( y) (14)

A differential equation of this type is said to be separable, because it can be solved by a method known as
separation of variables, which we will now explain.

We first rewrite Equation 14 so that there is only a function of x on the right-hand side, by dividing both sides by
h(1y):

1
h( y)

dy

dx
= f ( x )

i.e.3 j ( y)
dy

dx
= f ( x ) (15)

where, purely for convenience, we have introduced the notation j(1y) = 1/h(1y). We now integrate both sides of
Equation 15 with respect to x
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j ( y)
dy

dx
⌠
⌡

dx = f ( x ) dx∫ (16)

The right-hand side is no problem, but the left-hand side appears less straightforward. However, you should be
familiar with the method of integration by substitution, which is based on a rule of the following form

j(y) dy∫ = j(y(x))
dy

dx
⌠
⌡

dx (17) ☞

the implication of this is that the expression 
dy

dx




 dx  inside the integral can be replaced by dy. 

Using this result in Equation 16 gives

j ( y) dy = f ( x ) dx∫∫
or, in terms of the function h(y),

1
h( y)

⌠
⌡

dy = f ( x ) dx∫ (18)

Provided that both integrals can be evaluated, Equation 18 gives a relation between y and x, which represents the
general solution of the differential equation. This relation can sometimes be manipulated to make y its subject.
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The following example should make the method of separation of variables clearer.

Example 2 Find the general solution of Equation 11,

dP

dV
= − γ P

V
(Eqn 11)

and express P as an explicit function of V.

Solution If we divide by P and integrate both sides of the equation with respect to V we get

1
P

⌠
⌡

dP

dV
dV = − γ 1

V
⌠
⌡

dV (19)

The integral on the right-hand side is simply −γ1loge1V + C. ☞ To evaluate the integral on the left-hand side, use

Equation 17 j(y) dy∫ = j(y(x))
dy

dx
⌠
⌡

dx (Eqn 17)

to write Equation 19 as
1
P

⌠
⌡

dP = − γ loge V + C

which implies loge1P = – γ11loge1V + C (20)3❏ ☞
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Equation 20

loge1P = – γ11loge1V + C (Eqn 20)

is the general solution, but it may be possible to write it in a neater form. To do so, first make use of the fact that
a function of an arbitrary constant is itself an arbitrary constant, so it is certainly possible to define a new
arbitrary constant C1 by means of the equation C = loge1C1. Using this new constant Equation 20 becomes

loge1P = – γ 1loge1V + loge1C1 = loge1(C1V1−γ)

exponentiating both sides then gives,

P = C1V1−γ   where C1 is a constant

✦ Check this general solution by substitution.

A short cut There is a short cut which many people take when using the technique of separation of variables.
It involves treating dy/dx as though it were ‘dy’ divided by ‘dx’. We will show you how it works on the next
page.
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In the text above, we went from the differential equation
1

h( y)
dy

dx
= f ( x ) (Eqn 15)

to the equation
1

h( y)
⌠
⌡

dy = f ( x ) dx∫ (Eqn 18)

by using an argument based on the rule for evaluating integrals by substitution.

However, many people would bypass this rigorous argument, and instead simply ‘multiply’ both sides by
Equation 15 by ‘dx’ to get

1
h( y)

dy = f ( x ) dx (21)

i.e. they would ‘separate’ the ‘dy’ and ‘dx’ as well. They would then integrate both sides of this equation, and so
arrive at Equation 18.

There is nothing wrong with setting out your solution in this way provided you understand that it is nothing
more than a notational short cut and that you appreciate the rigorous derivation (given in Equations 15–18).3❏
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Example 3 Find the general solution to Equation 12,

  

dvr

dr
= − µ

vrr2
3(for r > R and vr > 0) (Eqn 12)

Solution To separate variables, multiply both sides of this equation by vr and by ‘dr’. This gives
vr1dvr = −µdr/r2

(the analogue of Equation 21).
1

h( y)
dy = f ( x ) dx (Eqn 21)

Now integrate both sides, to obtain

  
vr dvr = −µ∫

1
r2

⌠
⌡

dr
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Evaluating these integrals gives us the general solution

1
2 vr

2 = µ/r + C

(Note that the two constants of integration have again been absorbed into one constant.) 
Rearranging this equation to make vr the subject, we find

  vr = ± 2(µ r + C )

which is the general solution of the differential equation (Equation 12).

  

dvr

dr
= − µ

vrr2
3(for r > R and vr > 0) (Eqn 12)

(The two possible signs for vr appear because the space probe could be moving towards or away from the Earth.
As vr was defined as the outward velocity, the plus sign applies when the space probe is moving away and the
minus sign when it is moving towards the Earth.)3❏
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Before you start to apply the method of separation of variables yourself, you may find a summary of the method
as a series of steps helpful:

�
Separation of variables

1 If the differential equation is not obviously in the form
dy

dx
= f ( x )h( y) (Eqn 14)

try to write it in this form by appropriate multiplication, division or factorization. 
(If this cannot be done, then you must use some other method to solve the equation!)

2 Rewrite this in the form
1

h( y)
dy

dx
= f ( x ) (Eqn 15)
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3 Integrate both sides with respect to x to get
1

h( y)
⌠
⌡

dy = f ( x ) dx∫ (Eqn 18)

4 Evaluate the integrals, not forgetting a constant of integration.

5 If possible, manipulate the resulting equation to make y the subject.
6 Check your answer is a general solution by substitution.

You can now test your understanding of the method by answering the following two questions.
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Question T5

Are the following differential equations separable?

(a) 
dy

dx
 = x2y3 + x233(b) yx

dy

dx
 = 333(c) 

dy

dx
 = 2y + x2

33(d) 
dQ

dt
 = 2Q3❏

Question T6

Find the general solution of Equation 13,

cos θ dθ
dx

= k (a − x ) (Eqn 13)

and the particular solution corresponding to the initial condition θ = 0 at x = 0.3❏



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

It may have occurred to you that the two types of equation discussed in Subsections 2.1 and 2.2, namely,

dy

dx
= f ( x ) (Eqn 1)

and
dy

dx
= h( y) (Eqn 4)

are special cases of Equation 14:
dy

dx
= f ( x )h( y) (Eqn 14)

in Equation 1, h(1y) = 1; and in Equation 4, f1(x) = 1. Both equations could be solved by separation of variables
(compare part (d) of Question T5), but this method of solution might take rather longer than direct integration or
inversion.

In each of the methods that we have discussed we are, at some stage, required to evaluate integrals, and therefore
the success of the methods naturally depends on the corresponding functions being integrable. Later you may
meet integrals that cannot be expressed in terms of simple functions, in which case you may need to use a
numerical method, however such methods are beyond the scope of this module.
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A further problem, of which you should be aware, arises from the fact that division by zero is not defined.
Thus for the differential equation

dy

dx
= f ( x )h( y)

the manipulation that gives

1
h( y)

⌠
⌡

dy = f ( x ) dx∫

is only satisfactory if h(1y) ≠ 0. In Example 3 the conditions r > R and vr > 0 are sufficient to ensure that our
solution is valid.
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2.4 Equations of the form a(dy/dx) + by = f1(x); integrating factors
You have now seen three types of first-order differential equations for which a general solution can always be
found (provided, of course, that the integrals appearing in the solution can be evaluated). There is one other type
of equation which (with the same proviso) can always be solved.

This is the first-order linear differential equation, which has the general form

a( x )
dy

dx
+ b( x )y = f ( x ) (22)

where a(x), b(x) and f1(x) are arbitrary functions of x.
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Many of the linear first-order differential equations that you are likely to meet in physics are in fact rather
simpler than Equation 22,

a( x )
dy

dx
+ b( x )y = f ( x ) (Eqn 22)

in that y and dy/dx are multiplied simply by constants instead of functions of x (though a function of x may still
appear on the right-hand side). In this module we restrict our discussion to differential equations of this form.

A linear equation of this sort is called a first-order linear differential equation with constant coefficients.
A first-order linear equation with constant coefficients is, therefore, of the form

a
dy

dx
+ by = f ( x ) (23)

where a and b are constants. In this subsection we will explain how to solve differential equations of this type.

First, we will look at two examples of linear first-order differential equations with constant coefficients that arise
in physics. The first is a generalization of Equation 9.

dN

dt
= −λN (Eqn 9)
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Radioactive decay

If a radioactive substance A is not only decaying, but is also being formed by the decay of some other
radioactive substance B, then the number N of nuclei of substance A present at time t is given by the differential
equation

dN

dt
+ λN = µB0e−µt (24) ☞

where λ  and µ are the decay constants of substances A and B, respectively, and B0 is the number of B nuclei
present at time t = 0.
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R L

E1cos1ω t

Figure 33An electrical circuit
containing a resistor, an inductor and an
ideal voltage generator.

Electric current

The second example concerns the way in which the electric current I
in the circuit shown in Figure 3 varies with time.

The circuit contains an inductor of inductance L, a resistor of resistance
R , and an ideal voltage generator producing an alternating voltage
E1cos1(ω1t).

The differential equation determining the electric current I at time t is

L
dI

dt
+ RI = E cos(ωt) (25)
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The general approach3Look carefully at Equations 24 and 25,
dN

dt
+ λN = µB0e−µt (Eqn 24)

L
dI

dt
+ RI = E cos(ωt) (Eqn 25)

and convince yourself that they cannot be written in any of the three ways shown in Equations 1, 4 and 14,
dy

dx
 = f1(x) (Eqn 1)

dy

dx
= h( y) (Eqn 4)

dy

dx
= f ( x )h( y) (Eqn 14)

but that they are of the form shown in Equation 23.

a
dy

dx
+ by = f ( x ) (Eqn 23)
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The general method of solving equations such as Equation 23

a
dy

dx
+ by = f ( x ) (Eqn 23)

is somewhat more complicated than the other methods we have studied in this module; so, on this occasion, let
us start with a particular example that may make the general method easier to understand. If you are given the
information that

yex = sin1x + C (26)

where C is a constant, you would be able to differentiate this equation with respect to x to obtain

e x dy

dx
+ e x y = cos x (27)

Therefore if we were asked to solve the Equation 27, we can see immediately that its general solution is the
function y(x) given by Equation 26. But suppose that we alter the differential equation slightly by dividing both
sides by ex to get

dy

dx
+ y = e− x cos x (28)
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The general solution remains the same, it is still y(x), but the left-hand side of Equation 28
dy

dx
+ y = e− x cos x (Eqn 28)

is no longer the derivative of a simple function. If you were asked to solve Equation 28 you would need to
multiply both sides of the equation by ex and then perhaps you might recognize that the left-hand side is the
derivative of the product yex. Having done that you would then only need to integrate the right-hand side, then
perform some manipulations in order to find the general solution. This is the essence of the method, and its
success will depend on choosing a suitable multiplier, in this case ex.
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Now let us develop these ideas more systematically, in the context of our radioactive decay example, by trying
to solve Equation 24

dN

dt
+ λN = µB0e−µt (Eqn 24)

Perhaps by multiplying by some suitable function g(t) we can make the left-hand side the derivative of a
product. Multiplying both sides of Equation 24 by h(t) we obtain

h(t )
dN

dt
+ λh(t )[ ]N = µh(t )B0e−µt (29)

Now, the left-hand side of this equation would be the derivative of the product h(t)N(t) if the expression in
square brackets was equal to dh/dt. In other words to make the left-hand side the derivative of a product we
require

dh

dt
= λh(t ) (30)

But Equation 30 is just a simple first-order differential equation that can be tackled by inversion and direct
integration (as in Subsection 2.2). Its solution is

t = 1
λ

1
h

dh⌠
⌡

= 1
λ

loge h + C (31)
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t = 1
λ

1
h

dh⌠
⌡

= 1
λ

loge h + C (31)

We only need to find one function h(t) with the desired property, so we choose the simplest case, when C = 0,
and Equation 31 then gives h(t) = eλt. Substituting this expression for h(t) in Equation 29

h(t )
dN

dt
+ λh(t )[ ]N = µh(t )B0e−µt (Eqn 29)

gives us

eλt dN

dt
+ λeλt N = µeλt B0e−µt

where the left-hand side is now clearly seen to be the derivative of the product Neλt with respect to t because we
have constructed it to be so.
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We can now see that

d

dt
Neλt( ) = µeλt B0e−µt = µB0e(λ −µ )t

Integrating both sides gives us

Neλt = µB0 e(λ −µ )t∫ dt = µB0

λ − µ
e(λ −µ )t + C

Finally, if we make N the subject of this equation by dividing both sides by eλt we find

N = µB0

λ − µ
e−µt + Ce−λt (32)

Question T7

Check by substitution that Equation 32 is a solution to Equation 24.3❏

dN

dt
+ λN = µB0e−µt (Eqn 24)
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It should be clear that this method would have worked whatever function of t had been present on the right-hand
side of Equation 24.

dN

dt
+ λN = µB0e−µt (Eqn 24)

The important point of the technique is the trick of multiplying Equation 24 by eλt in order to bring its left-hand
side into the form of Equation 27.

e x dy

dx
+ e x y = cos x (Eqn 27)

This was what made it possible to integrate directly, and for this reason, eλt is called an integrating factor.

An integrating factor is a function by which each term of a differential equation is multiplied in order to
make it possible to use direct integration to solve the equation.
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The general linear equation with constant coefficients

Now that we have found the integrating factor for Equation 24, we can easily find one for the general first-order
linear equation with constant coefficients

a
dy

dx
+ by = f ( x ) (Eqn 23)

If we divide both sides by the constant a, we obtain
dy

dx
+ b

a
y = f ( x )

a

The left-hand side here is just like the left-hand side of Equation 24,
dN

dt
+ λN = µB0e−µt (Eqn 24)

except that instead of λ we have the constant b/a. The following exercise shows that the integrating factor in this
case must be simply ebx/a, which can be written alternatively as exp1(bx/a).
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Question T8

Show that the following is true
d

dx
( yebx / a ) = ebx / a dy

dx
+ b

a
yebx / a

and explain why this means that exp1(bx/a) is the integrating factor for Equation 23.3❏

Question T9

Find the integrating factor for the following differential equation:

2
dy

dx
− x = y3❏

We will now summarize the steps involved in using the method of integrating factors to solve the first-order
linear differential equation with constant coefficients,

a
dy

dx
+ by = f ( x ) (Eqn 23)
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Integrating factor method
1 Divide both sides of the equation by a, the coefficient of dy/dx, to obtain

dy

dx
+ b

a
y = f ( x )

a
2 Multiply both sides of the equation by ebx/a, the integrating factor. This gives

ebx / a dy

dx
+ b

a
yebx / a = f ( x )

a
ebx / a

which can be written as
d

dx
yebx / a( ) = ebx / a f ( x )

a
3 Integrate this equation directly, to obtain

yebx a = 1
a

f ( x )∫ ebx a dx

4 Evaluate the integral, remembering to include the constant of integration.

5 If possible, make y the subject, by dividing all terms1—1including the constant of integration1—1by ebx/a.

6 Check  that your answer is a solution by substitution.
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You can now practise these six steps by answering the following questions.

Question T10

Use the integrating factor you found for the equation given in Question T9 2
dy

dx
− x = y

to find the general solution of that equation.3❏

Question T11

Find the general solution to Equation 25,

L
dI

dt
+ RI = E cos(ωt) (Eqn 25)

You will need to use the following standard integral:
E

L
eRt / L∫ cos(ω t) dt = E

R2 + L2ω 2
eRt / L[ω L sin(ω t) + R cos(ω t)] + C3❏
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2.5 Choosing the correct method; what to do if none of them work
So far we have discussed differential equations of the following forms:

1
dy

dx
= f ( x ) , which can be solved by direct integration;

2
dy

dx
= h( y) , which can be solved by inversion and then direct integration;

3
dy

dx
= f ( x )h( y) , which can be solved by separation of variables;

4 a
dy

dx
+ by = f ( x ), the linear equation with constant coefficients, which can be solved by means of an

integrating factor.

When faced with a first-order differential equation, you should first see whether it can be written in any of the
above four forms (making sure that you have correctly identified the independent and dependent variables); if it
can, you should then use the appropriate method to find its general solution.
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The following exercise is intended to test your ability to choose the appropriate method (you are not asked to
solve the differential equations).

Question T12

What method would you use to solve the following differential equations? (In some cases, more than one
method is possible; but you should not use separation of variables if direct integration or inversion and direct
integration would work.)

(a) y
dy

dx
= 1

x2
+ y2

x2

(b)
  

dv
dt

= − g + α
β − γ t

3where g, α, β and γ are constants.

(c)
dy

dx
= 5( y + 3x )

(d)
dN

dt
+ λN = R3where λ and R are constants.3❏
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Change of variable

There are, of course, many first-order differential equations that cannot be written in any of the forms 1 to 4
above. Sometimes, however, an equation of that sort can be transformed into one that we already know how to
solve by changing the (dependent) variable. The best way to explain this technique is by means of an example.

Consider the differential equation
dy

dx
= y

x
+ x

y
(33) ☞

This equation is neither separable nor linear. However, let us see what happens if we define a new dependent
variable v in terms of y and x by

y = vx,3which can be rewritten as v = y/x (34)

where v is to be regarded as a (so far unknown) function of x. Since y = vx we can use the product rule to obtain
the following expression for the left-hand side of Equation 33

  

dy

dx
= d

dx
(vx ) = x

dv
dx

+ v

We can now use Equation 34 to rewrite the right-hand side of Equation 33 in the following way
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y

x
+ x

y
= v + 1

v

Using these results Equation 33
dy

dx
= y

x
+ x

y
(Eqn 33)

becomes

  
x

dv
dx

+ v = v +
1
v

that is
  
x

dv
dx

= 1
v

which can be separated and integrated to obtain

  

1
x

⌠
⌡

dx = v dv∫
giving loge1x + C = 1

2 v2
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Rearranging this equation to make v the subject, we find

v = ± 2 loge x + C1

(where the new constant C1 = 2C). Finally, we express the solution in terms of our original independent variable,
by putting v = y/x, to obtain the general solution

y = ± x 2 loge x + C1

There is no systematic way of finding a change of variable that will convert an otherwise insoluble differential
equation into one that can be solved by one of the techniques you have learnt in this module. Often it is
necessary to proceed simply by trial and error, though we can give you one hint: if the equation contains a
particular combination of the variables y and x, it is worth seeing what happens if you make that combination
your new dependent variable. (That was why we tried y = vx in Equation 33;

dy

dx
= y

x
+ x

y
(Eqn 33)

the right-hand side is simply a function of y/x.)
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Question T13

Show that the differential equation
dy

dx
= 1

( y + x )2

can be converted into an equation that can be solved by inversion by means of the change of variable v = y + x.
(You are not required to find the solution.)3❏
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As you become more experienced in solving differential equations, you will find it easier to spot the change of
variable that makes the equation soluble, if there is one (there may not be; for example, we know of no change
of variable that makes it possible to solve the equation dy/dx = yx).

Of course, you can always seek help from textbooks, which often discuss changes of variable that will work for
particular types of differential equations. You should regard a differential equation that cannot be solved by any
of the four systematic methods listed above as an interesting challenge; it is, after all, at this point that the
process of solving differential equations ceases simply to be a routine matter of applying standard technique and
becomes something of an art, requiring ingenuity, patience and low animal cunning.
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3 Closing items

3.1 Module summary
1 First-order differential equations of the form dy/dx = f1(x) can be solved at once by direct integration, to

give y = f ( x ) dx∫ .

2 Equations of the form dy/dx = h(1y) can be solved by applying the inversion rule, dy/dx2=21/(dx/dy), to
obtain dx/dy2=21/h( 1y), which can be directly integrated.

3 Equations of the form dy/dx = f1(x)h(1y) can be solved by the technique of separation of variables, which
leads to an equation of the form

1
h( y)

⌠
⌡

dy = f ( x ) dx∫ (Eqn 18)

which may be integrated and rearranged to find y.
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4 Linear first-order differential equations with constant coefficients of the form a(dy/dx) + by = f1(x) can be
solved by dividing both sides by a and then multiplying both sides by an integrating factor exp1(bx/a), to
bring them into a form where direct integration becomes possible.

5 The technique of changing the dependent variable is almost the only option available if none of the methods
listed above works. This is a trial and error procedure rather than a systematic one.
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3.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Solve differential equations of the form dy/dx = f1(x), by direct integration.

A3 Use the inversion rule to solve differential equations of the form dy/dx = h(1y), by inversion and direct
integration.

A4 Explain what is meant by the term separable, and solve differential equations of the form dy/dx = f1(x)h(1y),
by separation of variables.

A5 Explain what is meant by an integrating factor, find the integrating factor for a linear first-order equation
with constant coefficients and use it to solve the equation.

A6 Decide which (if any) of the above methods can be used to solve a given first-order differential equation.

A7 Use a given change of variable to transform a first-order differential equation into one that can more easily
be solved.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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3.3 Exit test
Study comment Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

r2

r1

Figure 43See Question E1.

Question E1
(A2)3The differential equation

H = −2πrκ 
dT

dr
describes the way in which temperature T varies with radius r within the walls
of a hollow cylindrical pipe, of inner radius rl and outer radius r2 (see Figure 4).
H (the heat loss per unit length) and κ  (the thermal conductivity of the pipe) are
constants. Find the general solution of this equation by direct integration.

If the temperature of the inner wall is T1, find an expression for the temperature T2 of the outer wall in terms of
T1, r1, r2 and constants.
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Question E2

(A3)3Use the technique of inversion and integration to find the general solution to the differential equation
dy

dx
= a2 − y2

3where a is a constant

Question E3

(A4)3The following equation describes how the (absolute) temperature T at which a liquid boils varies with the
external pressure P (under certain assumptions, which we shall not go into here):

dT

dP
= RT 2

LP

where L (the molar latent heat of vaporization of the liquid) and R (the molar gas constant) are constants.
Find the general solution to this equation using the technique of separation of variables.
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Question E4

(A3 and A5)3A stone of mass m is thrown vertically upwards with initial velocity ux. The stone is subject to the
(downward) force of gravity, of magnitude −mg, and a resistive force of magnitude −mkvx (where k is a positive
constant), the stone’s upward velocity vx at time t satisfies the differential equation

  

dvx

dt
= − g − kvx3(vx > 0)

Find the general solution to this equation:

(a) by using inversion and direct integration (treating the cases when (g  + kvx) is positive and negative
separately); and

(b) by using an integrating factor.

(c) Use the initial condition vx = ux at t = 0 to find the particular solution.



FLAP M6.2 Solving first-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question E5

(A6)3Find the general solutions of the following differential equations:

(a)
du

dT
= 4

u

T
3(where u and T are both always positive);

(b) R
dQ

dt
+ Q

C0
= Ee−λt

3where R, C0, E and λ are constants.
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Question E6

(A4, A5, A6 and A7)3A differential equation of the form
dy

dx
+ y = f ( x )yn

where n is a constant (not necessarily an integer), is called a Bernoulli equation.
(a) For one value of n, the equation is linear with constant coefficients. What is this value?
(b) For another value of n, the equation is separable. What is this value?
(c) If n  is not equal to either of these two values, the equation cannot be solved as it stands.

Show that the substitution y = vm, where m = 1/(1 − n), transforms the equation into a linear equation.
(d) Find the general solution of the equation if n = 2 and f1(x) = e2x.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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